
Pro ASP.NET 
Core MVC

Develop cloud-ready web applications  
using Microsoft’s latest framework,  
ASP.NET Core MVC
—
Sixth Edition
—
Adam Freeman

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org


     Pro ASP.NET Core MVC 
Sixth Edition

     

   

     Adam Freeman
              

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org


Pro ASP.NET Core MVC: Sixth Edition

Adam Freeman    

ISBN-13 (pbk): 978-1-4842-0398-9  ISBN-13 (electronic): 978-1-4842-0397-2
DOI 10.1007/978-1-4842-0397-2

Library of Congress Control Number: 2016953186

Copyright © 2016 by Adam Freeman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage 
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or 
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material 
contained herein.

Managing Director: Welmoed Spahr 
Lead Editor: Gwenan Spearing
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan, 

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham, 
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail   orders-ny@springer-
sbm.com    , or visit   www.springeronline.com    . Apress Media, LLC is a California LLC and the sole member 
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a 
 Delaware  corporation.

For information on translations, please e-mail   rights@apress.com    , or visit   www.apress.com    . 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our Special 
Bulk Sales–eBook Licensing web page at   www.apress.com/bulk-sales    .

 Any source code or other supplementary materials referenced by the author in this text are available to 
readers at    www.apress.com/9781484203989     . For detailed information about how to locate your book’s source 
code, go to    www.apress.com/source-code/     . Readers can also access source code at SpringerLink in the 
Supplementary Material section for each chapter. 

Printed on acid-free paper

www.allitebooks.comwww.allitebooks.com

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/9781484203989
http://www.apress.com/source-code/
http://www.allitebooks.org
http://www.allitebooks.org


   Dedicated to my lovely wife, Jacqui Griffyth (and also to Peanut).  

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org


v

Contents at a Glance

About the Author .................................................................................................xxvii

About the Technical Reviewer ..............................................................................xxix

 ■Part I: Introducing ASP.NET Core MVC ................................................ 1

 ■Chapter 1: ASP.NET Core MVC in Context ............................................................... 3

 ■Chapter 2: Your First MVC Application ................................................................ 11

 ■Chapter 3: The MVC Pattern, Projects, and Conventions ..................................... 53

 ■Chapter 4: Essential C# Features ......................................................................... 65

 ■Chapter 5: Working with Razor ......................................................................... 101

 ■Chapter 6: Working with Visual Studio .............................................................. 123

 ■Chapter 7: Unit Testing MVC Applications ......................................................... 159

 ■Chapter 8: SportsStore: A Real Application ....................................................... 191

 ■Chapter 9: SportsStore: Navigation ................................................................... 235

 ■Chapter 10: SportsStore: Completing the Cart .................................................. 269

 ■Chapter 11: SportsStore: Administration .......................................................... 291

 ■Chapter 12: SportsStore: Security and Deployment .......................................... 319

 ■Chapter 13: Working with Visual Studio Code ................................................... 343

 ■Part II: ASP.NET Core MVC in Detail ................................................ 371

 ■Chapter 14: Confi guring Applications ................................................................ 373

 ■Chapter 15: URL Routing.................................................................................... 425

 ■Chapter 16: Advanced Routing Features ........................................................... 465

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org


 ■ CONTENTS AT A GLANCE

vi

 ■Chapter 17: Controllers and Actions .................................................................. 503

 ■Chapter 18: Dependency Injection ..................................................................... 547

 ■Chapter 19: Filters ............................................................................................. 581

 ■Chapter 20: API Controllers ............................................................................... 621

 ■Chapter 21: Views ............................................................................................. 653

 ■Chapter 22: View Components .......................................................................... 687

 ■Chapter 23: Understanding Tag Helpers ............................................................ 719

 ■Chapter 24: Using the Form Tag Helpers ........................................................... 753

 ■Chapter 25: Using the Other Built-in Tag Helpers .............................................. 779

 ■Chapter 26: Model Binding ................................................................................ 805

 ■Chapter 27: Model Validation ............................................................................ 843

 ■Chapter 28: Getting Started with Identity .......................................................... 877

 ■Chapter 29: Applying ASP.NET Core Identity ...................................................... 919

 ■Chapter 30: Advanced ASP.NET Core Identity .................................................... 949

 ■Chapter 31: Model Conventions and Action Constraints ................................... 983

Index ................................................................................................................... 1013

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org


vii

Contents

About the Author .................................................................................................xxvii

About the Technical Reviewer ..............................................................................xxix

 ■Part I: Introducing ASP.NET Core MVC ................................................................... 1

 ■Chapter 1: ASP.NET Core MVC in Context ............................................................... 3

Understanding the History of ASP.NET Core MVC ............................................................. 3

ASP.NET Web Forms ................................................................................................................................ 3

The Original MVC Framework ................................................................................................................. 5

Understanding ASP.NET Core ............................................................................................ 5

Key Benefi ts of ASP.NET Core MVC ......................................................................................................... 6

What Do I Need to Know? ................................................................................................. 8

What Is the Structure of This Book? ................................................................................. 8

Part 1: Introducing ASP.NET Core MVC .................................................................................................... 8

Part 2: ASP.NET Core MVC in Detail ......................................................................................................... 9

What’s New in This Edition? ............................................................................................. 9

Where Can I Get the Example Code? ................................................................................ 9

Summary .......................................................................................................................... 9

 ■Chapter 2: Your First MVC Application ................................................................ 11

Installing Visual Studio ................................................................................................... 11

Creating a New ASP.NET Core MVC Project .................................................................... 13

Adding the Controller ............................................................................................................................ 17

Understanding Routes .......................................................................................................................... 19

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org


 ■ CONTENTS

viii

Rendering Web Pages .................................................................................................... 20

Creating and Rendering a View ............................................................................................................ 20

Adding Dynamic Output ........................................................................................................................ 23

Creating a Simple Data-Entry Application ...................................................................... 25

Setting the Scene ................................................................................................................................. 25

Designing a Data Model ........................................................................................................................ 26

Creating a Second Action and a Strongly Typed View ........................................................................... 27

Linking Action Methods ........................................................................................................................ 28

Building the Form ................................................................................................................................. 30

Receiving Form Data ............................................................................................................................ 31

Displaying the Responses..................................................................................................................... 36

Adding Validation .................................................................................................................................. 38

Styling the Content ............................................................................................................................... 45

Summary ........................................................................................................................ 51

 ■Chapter 3: The MVC Pattern, Projects, and Conventions ..................................... 53

The History of MVC ......................................................................................................... 53

Understanding the MVC Pattern ..................................................................................... 53

Understanding Models .......................................................................................................................... 54

Understanding Controllers .................................................................................................................... 54

Understanding Views ............................................................................................................................ 55

The ASP.NET Implementation of MVC ................................................................................................... 55

Comparing MVC to Other Patterns.................................................................................. 55

Understanding the Smart UI Pattern ..................................................................................................... 56

Understanding the Model-View Architecture ........................................................................................ 57

Understanding Classic Three-Tier Architectures .................................................................................. 57

Understanding Variations on MVC ........................................................................................................ 58

Understanding ASP.NET Core MVC Projects .................................................................... 59

Creating the Project .............................................................................................................................. 59

Understanding MVC Conventions ......................................................................................................... 62

Summary ........................................................................................................................ 64

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org


 ■ CONTENTS

ix

 ■Chapter 4: Essential C# Features ......................................................................... 65

Preparing the Example Project ....................................................................................... 65

Enabling ASP.NET Core MVC ................................................................................................................. 67

Creating the MVC Application Components .......................................................................................... 68

Using the Null Conditional Operator ............................................................................... 70

Chaining the Null Conditional Operator ................................................................................................ 71

Combining the Conditional and Coalescing Operators ......................................................................... 72

Using Automatically Implemented Properties ................................................................ 73

Using Auto-Implemented Property Initializers ...................................................................................... 74

Creating Read-Only Automatically Implemented Properties ................................................................. 75

Using String Interpolation ............................................................................................... 76

Using Object and Collection Initializers .......................................................................... 77

Using an Index Initializer ...................................................................................................................... 79

Using Extension Methods ............................................................................................... 80

Applying Extension Methods to an Interface ........................................................................................ 82

Creating Filtering Extension Methods ................................................................................................... 83

Using Lambda Expressions ............................................................................................ 85

Defi ning Functions ................................................................................................................................ 86

Using Lambda Expression Methods and Properties ............................................................................. 89

Using Type Inference and Anonymous Types .................................................................. 91

Using Anonymous Types ....................................................................................................................... 92

Using Asynchronous Methods ........................................................................................ 94

Working with Tasks Directly ................................................................................................................. 94

Applying the async and await Keywords .............................................................................................. 96

Getting Names ................................................................................................................ 97

Summary ........................................................................................................................ 99

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org


 ■ CONTENTS

x

 ■Chapter 5: Working with Razor ......................................................................... 101

Preparing the Example Project ..................................................................................... 102

Defi ning the Model ............................................................................................................................. 103

Creating the Controller ....................................................................................................................... 103

Creating the View ............................................................................................................................... 104

Working with the Model Object .................................................................................... 105

Using View Imports ............................................................................................................................. 107

Working with Layouts ................................................................................................... 109

Creating the Layout ............................................................................................................................ 109

Applying a Layout ............................................................................................................................... 111

Using a View Start File ........................................................................................................................ 112

Using Razor Expressions .............................................................................................. 114

Inserting Data Values .......................................................................................................................... 115

Setting Attribute Values ...................................................................................................................... 117

Using Conditional Statements ............................................................................................................ 118

Enumerating Arrays and Collections ................................................................................................... 120

Summary ...................................................................................................................... 122

 ■Chapter 6: Working with Visual Studio .............................................................. 123

Preparing the Example Project ..................................................................................... 123

Creating the Model ............................................................................................................................. 124

Creating the Controller and View ........................................................................................................ 126

Managing Software Packages ...................................................................................... 128

Understanding NuGet.......................................................................................................................... 128

Understanding Bower ......................................................................................................................... 130

Understanding Iterative Development .......................................................................... 134

Making Changes to Razor Views ........................................................................................................ 134

Making Changes to C# Classes .......................................................................................................... 136

Using Browser Link ............................................................................................................................. 144

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org


 ■ CONTENTS

xi

Preparing JavaScript and CSS for Deployment ............................................................ 150

Enabling Static Content Delivery ........................................................................................................ 150

Adding Static Content to the Project................................................................................................... 151

Updating the View ............................................................................................................................... 153

Bundling and Minifying in MVC Applications ...................................................................................... 154

Summary ...................................................................................................................... 158

 ■Chapter 7: Unit Testing MVC Applications ......................................................... 159

Preparing the Example Project ..................................................................................... 160

Enabling the Built-in Tag Helpers ....................................................................................................... 160

Adding Actions to the Controller ......................................................................................................... 160

Creating the Data Entry Form ............................................................................................................. 161

Updating the Index View ..................................................................................................................... 162

Unit Testing MVC Applications ...................................................................................... 163

Creating a Unit test Project ................................................................................................................. 164

Writing and Running Unit Tests ........................................................................................................... 167

Isolating Components for Unit Testing ................................................................................................ 171

Improving Unit Tests ..................................................................................................... 179

Parameterizing a Unit Test .................................................................................................................. 179

Improving Fake Implementations ....................................................................................................... 183

Summary ...................................................................................................................... 189

 ■Chapter 8: SportsStore: A Real Application ....................................................... 191

Getting Started ............................................................................................................. 192

Creating the MVC Project .................................................................................................................... 192

Creating the Unit Test Project ............................................................................................................. 197

Checking and Running the Application ............................................................................................... 199

Starting the Domain Model........................................................................................... 200

Creating a Repository ......................................................................................................................... 200

Creating a Fake Repository ................................................................................................................ 201

Registering the Repository Service .................................................................................................... 201



 ■ CONTENTS

xii

Displaying a List of Products ........................................................................................ 202

Adding a Controller ............................................................................................................................. 204

Adding and Confi guring the View ....................................................................................................... 205

Setting the Default Route ................................................................................................................... 207

Running the Application ...................................................................................................................... 208

Preparing a Database ................................................................................................... 208

Installing Entity Framework Core ....................................................................................................... 209

Creating the Database Classes ........................................................................................................... 210

Creating the Repository Class ............................................................................................................ 212

Defi ning the Connection String ........................................................................................................... 212

Confi guring the Application ................................................................................................................ 213

Creating and Applying the Database Migration .................................................................................. 215

Adding Pagination ........................................................................................................ 216

Displaying Page Links......................................................................................................................... 218

Improving the URLs ............................................................................................................................ 227

Styling the Content ....................................................................................................... 228

Installing the Bootstrap Package ........................................................................................................ 229

Applying Bootstrap Styles to the Layout ............................................................................................. 229

Creating a Partial View ....................................................................................................................... 232

Summary ...................................................................................................................... 234

 ■Chapter 9: SportsStore: Navigation ................................................................... 235

Adding Navigation Controls .......................................................................................... 235

Filtering the Product List .................................................................................................................... 235

Refi ning the URL Scheme ................................................................................................................... 239

Building a Category Navigation Menu ................................................................................................ 243

Correcting the Page Count .................................................................................................................. 251

Building the Shopping Cart........................................................................................... 253

Defi ning the Cart Model ...................................................................................................................... 254

Adding the Add to Cart Buttons .......................................................................................................... 258

Enabling Sessions .............................................................................................................................. 260



 ■ CONTENTS

xiii

Implementing the Cart Controller ....................................................................................................... 261

Displaying the Contents of the Cart .................................................................................................... 264

Summary ...................................................................................................................... 267

 ■Chapter 10: SportsStore: Completing the Cart .................................................. 269

Refi ning the Cart Model with a Service ........................................................................ 269

Creating a Storage-Aware Cart Class ................................................................................................. 269

Registering the Service ...................................................................................................................... 270

Simplifying the Cart Controller ........................................................................................................... 271

Completing the Cart Functionality ................................................................................ 272

Removing Items from the Cart ............................................................................................................ 272

Adding the Cart Summary Widget ...................................................................................................... 274

Submitting Orders ........................................................................................................ 277

Creating the Model Class .................................................................................................................... 277

Adding the Checkout Process ............................................................................................................. 278

Implementing Order Processing ......................................................................................................... 282

Completing the Order Controller ......................................................................................................... 285

Displaying Validation Errors ................................................................................................................ 288

Displaying a Summary Page ............................................................................................................... 290

Summary ...................................................................................................................... 290

 ■Chapter 11: SportsStore: Administration .......................................................... 291

Managing Orders .......................................................................................................... 291

Enhancing the Model .......................................................................................................................... 291

Adding the Actions and View .............................................................................................................. 292

Adding Catalog Management ....................................................................................... 295

Creating a CRUD Controller ................................................................................................................. 296

Implementing the List View ................................................................................................................ 298

Editing Products ................................................................................................................................. 299

Creating New Products ....................................................................................................................... 313

Deleting Products ............................................................................................................................... 315

Summary ...................................................................................................................... 318



 ■ CONTENTS

xiv

 ■Chapter 12: SportsStore: Security and Deployment .......................................... 319

Securing the Administration Features .......................................................................... 319

Adding the Identity Package to the Project ........................................................................................ 319

Creating the Identity Database ........................................................................................................... 320

Applying a Basic Authorization Policy ................................................................................................. 324

Creating the Account Controller and Views ........................................................................................ 326

Testing the Security Policy.................................................................................................................. 330

Deploying the Application ............................................................................................. 330

Creating the Databases ...................................................................................................................... 331

Preparing the Application ................................................................................................................... 332

Applying the Database Migrations ...................................................................................................... 337

Deploying the Application ................................................................................................................... 337

Summary ...................................................................................................................... 342

 ■Chapter 13: Working with Visual Studio Code ................................................... 343

Setting Up the Development Environment ................................................................... 343

Installing Node.js ................................................................................................................................ 343

Checking the Node Installation ........................................................................................................... 345

Installing Git ........................................................................................................................................ 345

Checking the Git Installation ............................................................................................................... 345

Installing Yeoman, Bower, and Gulp .................................................................................................... 346

Installing .NET Core ............................................................................................................................ 346

Checking the .NET Core Installation ................................................................................................... 347

Installing Visual Studio Code .............................................................................................................. 348

Checking the Visual Studio Code Installation ..................................................................................... 348

Installing the Visual Studio Code C# Extension ................................................................................... 349

Creating an ASP.NET Core Project ................................................................................ 350

Preparing the Project with Visual Studio Code ............................................................. 351

Adding NuGet Packages to the Project ............................................................................................... 352

Adding Client-Side Packages to the Project ....................................................................................... 353

Confi guring the Application ................................................................................................................ 355

Building and Running the Project ....................................................................................................... 355



 ■ CONTENTS

xv

Re-creating the PartyInvites Application ...................................................................... 356

Creating the Model and Repository .................................................................................................... 356

Creating the Database ........................................................................................................................ 359

Creating the Controllers and Views .................................................................................................... 361

Unit Testing in Visual Studio Code ................................................................................ 366

Confi guring the Application ................................................................................................................ 366

Creating a Unit Test ............................................................................................................................. 367

Running Tests ..................................................................................................................................... 368

Summary ...................................................................................................................... 369

 ■Part II: ASP.NET Core MVC in Detail ................................................ 371

 ■Chapter 14: Confi guring Applications ................................................................ 373

Preparing the Example Project ..................................................................................... 374

Understanding the JSON Confi guration Files ............................................................... 376

Confi guring the Solution ..................................................................................................................... 377

Confi guring the Project ....................................................................................................................... 379

Understanding the Program Class ................................................................................ 382

Understanding the Startup Class .................................................................................. 383

Understanding How the Startup Class Is Used ................................................................................... 385

Understanding ASP.NET Services ........................................................................................................ 386

Understanding ASP.NET Middleware ................................................................................................... 389

Understanding How the Confi gure Method Is Invoked ....................................................................... 398

Adding the Remaining Middleware Components ................................................................................ 407

Using Confi guration Data .................................................................................................................... 412

Confi guring MVC Services ............................................................................................ 418

Dealing with Complex Confi gurations .......................................................................... 420

Creating Different External Confi guration Files .................................................................................. 420

Creating Different Confi guration Methods .......................................................................................... 421

Creating Different Confi guration Classes ............................................................................................ 422

Summary ...................................................................................................................... 424



 ■ CONTENTS

xvi

 ■Chapter 15: URL Routing.................................................................................... 425

Preparing the Example Project ..................................................................................... 427

Creating the Model Class .................................................................................................................... 428

Creating the Example Controllers ....................................................................................................... 429

Creating the View ............................................................................................................................... 430

Introducing URL Patterns ............................................................................................. 431

Creating and Registering a Simple Route .................................................................... 433

Defi ning Default Values ................................................................................................ 434

Defi ning Inline Default Values ............................................................................................................. 435

Using Static URL Segments .......................................................................................... 437

Defi ning Custom Segment Variables ............................................................................ 442

Using Custom Variables as Action Method Parameters ...................................................................... 444

Defi ning Optional URL Segments ........................................................................................................ 446

Defi ning Variable-Length Routes ........................................................................................................ 448

Constraining Routes ..................................................................................................... 451

Constraining a Route Using a Regular Expression .............................................................................. 454

Using Type and Value Constraints ....................................................................................................... 455

Combining Constraints ....................................................................................................................... 456

Defi ning a Custom Constraint ............................................................................................................. 457

Using Attribute Routing ................................................................................................ 460

Preparing for Attribute Routing ........................................................................................................... 460

Applying Attribute Routing .................................................................................................................. 461

Applying Route Constraints ................................................................................................................ 464

Summary ...................................................................................................................... 464

 ■Chapter 16: Advanced Routing Features ........................................................... 465

Preparing the Example Project ..................................................................................... 466

Generating Outgoing URLs in Views ............................................................................. 468

Generating Outgoing Links ................................................................................................................. 468

Generating URLs (and Not Links) ........................................................................................................ 479



 ■ CONTENTS

xvii

Customizing the Routing System ................................................................................. 480

Changing the Routing System Confi guration ...................................................................................... 481

Creating a Custom Route Class .......................................................................................................... 482

Working with Areas ...................................................................................................... 493

Creating an Area ................................................................................................................................. 493

Creating an Area Route ....................................................................................................................... 494

Populating an Area ............................................................................................................................. 495

Generating Links to Actions in Areas .................................................................................................. 497

URL Schema Best Practices ......................................................................................... 499

Make Your URLs Clean and Human-Friendly ...................................................................................... 499

GET and POST: Pick the Right One ...................................................................................................... 500

Summary ...................................................................................................................... 501

 ■Chapter 17: Controllers and Actions .................................................................. 503

Preparing the Example Project ..................................................................................... 504

Preparing the Views ............................................................................................................................ 506

Understanding Controllers ............................................................................................ 508

Creating Controllers ..................................................................................................... 508

Creating POCO Controllers .................................................................................................................. 508

Using the Controller Base Class ......................................................................................................... 511

Receiving Context Data ................................................................................................ 512

Getting Data from Context Objects ..................................................................................................... 512

Using Action Method Parameters ....................................................................................................... 517

Producing a Response .................................................................................................. 519

Producing a Response Using the Context Object ................................................................................ 519

Understanding Action Results ............................................................................................................. 520

Producing an HTML Response ............................................................................................................ 522

Performing Redirections ..................................................................................................................... 531

Returning Different Types of Content .................................................................................................. 538



 ■ CONTENTS

xviii

Responding with the Contents of Files ............................................................................................... 540

Returning Errors and HTTP Codes ...................................................................................................... 542

Understanding the Other Action Result Classes ................................................................................. 544

Summary ...................................................................................................................... 545

 ■Chapter 18: Dependency Injection ..................................................................... 547

Preparing the Example Project ..................................................................................... 548

Creating the Model and Repository .................................................................................................... 549

Creating the Controller and View ........................................................................................................ 551

Creating the Unit Test Project ............................................................................................................. 553

Creating Loosely Coupled Components ........................................................................ 554

Examining Closely Coupled Components............................................................................................ 554

Introducing ASP.NET Dependency Injection .................................................................. 561

Preparing for Dependency Injection ................................................................................................... 561

Confi guring the Service Provider ........................................................................................................ 562

Unit Testing a Controller with a Dependency ...................................................................................... 564

Using Dependency Chains .................................................................................................................. 565

Using Dependency Injection for Concrete Types ................................................................................. 568

Understanding Service Life Cycles ............................................................................... 570

Using the Transient Life Cycle............................................................................................................. 570

Using the Scoped Life Cycle ............................................................................................................... 574

Using the Singleton Life Cycle ............................................................................................................ 576

Using Action Injection ................................................................................................... 577

Using the Property Injection Attributes ......................................................................... 577

Manually Requesting an Implementation Object .......................................................... 578

Summary ...................................................................................................................... 579



 ■ CONTENTS

xix

 ■Chapter 19: Filters ............................................................................................. 581

Preparing the Example Project ..................................................................................... 582

Enabling SSL ....................................................................................................................................... 583

Creating the Controller and View ........................................................................................................ 584

Using Filters ................................................................................................................. 586

Understanding Filters ................................................................................................... 589

Getting Context Data ........................................................................................................................... 589

Using Authorization Filters ........................................................................................... 590

Creating an Authorization Filter .......................................................................................................... 591

Using Action Filters ...................................................................................................... 593

Creating an Action Filter ..................................................................................................................... 595

Creating an Asynchronous Action Filter .............................................................................................. 597

Using Result Filters ...................................................................................................... 598

Creating a Result Filter ....................................................................................................................... 599

Creating an Asynchronous Result Filter .............................................................................................. 600

Creating a Hybrid Action/Result Filter ................................................................................................. 602

Using Exception Filters ................................................................................................. 604

Creating an Exception Filter ............................................................................................................... 605

Using Dependency Injection for Filters ......................................................................... 607

Resolving Filter Dependencies ........................................................................................................... 607

Managing Filter Life Cycles ................................................................................................................ 611

Creating Global Filters .................................................................................................. 614

Understanding and Changing Filter Order .................................................................... 617

Changing Filter Order ......................................................................................................................... 619

Summary ...................................................................................................................... 620

 ■Chapter 20: API Controllers ............................................................................... 621

Preparing the Example Project ..................................................................................... 622

Creating the Model and Repository .................................................................................................... 622

Creating the Controller and Views ...................................................................................................... 624

Confi guring the Application ................................................................................................................ 626



 ■ CONTENTS

xx

Understanding the Role of RESTful Controllers ............................................................ 628

Understanding the Speed Problem ..................................................................................................... 629

Understanding the Effi ciency Problem ............................................................................................... 629

Understanding the Openness Problem ............................................................................................... 630

Introducing REST and API Controllers .......................................................................... 630

Creating an API Controller ................................................................................................................... 631

Testing an API Controller ..................................................................................................................... 635

Using the API Controller in the Browser .............................................................................................. 639

Understanding Content Formatting .............................................................................. 641

Understanding the Default Content Policy .......................................................................................... 642

Understanding Content Negotiation .................................................................................................... 643

Specifying an Action Data Format ...................................................................................................... 646

Getting the Data Format from the Route or Query String ................................................................... 647

Enabling Full Content Negotiation ...................................................................................................... 648

Receiving Different Data Formats ....................................................................................................... 650

Summary ...................................................................................................................... 651

 ■Chapter 21: Views ............................................................................................. 653

Preparing the Example Project ..................................................................................... 654

Creating a Custom View Engine ................................................................................... 656

Creating a Custom IView .................................................................................................................... 657

Creating an IViewEngine Implementation ........................................................................................... 658

Registering a Custom View Engine ..................................................................................................... 659

Testing the View Engine ...................................................................................................................... 660

Working with the Razor Engine .................................................................................... 663

Preparing the Example Project ........................................................................................................... 663

Demystifying Razor Views .................................................................................................................. 665

Adding Dynamic Content to a Razor View .................................................................... 669

Using Layout Sections ........................................................................................................................ 669

Using Partial Views ............................................................................................................................. 675

Adding JSON Content to Views ........................................................................................................... 678



 ■ CONTENTS

xxi

Confi guring Razor ......................................................................................................... 680

Understanding View Location Expanders ........................................................................................... 681

Summary ...................................................................................................................... 686

 ■Chapter 22: View Components .......................................................................... 687

Preparing the Example Project ..................................................................................... 688

Creating the Models and Repositories ................................................................................................ 689

Creating the Controller and Views ...................................................................................................... 691

Confi guring the Application ................................................................................................................ 694

Understanding View Components ................................................................................ 695

Creating a View Component ......................................................................................... 696

Creating POCO View Components ....................................................................................................... 696

Deriving from the ViewComponent Base Class ................................................................................... 698

Understanding View Component Results ............................................................................................ 699

Getting Context Data ........................................................................................................................... 705

Creating Asynchronous View Components ......................................................................................... 711

Creating Hybrid Controller/View Component Classes .................................................. 714

Creating the Hybrid Views .................................................................................................................. 715

Applying the Hybrid Class ................................................................................................................... 716

Summary ...................................................................................................................... 718

 ■Chapter 23: Understanding Tag Helpers ............................................................ 719

Preparing the Example Project ..................................................................................... 720

Creating the Model and Repository .................................................................................................... 721

Creating the Controller, Layout, and Views ......................................................................................... 722

Confi guring the Application ................................................................................................................ 725

Creating a Tag Helper ................................................................................................... 726

Defi ning the Tag Helper Class ............................................................................................................. 726

Registering Tag Helpers ...................................................................................................................... 729

Using a Tag Helper .............................................................................................................................. 730

Managing the Scope of a Tag Helper .................................................................................................. 732



 ■ CONTENTS

xxii

Advanced Tag Helper Features ..................................................................................... 736

Creating Shorthand Elements ............................................................................................................. 736

Prepending and Appending Content and Elements ............................................................................ 739

Getting View Context Data and Using Dependency Injection .............................................................. 743

Working with the View Model ............................................................................................................. 745

Coordinating Between Tag Helpers ..................................................................................................... 747

Suppressing the Output Element ........................................................................................................ 749

Summary ...................................................................................................................... 751

 ■Chapter 24: Using the Form Tag Helpers ........................................................... 753

Preparing the Example Project ..................................................................................... 754

Changing the Tag Helper Registration ................................................................................................ 754

Resetting the Views and Layout ......................................................................................................... 755

Working with Form Elements ....................................................................................... 757

Setting the Form Target ...................................................................................................................... 757

Using the Anti-forgery Feature ........................................................................................................... 758

Working with Input Elements ....................................................................................... 760

Confi guring Input Elements ................................................................................................................ 761

Formatting Data Values ...................................................................................................................... 763

Working with Label Elements ....................................................................................... 766

Working with Select and Option Elements ................................................................... 768

Using a Data Source to Populate a select Element ............................................................................. 770

Generating Option Elements from an enum ........................................................................................ 770

Working with Text Areas ............................................................................................... 775

Understanding the Validation Form Tag Helpers .......................................................... 777

Summary ...................................................................................................................... 777



 ■ CONTENTS

xxiii

 ■Chapter 25: Using the Other Built-in Tag Helpers .............................................. 779

Preparing the Example Project ..................................................................................... 780

Using the Hosting Environment Tag Helper .................................................................. 781

Using the JavaScript and CSS Tag Helpers .................................................................. 782

Managing JavaScript Files ................................................................................................................. 782

Managing CSS Stylesheets ................................................................................................................. 791

Working with Anchor Elements .................................................................................... 794

Working with Image Elements ..................................................................................... 795

Using the Data Cache ................................................................................................... 796

Setting Cache Expiry .......................................................................................................................... 799

Using Cache Variations ....................................................................................................................... 800

Using Application-Relative URLs .................................................................................. 801

Summary ...................................................................................................................... 804

 ■Chapter 26: Model Binding ................................................................................ 805

Preparing the Example Project ..................................................................................... 806

Creating the Model and Repository .................................................................................................... 807

Creating the Controller and View ........................................................................................................ 808

Confi guring the Application ................................................................................................................ 810

Understanding Model Binding ...................................................................................... 811

Understanding Default Binding Values ............................................................................................... 813

Binding Simple Types ......................................................................................................................... 815

Binding Complex Types ....................................................................................................................... 816

Binding to Arrays and Collections ....................................................................................................... 827

Specifying a Model Binding Source.............................................................................. 834

Selecting a Standard Binding Source ................................................................................................. 835

Using Headers As Binding Sources ..................................................................................................... 836

Using Request Bodies as Binding Sources ......................................................................................... 839

Summary ...................................................................................................................... 842



 ■ CONTENTS

xxiv

 ■Chapter 27: Model Validation ............................................................................ 843

Preparing the Example Project ..................................................................................... 844

Creating the Model ............................................................................................................................. 846

Creating the Controller ....................................................................................................................... 846

Creating the Layout and Views ........................................................................................................... 847

Understanding the Need for Model Validation .............................................................. 849

Explicitly Validating a Model ......................................................................................... 850

Displaying Validation Errors to the User ............................................................................................. 852

Displaying Validation Messages ......................................................................................................... 855

Displaying Property-Level Validation Messages ................................................................................. 859

Displaying Model-Level Messages ..................................................................................................... 861

Specifying Validation Rules Using Metadata ................................................................ 864

Creating a Custom Property Validation Attribute ................................................................................ 868

Performing Client-Side Validation ................................................................................ 870

Performing Remote Validation ...................................................................................... 872

Summary ...................................................................................................................... 876

 ■Chapter 28: Getting Started with Identity .......................................................... 877

Preparing the Example Project ..................................................................................... 878

Creating the Controller and View ........................................................................................................ 880

Setting Up ASP.NET Core Identity.................................................................................. 882

Adding the Identity Package to the Application .................................................................................. 882

Creating the User Class ...................................................................................................................... 883

Creating the Database Context Class ................................................................................................. 885

Confi guring the Database Connection String Setting ......................................................................... 885

Confi guring the Identity Services and Middleware ............................................................................. 887

Creating the Identity Database ........................................................................................................... 888



 ■ CONTENTS

xxv

Using ASP.NET Core Identity ......................................................................................... 889

Enumerating User Accounts ............................................................................................................... 889

Creating Users .................................................................................................................................... 892

Validating Passwords ......................................................................................................................... 896

Validating User Details ........................................................................................................................ 904

Completing the Administration Features ...................................................................... 910

Implementing the Delete Feature ....................................................................................................... 911

Implementing the Edit Feature ........................................................................................................... 912

Summary ...................................................................................................................... 917

 ■Chapter 29: Applying ASP.NET Core Identity ...................................................... 919

Preparing the Example Project ..................................................................................... 919

Authenticating Users .................................................................................................... 920

Preparing to Implement Authentication .............................................................................................. 923

Adding User Authentication ................................................................................................................ 926

Testing Authentication ........................................................................................................................ 928

Authorizing Users with Roles ....................................................................................... 929

Creating and Deleting Roles ............................................................................................................... 930

Managing Role Memberships ............................................................................................................. 935

Using Roles for Authorization ............................................................................................................. 941

Seeding the Database .................................................................................................. 945

Summary ...................................................................................................................... 948

 ■Chapter 30: Advanced ASP.NET Core Identity .................................................... 949

Preparing the Example Project ..................................................................................... 949

Adding Custom User Properties ................................................................................... 951

Preparing for Database Migration ...................................................................................................... 954

Testing the Custom Properties ............................................................................................................ 955

Working with Claims and Policies ................................................................................ 956

Understanding Claims ........................................................................................................................ 956

Creating Claims .................................................................................................................................. 961



 ■ CONTENTS

xxvi

Using Policies ..................................................................................................................................... 964

Using Policies to Authorize Access to Resources ............................................................................... 970

Using Third-Party Authentication .................................................................................. 976

Registering the Application with Google ............................................................................................. 976

Enabling Google Authentication .......................................................................................................... 977

Summary ...................................................................................................................... 982

 ■Chapter 31: Model Conventions and Action Constraints ................................... 983

Preparing the Example Project ..................................................................................... 983

Creating the View Model, Controller, and View ................................................................................... 985

Using the Application Model and Model Conventions .................................................. 987

Understanding the Application Model ................................................................................................. 988

Understanding the Role of Model Conventions ................................................................................... 992

Creating a Model Convention .............................................................................................................. 993

Understanding Model Convention Execution Order ............................................................................ 998

Creating Global Model Conventions .................................................................................................... 999

Using Action Constraints ............................................................................................ 1001

Preparing the Example Project ......................................................................................................... 1001

Understanding Action Constraints .................................................................................................... 1003

Creating an Action Constraint ........................................................................................................... 1004

Resolving Dependencies in Action Constraints................................................................................. 1009

Summary .................................................................................................................... 1012

Index ................................................................................................................... 1013



xxvii

   About the Author 

     Adam   Freeman       is an experienced IT professional who has held senior positions in a range of companies, 
most recently serving as chief technology officer and chief operating officer of a global bank. Now retired, he 
spends his time writing and long-distance running. 



xxix

         About the Technical Reviewer 

     Fabio   Claudio   Ferracchiati       is a senior consultant and a senior analyst/developer using Microsoft 
technologies. He works for Brain Force (   www.bluarancio.com     ). He is a Microsoft Certified Solution 
Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional, 
and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and 
international magazines and coauthored more than ten books on a variety of computer topics.     
 

http://www.bluarancio.com/


   PART I 

   Introducing ASP.NET Core MVC 

            ASP.NET Core MVC is a radical shift for web developers using the Microsoft platform. It emphasizes 
clean architecture, design patterns, and testability, and it doesn’t try to conceal how the Web works. 

 The first part of this book is designed to help you understand broadly the foundational ideas of 
MVC development, including the new features in ASP.NET Core MVC, and to experience in practice 
what the framework is like to use.       



3© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_1

    CHAPTER 1   

 ASP.NET Core MVC in Context                          

 ASP.NET Core MVC is a web application development framework from Microsoft that combines the 
effectiveness and tidiness of model-view-controller (MVC) architecture, ideas and techniques from agile 
development, and the best parts of the .NET platform. In this chapter, you’ll learn why Microsoft created ASP.
NET Core MVC, see how it compares to its predecessors and alternatives, and, finally, get an overview of 
what’s new in ASP.NET Core MVC and what’s covered in this book. 

     Understanding the History of ASP.NET Core MVC 
       The original ASP.NET was introduced in 2002, at a time when Microsoft was keen to protect a dominant 
position in traditional desktop application development and saw the Internet as a threat. Figure  1-1  
illustrates Microsoft’s technology stack as it appeared then.  

  Figure 1-1.    The ASP.NET Web Forms technology stack       

     ASP.NET Web Forms 
    With Web Forms, Microsoft attempted to hide both Hypertext Transfer Protocol (HTTP), with its intrinsic 
statelessness, and Hypertext Markup Language (HTML), which at the time was unfamiliar to many developers, 
by modeling the user interface (UI) as a hierarchy of server-side control objects. Each control kept track of its own 
state across requests, rendering itself as HTML when needed and automatically connecting client-side events (for 
example, a button click) with the corresponding server-side event handler code. In effect, Web Forms is a giant 
abstraction layer designed to deliver a classic event-driven graphical user interface (GUI) over the Web. 

Electronic supplementary material The online version of this chapter (doi:  10.1007/978-1-4842-0397-2_1    ) 
contains supplementary material, which is available to authorized users.

 

www.allitebooks.comwww.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-0397-2_1
http://www.allitebooks.org
http://www.allitebooks.org


CHAPTER 1 ■ ASP.NET CORE MVC IN CONTEXT

4

 The idea was to make web development feel just the same as developing a desktop application. 
Developers could think in terms of a stateful UI and didn’t need to work with a series of independent HTTP 
requests and responses. Microsoft could seamlessly transition the army of Windows desktop developers into 
the new world of web applications. 

   What Was Wrong with ASP.NET Web Forms? 
 Traditional ASP.NET Web Forms development was good in principle, but reality proved more complicated.

•     View State weight : The actual mechanism for maintaining state across requests 
(known as View State) resulted in large blocks of data being transferred between 
the client and server. This data could reach hundreds of kilobytes in even modest 
web applications, and it went back and forth with  every  request, leading to slower 
response times and increasing the bandwidth demands of the server.  

•    Page life cycle : The mechanism for connecting client-side events with server-side 
event handler code, part of the page life cycle, could be complicated and delicate. 
Few developers had success manipulating the control hierarchy at runtime without 
creating View State errors or finding that some event handlers mysteriously fail to 
execute.  

•    False sense of separation of concerns : ASP.NET Web Forms’  code-behind  model 
provided a means to take application code out of its HTML markup and into a 
separate code-behind class. This was done to separate logic and presentation, but, 
in reality, developers were encouraged to mix presentation code (for example, 
manipulating the server-side control tree) with their application logic (for example, 
manipulating database data) in these same monstrous code-behind classes. The end 
result could be fragile and unintelligible.  

•    Limited control over HTML : Server controls rendered themselves as HTML, but not 
necessarily the HTML you wanted. In early versions of ASP.NET, the HTML output 
failed to meet with web standards or make good use of Cascading Style Sheets (CSS), 
and server controls generated unpredictable and complex ID attributes that are hard 
to access using JavaScript. These problems have improved in recent Web Forms 
releases, but it can still be tricky to get the HTML you expect.  

•    Leaky abstraction : Web Forms tried to hide HTML and HTTP wherever possible. As 
you tried to implement custom behaviors, you frequently fell out of the abstraction, 
which forced you to reverse-engineer the postback event mechanism or perform 
obtuse acts to make it generate the desired HTML.  

•    Low testability : The designers of Web Forms could not have anticipated that 
automated testing would become an essential component of software development. 
The tightly coupled architecture they designed was unsuitable for unit testing. 
Integration testing could be a challenge, too.    

 Web Forms wasn’t all bad, and Microsoft put a lot of effort into improving standards compliance 
and simplifying the development process and even took some features from the original ASP.NET MVC 
Framework and applied them to Web Forms. Web Forms excelled when you needed quick results, and 
you could have a reasonably complex web app up and running within a day. But unless you were careful 
during development, you would find that the application you created was hard to test and hard to 
maintain.   



CHAPTER 1 ■ ASP.NET CORE MVC IN CONTEXT

5

     The Original MVC Framework 
    In October 2007, Microsoft announced a new development platform, built on the existing ASP.NET platform, 
that was intended as a direct response to the criticisms of Web Forms and the popularity of competing 
platforms such as Ruby on Rails. The new platform was called ASP.NET MVC Framework and reflected the 
emerging trends in web application development, such as HTML and CSS standardization, RESTful web 
services, effective unit testing, and the idea that developers should embrace the stateful nature of HTTP. 

 The concepts that underpin the original MVC Framework seem natural and obvious now, but they were 
lacking from the world of .NET web development in 2007. The introduction of the ASP.NET MVC Framework 
brought Microsoft’s web development platform back into the modern age. 

 The MVC Framework also signaled an important change in attitude from Microsoft, which had 
previously tried to control every component in the web application toolchain. With the MVC Framework, 
Microsoft built on open source tools such as jQuery, took on design conventions and best practices from 
competing (and more successful) platforms, and released the source code to the MVC Framework for 
developers to inspect. 

   What Was Wrong with the Original MVC Framework? 
 At the time it was created, it made sense for Microsoft to create the MVC Framework on top of the existing 
ASP.NET platform, which had a lot of solid low-level functionality that provided a head start in the 
development process and which was already well-known and understood by ASP.NET developers. 

 Compromises were required to graft the MVC Framework onto a platform that was originally designed 
for Web Forms. MVC Framework developers became used to using configuration settings and code tweaks 
that disabled or reconfigured features that didn’t have any bearing on their web application but were 
required to get everything working. 

 As the MVC Framework grew in popularity, Microsoft started to take some of the core features and 
add them to Web Forms. The result was increasingly odd, where features with design quirks required to 
support the MVC Framework were extended to support Web Forms, with further design quirks to make 
everything fit together. At the same time, Microsoft started to expand ASP.NET with new frameworks for 
creating web services (Web API) and real-time communication (SignalR). The new frameworks added their 
own configuration and development conventions, each of which had its own benefits and oddities, and the 
overall result was a fragmented mess.    

     Understanding ASP.NET Core 
 In 2015, Microsoft announced a new direction for ASP.NET and the MVC Framework, which would 
eventually produce ASP.NET Core MVC, the topic of this book. 

 ASP.NET Core is built on  .NET Core  , which is a cross-platform version of the .NET Framework without 
the Windows-specific application programming interfaces (APIs). Windows is still a dominant operating 
system but web applications are increasingly hosted in small and simple containers in cloud platforms, 
and by embracing a cross-platform approach, Microsoft has extended the reach of .NET, made it possible 
to deploy ASP.NET Core applications to a broader set of hosting environments, and, as a bonus, made it 
possible for developers to create ASP.NET Core web applications on Linux and OS X/macOS. 

 ASP.NET Core is a completely new framework. It is simpler, it is easier to work with, and it is free of the 
legacy that comes from Web Forms. And, since it is based on .NET Core, it supports the development of web 
applications on a range of platforms and containers. 

 ASP.NET Core MVC provides the functionality of the original ASP.NET MVC Framework built on 
the new ASP.NET Core platform. It includes the functionality that was previously provided by Web API, it 
includes a more natural way of generating complex content, and it makes key development tasks, such as 
unit testing, simpler and more predictable. 



CHAPTER 1 ■ ASP.NET CORE MVC IN CONTEXT

6

     Key Benefits of ASP.NET Core MVC 
    The following sections briefly describe how the new MVC platform overcomes the legacy of Web Forms and 
the original MVC Framework and has brought ASP.NET back to the cutting edge. 

   MVC Architecture 
 ASP.NET Core MVC follows a pattern called  model-view-controller  (MVC), which guides the shape of an ASP.
NET web application and the interactions between the components it contains. 

 It is important to distinguish between the MVC architectural pattern and the ASP.NET Core MVC 
implementation. The MVC pattern is not new—it dates back to 1978 and the Smalltalk project at Xerox 
PARC—but it has gained popularity today as a pattern for web applications, for the following reasons:

•    User interaction with an application that adheres to the MVC pattern follows a 
natural cycle: the user takes an action, and in response the application changes its 
data model and delivers an updated view to the user. And then the cycle repeats. 
This is a convenient fit for web applications delivered as a series of HTTP requests 
and responses.  

•   Web applications necessitate combining several technologies (databases, HTML, 
and executable code, for example), usually split into a set of tiers or layers. The 
patterns that arise from these combinations map naturally onto the concepts in the 
MVC pattern.    

 ASP.NET Core MVC implements the MVC pattern and, in doing so, provides a greatly improved 
separation of concerns when compared to Web Forms. In fact, ASP.NET Core MVC implements a variant of 
the MVC pattern that is especially suitable for web applications. You will learn more about the theory and 
practice of this architecture in Chapter   3    .  

   Extensibility 
    ASP.NET Core and ASP.NET Core MVC are built as a series of independent components that have well-
defined characteristics, satisfy a .NET interface or that are built on an abstract base class. You can easily 
replace key components with ones of your own implementation. In general, the ASP.NET Core MVC gives 
you these three options for each component:

•    Use the  default  implementation of the component as it stands (which should be 
enough for most applications).  

•   Derive a  subclass  of the default implementation to tweak its behavior.  

•    Replace  the component entirely with a new implementation of the interface or 
abstract base class.    

 You’ll learn all about the various components and how and why you might want to tweak or replace 
each of them, starting in Chapter   14    .  

   Tight Control over HTML and HTTP 
 ASP.NET Core MVC produces clean, standards-compliant markup. Its built-in tag helpers produce 
standards-compliant output, but there is a more significant philosophical change compared with Web 
Forms. Instead of generating out swathes of HTML over which you have little control, ASP.NET Core MVC 
encourages you to craft simple, elegant markup styled with CSS. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_3
http://dx.doi.org/10.1007/978-1-4842-0397-2_14


CHAPTER 1 ■ ASP.NET CORE MVC IN CONTEXT

7

 Of course, if you do want to throw in some ready-made widgets for complex UI elements such as date 
pickers or cascading menus, the “no special requirements” approach taken by ASP.NET Core MVC makes it 
easy to use best-of-breed client-side libraries such as jQuery, Angular, or the Bootstrap CSS library. ASP.NET 
Core MVC meshes so well with these libraries that Microsoft includes support for them as built-in parts of 
the standard Visual Studio project template for web applications. 

 ASP.NET Core MVC works in tune with HTTP. You have control over the requests passing between the 
browser and server, so you can fine-tune your user experience as much as you like. Ajax is made easy, and 
creating web services to receive browser HTTP requests is a simple process, as described in Chapter   20    .  

   Testability 
 The ASP.NET Core MVC architecture gives you a great start in making your application maintainable and 
testable because you naturally separate different application concerns into independent pieces. In addition, 
each piece of the ASP.NET Core platform and the ASP.NET Core MVC framework can be isolated and 
replaced for unit testing, which can be performed using any popular open source testing framework, such as 
xUnit, which I introduce in Chapter   7    . 

 In this book, you will see examples of how to write clean, simple unit tests for ASP.NET MVC controllers 
and actions that supply fake or mock implementations of framework components to simulate any scenario, 
using a variety of testing and mocking strategies. Even if you have never written a unit test before, you will be 
off to a great start. 

 Testability is not only a matter of unit testing. ASP.NET Core MVC applications work well with UI 
automation testing tools, too. You can write test scripts that simulate user interactions without needing to 
guess which HTML element structures, CSS classes, or IDs the framework will generate, and you do not have 
to worry about the structure changing unexpectedly.  

   Powerful Routing System 
       The style of uniform resource locators (URLs) has evolved as web application technology has improved. 
URLs like this one: 

   /App_v2/User/Page.aspx?action=show%20prop&prop_id=82742 

   are increasingly rare, replaced with a simpler, cleaner format like this: 

   /to-rent/chicago/2303-silver-street 

   There are some good reasons for caring about the structure of URLs. First, search engines give weight 
to keywords found in a URL. A search for “rent in Chicago” is much more likely to turn up the simpler URL. 
Second, many web users are now savvy enough to understand a URL and appreciate the option of navigating 
by typing it into their browser’s address bar. Third, when someone understands the structure of a URL, they 
are more likely to link to it, share it with a friend, or even read it aloud over the phone. Fourth, it doesn’t 
expose the technical details, folder, and file name structure of your application to the public Internet, so you 
are free to change the underlying implementation without breaking all your incoming links. 

 Clean URLs were hard to implement in earlier frameworks, but ASP.NET Core MVC uses a feature 
known as  URL routing  to provide clean URLs by default. This gives you control over your URL schema and its 
relationship to your application, offering you the freedom to create a pattern of URLs that is meaningful and 
useful to your users, without the need to conform to a predefined pattern. And, of course, this means you 
can easily define a modern REST-style URL schema if you want. You’ll find a thorough description of URL 
routing in Chapters   15     and   16    .  

http://dx.doi.org/10.1007/978-1-4842-0397-2_20
http://dx.doi.org/10.1007/978-1-4842-0397-2_7
http://dx.doi.org/10.1007/978-1-4842-0397-2_15
http://dx.doi.org/10.1007/978-1-4842-0397-2_16


CHAPTER 1 ■ ASP.NET CORE MVC IN CONTEXT

8

   Modern API 
 Microsoft’s .NET platform has evolved with each major release, supporting—and even defining—the state-of-the-
art aspects of modern programming. ASP.NET Core MVC is built for .NET Core, so its API can take full advantage 
of language and runtime innovations familiar to C# programmers, including the  await  keyword, extension 
methods, lambda expressions, anonymous and dynamic types, and Language Integrated Query (LINQ). 

 Many of the ASP.NET Core MVC API methods and coding patterns follow a cleaner, more expressive 
composition than was possible with earlier platforms. Don’t worry if you are not up to speed on the latest C# 
language features: I provide a summary of the most important C# features for MVC development in Chapter   4    .  

   Cross-Platform 
 Previous versions of ASP.NET were specific to Windows, requiring a Windows desktop to write web 
applications and a Windows server to deploy and run them. Microsoft made ASP.NET Core cross-platform, 
both for development and for deployment. .NET Core is available for different platforms—including Linux 
and OS X/macOS—and is likely to be ported to others. 

 Most ASP.NET Core MVC development is likely to be done using Visual Studio for the immediate future, 
but Microsoft has also created a cross-platform development tool called Visual Studio Code, which means 
that ASP.NET Core MVC development is no longer restricted to Windows.  

   ASP.NET Core MVC Is Open Source 
    Unlike previous Microsoft web development platforms, you are free to download the source code for ASP.
NET Core and ASP.NET Core MVC and even modify and compile your own version of it. This is invaluable 
when your debugging trail leads into a system component and you want to step into its code (and even read 
the original programmers’ comments). It is also useful if you are building an advanced component and want 
to see what development possibilities exist or how the built-in components actually work. 

 You can download the ASP.NET Core and ASP.NET Core MVC source code from    https://github.com/
aspnet     .    

     What Do I Need to Know? 
 To get the most from this book, you should be familiar with the basics of web development, understand how 
HTML and CSS work, and have a working knowledge of C#. Don't worry if you are a little hazy on the client-
side details, such as JavaScript. My emphasis is on server-side development in this book, and you can pick 
up what you need through the examples. In Chapter   4    , I summarize the most useful C# language features 
for MVC development, which you’ll find useful if you are moving to the latest .NET versions from an earlier 
release.  

     What Is the Structure of This Book? 
 This book is split into two parts, each of which covers a set of related topics. 

     Part 1: Introducing ASP.NET Core MVC 
 I start this book by putting ASP.NET Core MVC in context. I explain the benefits and practical impact of the 
MVC pattern, cover the way in which ASP.NET Core MVC fits into modern web development, and describe 
the tools and C# language features that every ASP.NET Core MVC programmer needs. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_4
https://github.com/aspnet
https://github.com/aspnet
http://dx.doi.org/10.1007/978-1-4842-0397-2_4


CHAPTER 1 ■ ASP.NET CORE MVC IN CONTEXT

9

 In Chapter   2    , you will dive right in and create a simple web application and get an idea of what the 
major components and building blocks are and how they fit together. Most of this part of the book, however, 
is given over to the development of a project called SportsStore, through which I show you a realistic 
development process from inception to deployment, touching on the major features of ASP.NET Core MVC.  

     Part 2: ASP.NET Core MVC in Detail 
 In Part 2, I explain the inner workings of ASP.NET Core MVC features that I used to build the SportsStore 
application. I show you how each feature works, explain the role it plays, and show you the configuration 
and customization options that are available. Having set the broad context in Part 1, I dig right into the 
details in Part 2.   

     What’s New in This Edition? 
 This edition has been revised and expanded to describe ASP.NET Core MVC, which reflects a complete 
change in the way that Microsoft supports web development. Earlier versions of the MVC Framework were 
built on the foundations of ASP.NET that were originally created for Web Forms. This had the advantage of 
providing some mature underpinnings for MVC development but did so in ways that leaked details of how 
Web Forms worked. Some features exposed the internals of Web Forms in ways that had no bearing in MVC 
applications, and other features could produce unpredictable results. 

 In addition, the ASP.NET foundation was provided using assemblies that were included in the .NET 
Framework, which meant that major changes could be made only when Microsoft released a new version 
of .NET. This became a problem because the pace of change for web development exceeds the rate at which 
.NET changes. 

 ASP.NET Core MVC is a complete rewrite that retains the philosophy and overall design of earlier 
versions but updates the API to improve the design and performance of web apps. ASP.NET Core MVC 
depends on ASP.NET Core, which is itself a complete rewrite of the web stack underpinnings: the primacy of 
Web Forms is gone and the tight coupling to .NET Framework releases has been broken. 

 You may find the extent of the changes to be alarming if you have experience with MVC 5, but don't 
panic. The underlying concepts are the same, and many of the changes look more substantial and complex 
than they really are. In Part 2 of this book, I summarize the changes for each major feature to ease the 
transition from MVC 5 to ASP.NET Core MVC.  

     Where Can I Get the Example Code? 
 You can download all the examples for all the chapters in this book from Apress.com. The download 
is available without charge and includes all of the code projects and their contents. You don’t have to 
download the code, but it is the easiest way of experimenting with the examples and cutting and pasting 
techniques into your own projects.  

     Summary 
 In this chapter, I explained the context in which ASP.NET Core MVC exists and how it has evolved from Web 
Forms and the original ASP.NET MVC Framework. I described the benefits of using the ASP.NET Core MVC, 
the structure of this book, and the software that you will require to follow the examples. In the next chapter, 
you’ll see ASP.NET Core MVC Framework in action in a simple demonstration of the features that deliver 
these benefits.      

http://dx.doi.org/10.1007/978-1-4842-0397-2_2


11© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_2

    CHAPTER 2   

 Your First MVC Application                          

 The best way to appreciate a software development framework is to jump right in and use it. In this chapter, 
you’ll create a simple data-entry application using the ASP.NET Core MVC. I take things a step at a time so 
you can see how an MVC application is constructed. To keep things simple, I skip over some of the technical 
details for the moment. But don’t worry. If you are new to MVC, you will find plenty to keep you interested. 
Where I use something without explaining it, I provide a reference to the chapter in which you can find all 
the details. 

     Installing Visual Studio 
       This book relies on Visual Studio 2015, which provides everything you will need for ASP.NET Core MVC 
development. I use the free  Visual Studio 2015 Community  edition, which can be downloaded from    www.
visualstudio.com     . When you install Visual Studio, you should ensure that the Microsoft Web Developer 
Tools option is selected. 

 ■   Tip    Visual Studio only supports Windows. You can create ASP.NET Core MVC applications on other 
platforms using Visual Studio Code but it doesn’t provide all of the tools required for the examples in this book. 
See Chapter   13     for details.  

 If you have an existing Visual Studio installation, you must ensure that you apply Visual Studio 
Update 3, which provides support for working with ASP.NET Core applications. The update will be applied 
automatically for new Visual Studio installations. If you need the update, you can download it from    http://
go.microsoft.com/fwlink/?LinkId=691129     . 

 Next, you must download and install .NET Core, which is available from    https://go.microsoft.com/
fwlink/?LinkId=817245     . The .NET Core download is required even for new Visual Studio installations. 

    The final step is to install a tool called  git , which can be downloaded from    https://git-scm.com/
download     . Visual Studio includes its own version of  git  but it doesn’t work properly and it produces 
unexpected results when used by other tools, including Bower, which I describe in Chapter   6    . When you 
install  git , ensure that you tell the installer to add the tool to the PATH environment variable, as shown in 
Figure  2-1 . This ensures that Visual Studio will be able to find the new version of  git .  

http://www.visualstudio.com/
http://www.visualstudio.com/
http://dx.doi.org/10.1007/978-1-4842-0397-2_13
http://go.microsoft.com/fwlink/?LinkId=691129
http://go.microsoft.com/fwlink/?LinkId=691129
https://go.microsoft.com/fwlink/?LinkId=817245
https://go.microsoft.com/fwlink/?LinkId=817245
https://git-scm.com/download
https://git-scm.com/download
http://dx.doi.org/10.1007/978-1-4842-0397-2_6


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

12

 Start Visual Studio and select Tools ➤ Options and navigate to the Projects and Solutions ➤ External Web 
Tools section, as shown in Figure  2-2 . Uncheck the  $(VSINSTALLDIR)\Web\External\git  item to disable the 
Visual Studio version of git and make sure that the  $(PATH)  item is enabled so that the git you just installed is used.      

  Figure 2-1.    Adding git to the path       

  Figure 2-2.    Configuring git in Visual Studio       

 

 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

13

 THE FUTURE OF ASP.NET CORE MVC AND VISUAL STUDIO

 Microsoft underestimated how long it would take to create ASP.NET Core and ASP.NET Core MVC. The 
originally planned release dates would have coincided with the release of Visual Studio 2015, but delays on 
the ASP.NET side mean that development of the next version of Visual Studio has already started as I write 
this. This means that the tooling support for creating ASP.NET Core MVC applications will change when 
the next Visual Studio is released. When the tooling stabilizes, I will provide an update for the instructions 
required to create the example applications. See the Apress.com page for this book for details.   

     Creating a New ASP.NET Core MVC Project 
    I am going to start by creating a new ASP.NET Core MVC project in Visual Studio. Select New ➤ Project from 
the File menu to open the New Project dialog. If you navigate to the Templates ➤ Visual C# ➤ Web section 
in the left panel, you will see the ASP.NET Core Web Application (.Net Core) project template. Select this 
project type, as shown in Figure  2-3 .  

  Figure 2-3.    The Visual Studio ASP.NET Core Web Application project template       

 ■   Tip    The choice of project template can be confusing because their names are so similar. The ASP.NET 
Web Application (.NET Framework) template is for creating projects using the legacy versions of ASP.NET and 
the MVC Framework, which predated ASP.NET Core. The other two templates are for creating ASP.NET Core 
applications, and they differ in the runtime they use, allowing you to select either the .NET Framework or .NET 
Core. I explain the difference between them in Chapter   6    , but I use the .NET Core option throughout this book, 
so it is the one you should select to ensure that you get the same results from the example applications.  

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_6


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

14

 Set the Name field for the new project to PartyInvites and ensure that the Add Application Insights 
to Project option is unchecked, as shown in Figure  2-3 . Click the OK button to continue and you will see 
another dialog box, shown in Figure  2-4 , which asks you to set the initial content for the project.      

  Figure 2-4.    Selecting the initial project configuration       

 There are three different ASP.NET Core Template options, each of which creates a project with different 
starting content. For this chapter, select the Web Application option, which sets up a MVC application with 
pre-defined content to jump start development.     

 ■   Note    This is the only chapter in which I use the Web Application project template. I don’t like using 
predefined project templates because they encourage developers to treat some important features, 
such as authentication, as black boxes. My goal in this book is to give you the knowledge to understand 
and manage every aspect of your MVC applications, so I use the Empty template throughout the rest 
of the book. This chapter is about getting started quickly, for which the Web Application template is 
well-suited.  

 Click the Change Authentication button and ensure that the No Authentication option is selected, as 
shown in Figure  2-5 . This project doesn’t require any authentication, but I explain how to secure ASP.NET 
applications in Chapters   28    -30.      

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_28


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

15

 Click OK to close the Change Authentication dialog. Ensure that the Host in the Cloud option is 
unchecked and then click OK to create the PartyInvites project. Once Visual Studio has created the project, 
you will see a number of files and folders displayed in the Solution Explorer window, as shown in Figure  2-6 . 
This is the default project structure for a new MVC project created using the Web Application template, and 
you will soon understand the purpose of each file and folder that Visual Studio creates.  

  Figure 2-5.    Selecting the authentication settings       

  Figure 2-6.    The initial file and folder structure of an ASP.NET Core MVC project       

 

 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

16

    You can run the application  by   selecting Start Debugging from the Debug menu (if it prompts you to 
enable debugging, just click the OK button). When you do this, Visual Studio compiles the application, 
uses an application server called IIS Express to run it, and opens a web browser to request the application 
content. You can see the result in Figure  2-7 .  

  Figure 2-7.    Running the example project       

 When Visual Studio creates a project with the Web Application template, it adds some basic code and 
content, which is what you see when you run the application. Throughout the rest of the chapter, I will 
replace this content to create a simple MVC application. 

 When you are finished, be sure to stop debugging by closing the browser window that shows the error or 
by going back to Visual Studio and selecting Stop Debugging from the Debug menu. 

 As you have just seen, Visual Studio opens the browser to display the project. You can select any 
browser that you have installed by clicking the arrow to the right of the IIS Express toolbar button and 
choosing from the list of options in the Web Browser menu, as shown in Figure  2-8 .  

 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

17

    From here on, I will use Google Chrome or Google Chrome Canary for all the screenshots in this book, 
but you can use any modern browser to display the examples in the books, including Microsoft Edge and 
recent versions of Internet Explorer. 

     Adding the Controller 
 In the MVC pattern, incoming requests are handled by  controllers . In ASP.NET Core MVC, controllers are just 
C# classes (usually inheriting from the  Microsoft.AspNetCore.Mvc.Controller  class, which is the built-in 
MVC controller base class).     

 Each public method in a controller is known as  an    action method , meaning you can invoke it from 
the Web via some URL to perform an action. The MVC convention is to put controllers in the  Controllers  
folder, which Visual Studio created when it set up the project. 

 ■   Tip    You do not need to follow this or most other MVC conventions, but I recommend that you do—not least 
because it will help you make sense of the examples in this book.  

 Visual Studio adds a default controller class to the project, which you can see if you expand the 
 Controllers  folder in the Solution Explorer. The file is called  HomeController.cs . Controller classes contain 
a name followed by the word  Controller , which means that when you see a file called  HomeController.
cs , you know that it contains a controller called  Home , which is the default controller that is used in MVC 
applications. Click on the  HomeController.cs  file in the Solution Explorer so that Visual Studio opens it for 
editing. You will see the C# code shown in Listing  2-1 . 

  Figure 2-8.    Selecting a browser       

 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

18

     Listing 2-1.    The Initial Contents of the HomeController.cs File in the Controllers Folder   

  using System; 
 using System.Collections.Generic; 
 using System.Linq; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Mvc; 

   namespace PartyInvites.Controllers { 

       public class HomeController : Controller { 

           public IActionResult Index() { 
             return View(); 
         } 

           public IActionResult About() { 
             ViewData["Message"] = "Your application description page."; 

               return View(); 
         } 

           public IActionResult Contact() { 
             ViewData["Message"] = "Your contact page."; 

               return View(); 
         } 

           public IActionResult Error() { 
             return View(); 
         } 
     } 
 } 

    Replace the code in the  HomeController.cs  file so that it matches Listing  2-2 . I have removed all but 
one of the methods, changed the result type and its implementation and removed the  using  statements for 
unused namespaces.     

     Listing 2-2.    Changing the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 

   namespace PartyInvites.Controllers { 

       public class HomeController : Controller { 

           public string Index() { 
             return "Hello World"; 
         } 
     } 
 } 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

19

    These changes don’t have a dramatic effect, but they make for a nice demonstration. I have changed 
the method called  Index  so that it returns the string  Hello World . Run the project again by selecting Start 
Debugging from the Visual Studio Debug menu. 

 ■   Tip    If you left the application running from the previous section, then select Restart from the Debugging 
menu or, if you prefer, select Stop Debugging and then Start Debugging.  

 The browser will make an HTTP request to the server. The default MVC configuration means that the 
request will be handled using the  Index  method (known as an  action method  or just an  action ) and the result 
from the method will be sent back to the browser, as shown in Figure  2-9 .  

  Figure 2-9.    The output from the action method       

 ■   Tip    Notice that Visual Studio has directed the browser to port 57628. You will almost certainly see a 
different port number in the URL that your browser requests because Visual Studio allocates a random port 
when the project is created. If you look in the Windows taskbar notification area, you will find an icon for  IIS 
Express  . This is a cut-down version of the full IIS application server that is included with Visual Studio and is 
used to deliver ASP.NET content and services during development. I'll show you how to deploy an MVC project 
into a production environment in Chapter   12    .   

     Understanding Routes 
 As well as models, views, and controllers, MVC applications use the ASP.NET  routing system , which decides 
how URLs map to controllers and actions. A route is a rule that is used to decide how a request is handled. 
When Visual Studio creates the MVC project, it adds some default routes to get you started. You can request 
any of the following URLs, and they will be directed to the  Index  action on the  HomeController .

•     /   

•    /Home   

•    /Home/Index     

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_12


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

20

 So, when a browser requests  http://yoursite/  or  http://yoursite/Home , it gets back the output 
from  HomeController ’s  Index  method. You can try this yourself by changing the URL in the browser. At the 
moment, it will be  http://localhost:57628/ , except that the port part may be different. If you append  /
Home  or  /Home/Index  to the URL and press Return, you will see the same  Hello World  result from the MVC 
application. 

 This is a good example of benefiting from following conventions implemented by ASP.NET Core 
MVC. In this case, the convention is that I will have a controller called  HomeController  and that it will be 
the starting point for the MVC application. The default configuration that Visual Studio creates for a new 
project assumes that I will follow this convention. And since I  did  follow the convention, I automatically 
got support for the URLs in the preceding list. If I had  not  followed the convention, I would need to modify 
the configuration to point to whatever controller I had created instead. For this simple example, the default 
configuration is all I need.   

     Rendering Web Pages 
 The output from the previous example wasn’t HTML—it was just the string  Hello World . To produce an 
HTML response to a browser request, I need a  view , which tells MVC how to generate a response for a 
request from a browser. 

     Creating and Rendering a View 
    The first thing I need to do is modify my  Index  action method, as shown in Listing  2-3 . The changes are 
shown in bold, which is a convention I follow throughout this book to make the examples easier to follow. 

     Listing 2-3.    Modifying the Controller to Render a View in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 

   namespace PartyInvites.Controllers { 

       public class HomeController : Controller { 

            public ViewResult Index() {  
              return View("MyView");  
         } 
     } 
 } 

    When I return a  ViewResult  object from an action method, I am instructing MVC to  render  a view. I 
create the  ViewResult  by calling the  View  method, specifying the name of the view that I want to use, which 
is  MyView . If you run the application, you can see MVC trying to find the view, as shown in the error message 
displayed in Figure  2-10 .  



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

21

 This error message is quite helpful. It not only explains that MVC could not find the view I specified 
for the action method but also shows where it looked. Views are stored in the  Views  folder, organized into 
subfolders. Views that are associated with the  Home  controller, for example, are stored in a folder called 
 Views/Home . Views that are not specific to a single controller are stored in a folder called  Views/Shared . 
Visual Studio creates the  Home  and  Shared  folders automatically when the Web Application template is used 
and puts in some placeholder views to get the project started. 

    To create the view, right-click the Views ➤ Home folder in the Solution Explorer and select Add ➤ New Item 
from the pop-up menu. Visual Studio will present you with a list of item templates. Select the ASP.NET category 
using the left pane and then select the MVC View Page item in the central pane, as shown in Figure  2-11 .  

  Figure 2-10.    MVC trying to find a view       

  Figure 2-11.    Creating a view       

 

 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

22

 ■   Tip    You will see some existing files in the  Views  folder, which were added to the project by Visual Studio to 
provide some initial content, some of which you saw in Figure  2-7 . You can ignore these files.  

 Set the Name field to  MyView.cshtml  and click the Add button to create the view. Visual Studio will 
create the  Views/Home/MyView.cshtml  file and open it for editing. The initial content of the view file is just 
some comments and a placeholder. Replace them with the content shown in Listing  2-4 . 

 ■   Tip    It is easy to end up creating the view file in the wrong folder. If you didn’t end up with a file called 
 MyView.cshtml  in the  Views/Home  folder, then delete the file you did create and try again.  

     Listing 2-4.    Replacing the Content of the MyView.cshtml File in the Views/Home Folder   

  @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Index</title> 
 </head> 
 <body> 
     <div> 
         Hello World (from the view) 
     </div> 
 </body> 
 </html> 

    The new contents of the view file are mostly HTML. The exception is the part that looks like this: 

   ... 
 @{ 
     Layout = null; 
 } 
 ... 

   This is an expression that will be interpreted by the Razor  view engine        , which processes the contents of 
views and generates HTML that is sent to the browser. This is a simple Razor expression, and it tells Razor 
that I chose not to use a  layout  , which is like a template for the HTML that will be sent to the browser (and 
which I describe in Chapter   5    ). I am going to ignore Razor for the moment and come back to it later. To see 
the effect of creating the view, select Start Debugging from the Debug menu to run the application. You 
should see the result in Figure  2-12 .  

http://dx.doi.org/10.1007/978-1-4842-0397-2_5


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

23

 When I first edited the  Index  action method, it returned a string value. This meant that MVC did 
nothing except pass the string value as is to the browser. Now that the  Index  method returns a  ViewResult , 
MVC renders a view and returns the HTML it produces. I told MVC which view should be used, so it used 
the naming convention to find it automatically. The convention is that the view has the name of the action 
method and is contained in a folder named after the controller:  /Views/Home/MyView.cshtml .     

 I can return other results from action methods besides strings and  ViewResult  objects. For 
example, if I return a  RedirectResult , the browser will be redirected to another URL. If I return an 
 HttpUnauthorizedResult , I force the user to log in. These objects are collectively known as  action results . 
The action result system lets you encapsulate and reuse common responses in actions. I’ll tell you more 
about them and explain the different ways they can be used in Chapter   17    .  

     Adding Dynamic Output 
 The whole point of a web application platform is to construct and display  dynamic  output. In MVC, it is the 
controller’s job to construct some data and pass it to the view, which is responsible for rendering it to HTML. 

 One way to pass data from the controller to the view is by using the  ViewBag  object, which is a member 
of the  Controller  base class.  ViewBag  is a dynamic object to which you can assign arbitrary properties, 
making those values available in whatever view is subsequently rendered. Listing  2-5  demonstrates passing 
some simple dynamic data in this way in the  HomeController.cs  file. 

     Listing 2-5.    Setting View Data in the HomeController.cs File   

   using System;  
 using Microsoft.AspNetCore.Mvc; 

   namespace PartyInvites.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() { 
              int hour = DateTime.Now.Hour;  
              ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";  
             return View("MyView"); 
         } 
     } 
 } 

  Figure 2-12.    Testing the view       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_17


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

24

    I provide data for the view when I assign a value to the  ViewBag.Greeting   property  . The  Greeting  
property didn’t exist until the moment I assigned the value—this allows me to pass data from the controller 
to the view in a free and fluid manner, without having to define classes ahead of time. I refer to the  ViewBag.
Greeting  property again in the view to get the data value, as illustrated in Listing  2-6 , which shows the 
corresponding change to the  MyView.cshtml  file. 

     Listing 2-6.    Retrieving a ViewBag Data Value in the MyView.cshtml File   

  @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Index</title> 
 </head> 
 <body> 
     <div> 
          @ViewBag.Greeting World (from the view)  
     </div> 
 </body> 
 </html> 

    The addition to the listing is a Razor expression that is evaluated when MVC uses the view to generate 
a response. When I call the  View  method in the controller’s  Index  method, MVC locates the  MyView.cshtml  
view file and asks the Razor view engine to parse the file’s content. Razor looks for expressions like the one 
I added in the listing and processes them. In this example, processing the expression means inserting the 
value assigned to the  ViewBag.Greeting  property in the action method into the view. 

 There’s nothing special about the property name  Greeting ; you could replace this with any property name 
and it would work the same, just as long as the name you use in the controller matches the name you use in the 
view. You can pass multiple data values from your controller to the view by assigning values to more than one 
property. You can see the effect of these changes by starting the project, as shown in Figure  2-13 .    

  Figure 2-13.    A dynamic response from MVC       

 

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

25

     Creating a Simple Data-Entry Application 
 In the rest of this chapter, I will explore more of the basic MVC features by building a simple data-entry 
application. I am going to pick up the pace in this section. My goal is to demonstrate MVC in action, so I will 
skip over some of the explanations as to how things work behind the scenes. But don’t worry; I’ll revisit these 
topics in depth in later chapters. 

     Setting the Scene 
 Imagine that a friend has decided to host a New Year’s Eve party and that she has asked me to create a web 
app that allows her invitees to electronically RSVP. She has asked for these four key features:

•    A home page that shows information about the party  

•   A form that can be used to RSVP  

•   Validation for the RSVP form, which will display a thank-you page  

•   A summary page that shows who is coming to the party    

 In the following sections, I will build up the MVC project I created at the start of the chapter and add 
these features. I can check the first item off the list by applying what I covered earlier and add some HTML 
to my existing view to give details of the party. To get started, Listing  2-7  shows the additions I made to the 
 Views/Home/MyView.cshtml  file. 

     Listing 2-7.    Displaying Details of the Party in the MyView.cshtml File   

  @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Index</title> 
 </head> 
 <body> 
     <div> 
         @ViewBag.Greeting World (from the view) 
         <p>We're going to have an exciting party.<br />  
         (To do: sell it better. Add pictures or something.)  
         </p>  
     </div> 
 </body> 
 </html> 

    I am on my way. If you run the application, by selecting Start Debugging from the Debug menu, you’ll see 
the details of the party (well, the placeholder for the details, but you get the idea), as shown in Figure  2-14 .   



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

26

     Designing a Data Model 
          In MVC, the  M  stands for  model , and it is the most important part of the application. The model is the 
representation of the real-world objects, processes, and rules that define the subject, known as the  domain , of 
the application. The model, often referred to as a  domain model , contains the C# objects (known as  domain 
objects ) that make up the universe of the application and the methods that manipulate them. The views and 
controllers expose the domain to the clients in a consistent manner, and a well-designed MVC application 
starts with a well-designed model, which is then the focal point as controllers and views are added. 

 I don’t need a complex model for the PartyInvites project because it is such a simple application and 
I need to create just one domain class that I will call  GuestResponse . This object will be responsible for 
storing, validating, and confirming an RSVP. 

 The MVC convention is that the classes that make up a model are placed inside a folder called the  Models  
folder. To create this folder, right-click the PartyInvites project (the item that contains the  Controllers  and 
 Views  folders), select Add ➤ New Folder from the pop-up menu, and set the name of the folder to  Models . 

 ■   Note    You won’t be able to set the name of the new folder if the application is still running. Select Stop 
Debugging from the Debug menu, right-click the NewFolder item that has been added to the Solution Explorer, 
select Rename from the pop-up menu, and change the name to Models.  

 To create the class file, right-click the  Models  folder in the Solution Explorer and select Add ➤ Class 
from the pop-up menu. Set the name of the new class to  GuestResponse.cs  and click the Add button. Edit 
the contents of the new class file to match Listing  2-8 . 

     Listing 2-8.    The GuestResponse Domain Class Defined in the GuestResponse.cs File in the Models Folder   

 namespace PartyInvites.Models { 
     public class GuestResponse { 
         public string Name { get; set; } 
         public string Email { get; set; } 
         public string Phone { get; set; } 
         public bool? WillAttend { get; set; } 
     } 
 } 

  Figure 2-14.    Adding to the view HTML       

 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

27

 ■     Tip    You may have noticed that the  WillAttend  property is a nullable  bool , which means that it can be 
 true ,  false , or  null . I explain the rationale for this in the “Adding Validation” section later in the chapter.   

     Creating a Second Action and a Strongly Typed View 
       One of my application goals is to include an RSVP form, which means that I need to define an action 
method that can receive requests for it. A single controller class can define multiple action methods, and the 
convention is to group related actions together in the same controller. Listing  2-9  shows the addition of a 
new action method to the  Home  controller. 

     Listing 2-9.    Adding an Action Method in the HomeController.cs File   

  using System; 
 using Microsoft.AspNetCore.Mvc; 

   namespace PartyInvites.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() { 
             int hour = DateTime.Now.Hour; 
             ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon"; 
             return View("MyView"); 
         } 

            public ViewResult RsvpForm() {  
              return View();  
          }  
     } 
 } 

    The  RsvpForm  action method calls the  View  method without an argument, which tells MVC to render 
the default view associated with the action method, which is a view with the same name as the action 
method, in this case  RsvpForm.cshtml . 

 Right-click the Views ➤ Home folder and select Add ➤ New Item from the pop-up menu. Select the 
MVC View Page template from the ASP.NET category, set the name of the new file to  RsvpForm.cshtml , and 
click the Add button to create the file. Change the content of the file so that it matches Listing  2-10 . 

     Listing 2-10.    Setting the Content of the RsvpForm.cshtml File in the Views/Home Folder   

  @model PartyInvites.Models.GuestResponse 

   @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

28

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>RsvpForm</title> 
 </head> 
 <body> 
     <div> 
         This is the RsvpForm.cshtml View 
     </div> 
 </body> 
 </html> 

    This content is mostly HTML but with the addition of a  @model  Razor  expression     , which is used to create 
a  strongly typed view . A strongly typed view is intended to render a specific model type, and if I specify the 
type I want to work with (the  GuestResponse  class in the  PartyInvites.Models  namespace in this case), 
MVC can create some helpful shortcuts to make it easier. I will take advantage of the strongly typed feature 
shortly. 

 To test the new action method and its view, start the application by selecting Start Debugging from the 
Debug menu and use the browser to navigate to the  /Home/RsvpForm  URL. 

 MVC will use the naming convention I described earlier to direct the request to the  RsvpForm  action 
method defined by the  Home  controller. This action method tells MVC to render the default view, which, 
with another application of the naming convention, renders  RsvpForm.cshml  from the  Views/Home  folder. 
Figure  2-15  shows the result.   

  Figure 2-15.    Rendering a second view       

     Linking Action Methods 
 I want to be able to create a link from the  MyView  view so that guests can see the  RsvpForm  view without 
having to know the URL that targets a specific action method, as shown in Listing  2-11 . 

     Listing 2-11.    Adding a Link to the RSVP Form in the MyView.cshtml File   

  @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 

   <html> 

 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

29

 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Index</title> 
 </head> 
 <body> 
     <div> 
         @ViewBag.Greeting World (from the view) 
        <p>We're going to have an exciting party.<br /> 
        (To do: sell it better. Add pictures or something.) 
        </p> 
          <a asp-action="RsvpForm">RSVP Now</a>  
     </div> 
 </body> 
 </html> 

    The addition to the listing is an  a  element that has an  asp-   action    attribute. The attribute is an example 
of a  tag    helper    attribute, which is an instruction for Razor that will be performed when the view is rendered. 
The  asp-action  attribute is an instruction to add a  href  attribute to the  a  element that contains a URL for 
an action method. I explain how tag helpers work in Chapters   24    , 25, and 26, but this is the simplest type 
of tag helper attribute for  a  elements, and it tells Razor to insert a URL for an action method defined by the 
same controller for which the current view is being rendered. You can see the link that the helper creates by 
starting the project, as shown in Figure  2-16 .  

  Figure 2-16.    Linking between action methods       

 Start the application and roll the mouse over the RSVP Now link the browser. You will see that the link 
points to the following URL (allowing for the different port number that Visual Studio will have assigned to 
your project): 

  http://localhost:57628/Home/RsvpForm  

 There is an important principle at work here, which is that you should use the features provided by 
MVC to generate URLs, rather than hard-code them into your views. When the tag helper created the  href  
attribute for the  a  element, it inspected the configuration of the application to figure out what the URL 
should be. This allows the configuration of the application to be changed to support different URL formats 
without needing to update any views. I explain how this works in Chapter   15    .  

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_24
http://dx.doi.org/10.1007/978-1-4842-0397-2_15


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

30

     Building the Form 
    Now that I have created the strongly typed view and can reach it from the  Index  view, I am going to build out 
the contents of the  RsvpForm.cshtml  file to make it into an HTML form for editing  GuestResponse  objects, as 
shown in Listing  2-12 . 

     Listing 2-12.    Creating a Form View in the RsvpForm.cshtml File   

  @model PartyInvites.Models.GuestResponse 

   @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>RsvpForm</title> 
 </head> 
 <body> 
      <form asp-action="RsvpForm" method="post">  
          <p>  
              <label asp-for="Name">Your name:</label>  
              <input asp-for="Name" />  
          </p>  
          <p>  
              <label asp-for="Email">Your email:</label>  
              <input asp-for="Email" />  
          </p>  
          <p>  
              <label asp-for="Phone">Your phone:</label>  
              <input asp-for="Phone" /></p>  
          <p>  
              <label>Will you attend?</label>  
              <select asp-for="WillAttend">  
                  <option value="">Choose an option</option>  
                  <option value="true">Yes, I'll be there</option>  
                  <option value="false">No, I can't come</option>  
              </select>  
          </p>  
          <button type="submit">Submit RSVP</button>  
      </form>  
 </body> 
 </html> 

    I have defined a  label  and  input  element for each property of the  GuestResponse  model class (or, in 
the case of the  WillAttend  property, a  select  element). Each element is associated with the model property 
using the  asp-for  attribute, which is another tag helper attribute. The tag helper attributes configure the 
elements to tie them to the model object. Here is an example of the HTML that the tag helpers produce and 
which is sent to the browser: 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

31

   <p> 

     <label for="Name">Your name:</label> 
     <input type="text" id="Name" name="Name" value=""> 
 </p> 

   The  asp-   for    attribute on the  label  element sets the value of the  for  attribute. The  asp-for  attribute 
on the  input  element sets the  id  and  name  elements. This doesn’t look especially useful at the moment, but 
you will see that associating elements with a model property offers additional advantages as the application 
functionality is defined. 

 Of more immediate use is the  asp-   action    attribute applied to the  form  element, which uses the 
application’s URL routing configuration to set the  action  attribute to a URL that will target a specific action 
method, like this: 

   <form method="post" action="/Home/RsvpForm"> 

   As with the helper attribute I applied to the  a  element, the benefit of this approach is that you can 
change the system of URLs that the application uses and the content generated by the tag helpers will reflect 
the changes automatically. 

 You can see the form by running the application and clicking the RSVP Now link, as shown in Figure  2-17 .   

  Figure 2-17.    Adding an HTML form to the application       

     Receiving Form Data 
       I have not yet told MVC what I want to do when the form is posted to the server. As things stand, clicking the 
Submit RSVP button just clears any values you have entered into the form. That is because the form posts 
back to the  RsvpForm  action method in the  Home  controller, which just tells MVC to render the view again. 

 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

32

To receive and process submitted form data, I am going to use a core controller feature. I will add a second 
 RsvpForm  action method to create the following:

•     A method that responds to HTTP   GET   requests : A  GET  request is what a browser 
issues normally each time someone clicks a link. This version of the action will be 
responsible for displaying the initial blank form when someone first visits  /Home/
RsvpForm .  

•    A method that responds to HTTP   POST   requests : By default, forms rendered using 
 Html.BeginForm()  are submitted by the browser as a  POST  request. This version of 
the action will be responsible for receiving submitted data and deciding what to do 
with it.    

 Handing  GET  and  POST  requests in separate C# methods helps to keep my controller code tidy, since the 
two methods have different responsibilities. Both action methods are invoked by the same URL, but MVC 
makes sure that the appropriate method is called, based on whether I am dealing with a  GET  or  POST  request. 
Listing  2-13  shows the changes to the  HomeController  class. 

     Listing 2-13.    Adding an Action Method to Support POST Requests in the HomeController.cs File   

  using System; 
 using Microsoft.AspNetCore.Mvc; 
  using PartyInvites.Models;  

   namespace PartyInvites.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() { 
             int hour = DateTime.Now.Hour; 
             ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon"; 
             return View("MyView"); 
         } 

            [HttpGet]  
         public ViewResult RsvpForm() { 
             return View(); 
         } 

            [HttpPost]  
          public ViewResult RsvpForm(GuestResponse guestResponse) {  
              // TODO: store repsonse from guest  
              return View();  
          }  
     } 
 } 

    I have added the  HttpGet  attribute to the existing  RsvpForm  action method. This tells MVC that this 
method should be used only for  GET  requests. I then added an overloaded version of the  RsvpForm  method, 
which accepts a  GuestResponse  object. I applied the  HttpPost  attribute to this method, which tells MVC 
that the new method will deal with  POST  requests. I explain how these additions to the listing work in the 
following sections. I also imported the  PartyInvites.Models  namespace—this is just so I can refer to the 
 GuestResponse  model type without needing to qualify the class name. 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

33

   Using Model Binding 
    The first overload of the  RsvpForm  action method renders the same view as before—the  RsvpForm.cshtml  
file—to generate the form shown in Figure  2-17 . The second overload is more interesting because of the 
parameter, but given that the action method will be invoked in response to an HTTP  POST  request and that 
the  GuestResponse  type is a C# class, how are the two connected? 

 The answer is  model binding , a useful MVC feature whereby incoming data is parsed and the key/value 
pairs in the HTTP request are used to populate properties of domain model types. 

 Model binding is a powerful and customizable feature that eliminates the grind and toil of dealing with 
HTTP requests directly and lets you work with C# objects rather than dealing with individual data values 
sent by the browser. The  GuestResponse  object that is passed as the parameter to the action method is 
automatically populated with the data from the form fields. I dive into the detail of model binding, including 
how it can be customized, in Chapter   26    . 

 One of the application goals is to present a summary page with details of who is attending, which means 
that I need to keep track of the responses that I receive. I am going to do this by creating an in-memory 
collection of objects. This isn’t useful in a real application because the response data will be lost when the 
application is stopped or restarted, but this approach will allow me to keep the focus on MVC and create an 
application that can easily be reset to its initial state. 

 ■   Tip    I demonstrate how MVC can be used to store and access data persistently in Chapter   8     as part of a 
more realistic example application.  

 I added a file to the project by right-clicking the  Models  folder and selecting Add ➤ Class from the pop-
up menu. I set the name of the file to  Repository.cs  and used it to define the class shown in Listing  2-14 . 

     Listing 2-14.    The Contents of the Repository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace PartyInvites.Models { 
     public static class Repository { 
         private static List<GuestResponse> responses = new List<GuestResponse>(); 

           public static IEnumerable<GuestResponse> Responses { 
             get { 
                 return responses; 
             } 
         } 

           public static void AddResponse(GuestResponse response) { 
             responses.Add(response); 
         } 
     } 
 } 

    The  Repository  class and its members are  static , which will make it easy for me to store and retrieve 
data from different places in the application. MVC provides a more sophisticated approach for defining 
common functionality, called  dependency injection , which I describe in Chapter   18    , but a static class is a 
good way to get started for a simple application like this one.  

http://dx.doi.org/10.1007/978-1-4842-0397-2_26
http://dx.doi.org/10.1007/978-1-4842-0397-2_8
http://dx.doi.org/10.1007/978-1-4842-0397-2_18


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

34

   Storing Responses 
 Now that I have somewhere to store the data, I can update the action method that receives the HTTP POST 
requests, as shown in Listing  2-15 . 

      Listing 2-15.    Updating an Action Method in the HomeController.cs File   

  using System; 
 using Microsoft.AspNetCore.Mvc; 
 using PartyInvites.Models; 

   namespace PartyInvites.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() { 
             int hour = DateTime.Now.Hour; 
             ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon"; 
             return View("MyView"); 
         } 

           [HttpGet] 
         public ViewResult RsvpForm() { 
             return View(); 
         } 

           [HttpPost] 
         public ViewResult RsvpForm(GuestResponse guestResponse) { 
              Repository.AddResponse(guestResponse);  
              return View("Thanks", guestResponse);  
         } 
     } 
 } 

    All I have to do to deal with the form data sent in a request is to work with the  GuestResponse  object 
that is passed to the action method—in this case, to pass it as an argument to the  Repository.AddResponse  
method so that the response can be stored. 

 WHY MODEL BINDING IS NOT LIKE WEB FORMS

    In Chapter   1    , I explained that one of the disadvantages of traditional ASP.NET Web Forms is that it hides 
the details of HTTP and HTML from the developers. You may be wondering whether the MVC model 
binding that I used to create a  GuestResponse  object from an HTTP POST request in Listing  2-15  is 
doing the same thing. 

 It isn’t. Model binding frees me from the tedious and error-prone task of having to inspect an HTTP 
request and extract all the data values that I require, but (and this is the important part) if I wanted to 
process a request manually, I could do so because MVC provides easy access to all of the request data. 
Nothing is hidden from the developer, but there are a number of useful features that make working with 
HTTP and HTML simpler and easier; however, using these features is optional. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_1


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

35

 This may seem like a subtle difference, but as you learn more about MVC, you will see that the 
development experience is completely different from traditional Web Forms and that you are always 
aware of how the requests your application receives are handled.  

 The call to the  View  method in the  RsvpForm  action method tells MVC to render a view called  Thanks  
and to pass the  GuestResponse  object to the view. To create the view, right-click the  Views/Home  folder in the 
Solution Explorer and select Add ➤ New Item from the pop-up menu. Select the MVC View Page template in 
the ASP.NET category, set the name to  Thanks.cshtml , and click the Add button. Visual Studio will create the 
 Views/Home/Thanks.cshtml  file and open it for editing. Change the contents of the file to match Listing  2-16 . 

     Listing 2-16.    The Contents of the Thanks.cshtml File in the Views/Home Folder   

  @model PartyInvites.Models.GuestResponse 

   @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Thanks</title> 
 </head> 
 <body> 
     <p> 
         <h1>Thank you, @Model.Name!</h1> 
         @if (Model.WillAttend == true) { 
             @:It's great that you're coming. The drinks are already in the fridge! 
         } else { 
             @:Sorry to hear that you can't make it, but thanks for letting us know. 
         } 
     </p> 
     <p>Click <a asp-action="ListResponses">here</a> to see who is coming.</p> 
 </body> 
 </html> 

    The  Thanks.cshtml  view uses Razor to display content based on the value of the  GuestResponse  
properties that I passed to the  View  method in the  RsvpForm  action method. The Razor  @model  expression 
specifies the domain model type with which the view is strongly typed.     

 To access the value of a property in the domain object, I use  Model.PropertyName . For example, to get 
the value of the  Name  property, I call  Model.Name . Don’t worry if the Razor syntax doesn’t make sense—I 
explain it in more detail in Chapter   5    .     

 Now that I have created the  Thanks  view, I have a basic working example of handling a form with MVC. 
Start the application in Visual Studio by selecting Start Debugging from the Debug menu, click the RSVP 
Now link, add some data to the form, and click the Submit RSVP button. You will see the result shown in 
Figure  2-18  (although it will differ if your name is not Joe or you said you could not attend).    

http://dx.doi.org/10.1007/978-1-4842-0397-2_5


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

36

     Displaying the Responses 
 At the end of the  Thanks.cshtml  view, I added an  a  element to create a link to display the list of people who 
are coming to the party. I used the  asp-action  tag helper attribute to create a URL that targets an action 
method called  ListResponses , like this: 

   ... 
 <p>Click <a  asp-action="ListResponses" >here</a> to see who is coming.</p> 
 ... 

   If you hover the mouse over the link that is displayed by the browser, you will see that it targets the 
 /Home/ListResponses  URL. This doesn’t correspond to any of the action methods in the  Home  controller, and 
if you click the link, you will see an empty page. Opening the browser’s developer tools and looking at the 
response sent by the server will reveal that a  404 - Not Found  error was sent back by the server (Chrome is 
a little odd in that it doesn’t display an error message to the user, but I explain how to generate meaningful 
error messages in Chapter   14    ). 

 I am going to fix the problem by creating the action method that the URL targets in the  Home  controller, 
as shown in Listing  2-17 . 

     Listing 2-17.    Adding an Action Method in the HomeController.cs File   

  using System; 
 using Microsoft.AspNetCore.Mvc; 
 using PartyInvites.Models; 
  using System.Linq;  

   namespace PartyInvites.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() { 
             int hour = DateTime.Now.Hour; 
             ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon"; 
             return View("MyView"); 
         } 

  Figure 2-18.    The Thanks view       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_14


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

37

           [HttpGet] 
         public ViewResult RsvpForm() { 
             return View(); 
         } 

           [HttpPost] 
         public ViewResult RsvpForm(GuestResponse guestResponse) { 
             Repository.AddResponse(guestResponse); 
             return View("Thanks", guestResponse); 
         } 

            public ViewResult ListResponses() {  
              return View(Repository.Responses.Where(r => r.WillAttend == true));  
          }  
     } 
 } 

    The new action method is called  ListResponses , and it calls the  View  method, using the  Repository.
Responses  property as the argument. This is how an action method provides data to a strongly typed view. 
The collection of  GuestResponse  objects is filtered using LINQ so that only positive responses are used. 

 The  ListResponses  action method doesn’t specify the name of the view that should be used to display 
the collection of  GuestResponse  objects, which means that the default naming convention will be used 
and MVC will look for a view called  ListResponses.cshtml  in the  Views/Home  and  Views/Shared  folders. 
To create the view, right-click the  Views/Home  folder in the Solution Explorer and select Add ➤ New Item 
from the pop-up menu. Select the MVC View Page template in the ASP.NET category, set the name to 
 ListResponses.cshtml , and click the Add button. Edit the contents of the new view to match Listing  2-18 . 

      Listing 2-18.    Displaying the Acceptances in the ListResponses.cshtml File in the Views/Home Folder   

  @model IEnumerable<PartyInvites.Models.GuestResponse> 

   @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Responses</title> 
 </head> 
 <body> 
     <h2>Here is the list of people attending the party</h2> 
     <table> 
         <thead> 
             <tr> 
                 <th>Name</th> 
                 <th>Email</th> 
                 <th>Phone</th> 
             </tr> 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

38

         </thead> 
         <tbody> 
             @foreach (PartyInvites.Models.GuestResponse r in Model) { 
                 <tr> 
                     <td>@r.Name</td> 
                     <td>@r.Email</td> 
                     <td>@r.Phone</td> 
                 </tr> 
             } 
         </tbody> 
     </table> 
 </body> 
 </html> 

    Razor view files have the  cshtml  file extension because they are a mix of C# code and HTML elements. 
You can see this in Listing  2-18  where I have used a  foreach  loop to process each of the  GuestResponse  
objects that the action method passes to the view using the  View  method. Unlike a normal C#  foreach  
loop, the body of a Razor  foreach  loop contains HTML elements that are added to the response that will be 
sent back to the browser. In this view, each  GuestResponse  object generates a  tr  element that contains  td  
elements populated with the value of an object property. 

 To see the list at work, run the application by selecting Start Debugging from the Start menu, submit 
some form data, and then click the link to see the list of responses. You will see a summary of the data you 
have entered since the application was started, as shown in Figure  2-19 . The view does not present the data 
in an appealing way, but it is enough for the moment, and I will address the styling of the application later in 
this chapter.   

  Figure 2-19.    Showing a list of party attendees       

     Adding Validation 
 I am now in a position to add data validation to my application. Without validation, users could enter 
nonsense data or even submit an empty form. In an MVC application, you will typically apply validation to 
the domain model rather than in the user interface. This means that you define validation in one place, but 
it takes effect anywhere in the application that the model class is used. MVC supports  declarative validation 

 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

39

rules  defined with attributes from the  System.ComponentModel.DataAnnotations  namespace, meaning 
that validation constraints are expressed using the standard C# attribute features. Listing  2-19  shows how I 
applied these attributes to the  GuestResponse  model class. 

     Listing 2-19.    Applying Validation in the GuestResponse.cs File   

   using System.ComponentModel.DataAnnotations;  

   namespace PartyInvites.Models { 

       public class GuestResponse { 

            [Required(ErrorMessage = "Please enter your name")]  
         public string Name { get; set; } 

            [Required(ErrorMessage = "Please enter your email address")]  
          [RegularExpression(".+\\@.+\\..+",  
              ErrorMessage = "Please enter a valid email address")]  
         public string Email { get; set; } 

            [Required(ErrorMessage = "Please enter your phone number")]  
         public string Phone { get; set; } 

            [Required(ErrorMessage = "Please specify whether you'll attend")]  
         public bool? WillAttend { get; set; } 
     } 
 } 

    MVC automatically detects the attributes and uses them to validate data during the model-binding 
process. I imported the namespace that contains the validation attributes, so I can refer to them without 
needing to qualify their names. 

 ■   Tip    As noted earlier, I used a nullable  bool  for the  WillAttend  property. I did this so that I could apply the 
 Required  validation attribute. If I had used a regular  bool , the value I received through model binding could be 
only  true  or  false , and I would not be able to tell whether the user had selected a value. A nullable  bool  has 
three possible values:  true ,  false , and  null . The browser sends a  null  value if the user has not selected a 
value, and this causes the  Required  attribute to report a validation error. This is a nice example of how MVC 
elegantly blends C# features with HTML and HTTP.      

 I check to see whether there has been a validation problem using the  ModelState.IsValid  property in 
the controller class. Listing  2-20  shows how I have done this in the  POST -enabled  RsvpForm  action method in 
the  Home  controller class.     

     Listing 2-20.    Checking for Form Validation Errors in the HomeController.cs File   

  using System; 
 using Microsoft.AspNetCore.Mvc; 
 using PartyInvites.Models; 
 using System.Linq; 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

40

   namespace PartyInvites.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() { 
             int hour = DateTime.Now.Hour; 
             ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon"; 
             return View("MyView"); 
         } 

           [HttpGet] 
         public ViewResult RsvpForm() { 
             return View(); 
         } 

           [HttpPost] 
         public ViewResult RsvpForm(GuestResponse guestResponse) { 
              if (ModelState.IsValid) {  
                 Repository.AddResponse(guestResponse); 
                 return View("Thanks", guestResponse); 
              } else {  
                  // there is a validation error  
                  return View();  
              }  
         } 

           public ViewResult ListResponses() { 
             return View(Repository.Responses.Where(r => r.WillAttend == true)); 
         } 
     } 
 } 

    The  Controller  base class provides a property called  ModelState  that provides information about the 
conversion of HTTP request data into C# objects. If the  ModelState.IsValue  property returns  true , then I 
know that MVC has been able to satisfy the validation constraints I specified through the attributes on the 
 GuestResponse  class. When this happens, I render the  Thanks  view, just as I did previously. 

 If the  ModelState.IsValue  property returns  false , then I know that there are validation errors. The 
object returned by the  ModelState  property provides details of each problem that has been encountered, but 
I don’t need to get into that level of detail, because I can rely on a useful feature that automates the process 
of asking the user to address any problems by calling the  View  method without any parameters. 

 When MVC renders a view, Razor has access to the details of any validation errors associated with the 
request, and tag helpers can access the details to display validation errors to the user. Listing  2-21  shows the 
addition of validation tag helper attributes to the  RsvpForm  view. 

     Listing 2-21.    Adding a Validation Summary to the RsvpForm.cshtml File   

  @model PartyInvites.Models.GuestResponse 

   @{ 
     Layout = null; 
 } 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

41

   <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>RsvpForm</title> 
 </head> 
 <body> 
     <form asp-action="RsvpForm" method="post"> 
          <div asp-validation-summary="All"></div>  
         <p> 
             <label asp-for="Name">Your name:</label> 
             <input asp-for="Name" /> 
         </p> 
         <p> 
             <label asp-for="Email">Your email:</label> 
             <input asp-for="Email" /> 
         </p> 
         <p> 
             <label asp-for="Phone">Your phone:</label> 
             <input asp-for="Phone" /></p> 
         <p> 
             <label>Will you attend?</label> 
             <select asp-for="WillAttend"> 
                 <option value="">Choose an option</option> 
                 <option value="true">Yes, I'll be there</option> 
                 <option value="false">No, I can't come</option> 
             </select> 
         </p> 
         <button type="submit">Submit RSVP</button> 
     </form> 
 </body> 
 </html> 

    The   asp-validation-summary  attribute   is applied to a  div  element, and it displays a list of validation 
errors when the view is rendered. The value for the  asp-validation-summary  attribute is a value from an 
enumeration called  ValidationSummary , which specifies what types of validation errors the summary will 
contain. I specified  All , which is a good starting point for most applications, and I describe the other values 
and explain how they work in Chapter   27    . 

 To see how the validation summary works, run the application, fill out the Name field, and submit the 
form without entering any other data. You will see a summary of validation errors, as shown in Figure  2-20 .  

http://dx.doi.org/10.1007/978-1-4842-0397-2_27


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

42

 The  RsvpForm  action method will not render the  Thanks  view until all of the validation constraints 
applied to the  GuestResponse  class have been satisfied. Notice that the data entered into the  Name  field was 
preserved and displayed again when Razor rendered the view with the validation summary. This is another 
benefit of model binding, and it simplifies working with form data. 

 ■   Note    If you have worked with ASP.NET Web Forms, you will know that Web Forms has a concept of  server 
controls  that retain state by serializing values into a hidden form field called  __VIEWSTATE . MVC model binding 
is not related to the Web Forms concepts of server controls, postbacks, or View State. MVC does not inject a 
hidden  __VIEWSTATE  field into your rendered HTML pages. Instead, it includes the data by setting the  value  
attributes of the  input  element.  

   Highlighting Invalid Fields 
    The tag helper attributes that associate model properties with elements have a handy feature that can be 
used in conjunction with model binding. When a model class property has failed validation, the helper 
attributes will generate slightly different HTML. Here is the  input  element that is generated for the Phone 
field when there is no validation error: 

   <input type="text" data-val="true" data-val-required="Please enter your phone number" 
id="Phone" name="Phone" value=""> 

  Figure 2-20.    Displaying validation errors       

 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

43

   For comparison, here is the same HTML element after the user has submitted the form without entering 
any data into the text field (which is a validation error because I applied the  Required  validation attribute to 
the  Phone  property of the  GuestResponse  class): 

   <input type="text"  class="input-validation-error"  data-val="true" 
     data-val-required="Please enter your phone number" id="Phone" 
     name="Phone" value=""> 

   I have highlighted the difference: the  asp-for  tag helper attribute added the  input  element to a class 
called  input-validation-error . I can take advantage of this feature by creating a stylesheet that contains 
CSS styles for this class and the others that different HTML helper attributes use. 

 The convention in MVC projects is that static content delivered to clients is placed into the  wwwroot  
folder, organized by content type, so that CSS stylesheets go into the  wwwroot/css  folder, JavaScript files go 
into the  wwwroot/js  folder, and so on. 

 To create the stylesheet, right-click the  wwwroot/css  folder in the Visual Studio Solution Explorer, select 
Add ➤ New Item, navigate to the Client-side section, and select Style Sheet from the list of templates, as 
shown in Figure  2-21 .  

  Figure 2-21.    Creating a CSS stylesheet       

 ■   Tip    Visual Studio creates a  style.css  file in the  wwwroot/css  folder when a project is created using the 
Web Application template. You can ignore this file, which I don’t use in this chapter.  

 Set the name of the file to  styles.css , click the Add button to create the stylesheet, and edit the new file 
so that it contains the styles shown in Listing  2-22 . 

 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

44

     Listing 2-22.    The Contents of the styles.css File   

 .field-validation-error    {color: #f00;} 
 .field-validation-valid    { display: none;} 
 .input-validation-error    { border: 1px solid #f00; background-color: #fee; } 
 .validation-summary-errors { font-weight: bold; color: #f00;} 
 .validation-summary-valid  { display: none;} 

   To apply this stylesheet, I have added a  link  element to the  head  section of the  RsvpForm  view, as shown 
in Listing  2-23 . 

     Listing 2-23.    Applying a Stylesheet in the RsvpForm.cshtml File   

 ... 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>RsvpForm</title> 
      <link rel="stylesheet" href="/css/styles.css" />  
 </head> 
 ... 

   The  link  element uses the  href  attribute to specify the location of the stylesheet. Notice that 
the  wwwroot  folder is omitted from the URL. The default configuration for ASP.NET includes support 
for serving static content, such as images, CSS stylesheets, and JavaScript files, and it maps requests 
to the  wwwroot  folder automatically. I describe the ASP.NET and MVC configuration process in 
Chapter   14    . 

 ■   Tip    There is a special tag helper for dealing with stylesheets that can be useful if you have a lot of files to 
manage. See Chapter   25     for details.  

 With the application of the style sheet, a more visually obvious validation error will be displayed when 
data is submitted that causes a validation error, as shown in Figure  2-22 .    

http://dx.doi.org/10.1007/978-1-4842-0397-2_14
http://dx.doi.org/10.1007/978-1-4842-0397-2_25


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

45

     Styling the Content 
 All of the functional goals for the application are complete, but the overall appearance of the application 
is poor. When you create a project using the Web Application template, as I did for the example in this 
chapter, Visual Studio installs some common client-side development packages. While I am not a fan of 
using template projects, I do like the client-side libraries that Microsoft has chosen. One of them is called 
Bootstrap, which is a nice CSS framework originally developed by Twitter that has become a major open 
source project in its own right and which has become a mainstay of web application development. 

 ■   Note    Bootstrap 3 is the current version as I write this but version 4 is under development. Microsoft may 
choose to update the version of Bootstrap used by the Web Application template in later releases of Visual 
Studio, which may cause the content to display differently. This won’t be a problem for the other chapters in the 
book because I show you how to explicitly specify a package version so that you get the expected results.  

   Styling the Welcome View 
 The basic Bootstrap features work by applying classes to elements that correspond to CSS selectors defined 
in the files added to the  wwwroot/lib/bootstrap  folder. You can get full details of the classes that Bootstrap 
defines from    http://getbootstrap.com     , but you can see how I have applied some basic styling to the 
 MyView.cshtml  view file in Listing  2-24 . 

  Figure 2-22.    Automatically highlighted validation errors       

 

http://getbootstrap.com/


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

46

     Listing 2-24.    Adding Bootstrap to the MyView.cshtml File   

  @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Index</title> 
      <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />  
 </head> 
 <body> 
      <div class="text-center">  
          <h3>We're going to have an exciting party!</h3>  
          <h4>And you are invited</h4>  
          <a class="btn btn-primary" asp-action="RsvpForm">RSVP Now</a>  
     </div> 
 </body> 
 </html> 

    I have added  link  element whose  href  attribute loads the  bootstrap.css  file from the  wwwroot/lib/
bootstrap/dist/css folder . The convention is that third-party CSS and JavaScript packages are installed 
into the  wwwroot/lib  folder, and I describe the tool that is used to manage these packages in Chapter   6    . 

 Having imported the Bootstrap stylesheets, I need to style my elements. This is a simple example and so 
I only need to use a small number of Bootstrap CSS classes:  text-center ,  btn , and  btn-primary . 

 The  text-center  class centers the content of an element and its children. The  btn  class styles a  button , 
 input , or  a  element as a pretty button, and the  btn-primary  specifies which of a range of colors I want the 
button to be. You can see the effect by running the application, as shown in Figure  2-23 .  

  Figure 2-23.    Styling a view       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_6


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

47

 It will be obvious to you that I am not a web designer. In fact, as a child, I was excused from art lessons 
on the basis that I had absolutely no talent whatsoever. This had the happy result of making more time for 
math lessons but meant that my artistic skills have not developed beyond those of the average 10-year-old. 
For a real project, I would seek a professional to help design and style the content, but for this example I am 
going it alone, and that means applying Bootstrap with as much restraint and consistency as I can muster.  

   Styling the RsvpForm View 
 Bootstrap defines classes that can be used to style forms. I am not going to go into detail, but you can see 
how I have applied these classes in Listing  2-25 . 

     Listing 2-25.    Adding Bootstrap to the RsvpForm.cshtml File   

  @model PartyInvites.Models.GuestResponse 

   @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>RsvpForm</title> 
     <link rel="stylesheet" href="/css/styles.css" /> 
      <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />  
 </head> 
 <body> 
      <div class="panel panel-success">  
          <div class="panel-heading text-center"><h4>RSVP</h4></div>  
          <div class="panel-body">  
              <form class="p-a-1" asp-action="RsvpForm" method="post">  
                  <div asp-validation-summary="All"></div>  
                  <div class="form-group">  
                      <label asp-for="Name">Your name:</label>  
                      <input class="form-control" asp-for="Name" />  
                  </div>  
                  <div class="form-group">  
                      <label asp-for="Email">Your email:</label>  
                      <input class="form-control" asp-for="Email" />  
                  </div>  
                  <div class="form-group">  
                      <label asp-for="Phone">Your phone:</label>  
                      <input class="form-control" asp-for="Phone" />  
                  </div>  
                  <div class="form-group">  
                      <label>Will you attend?</label>  
                      <select class="form-control" asp-for="WillAttend">  
                          <option value="">Choose an option</option>  
                          <option value="true">Yes, I'll be there</option>  



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

48

                          <option value="false">No, I can't come</option>  
                      </select>  
                  </div>  
                  <div class="text-center">  
                      <button class="btn btn-primary" type="submit">  
                          Submit RSVP  
                      </button>  
                  </div>  
              </form>  
          </div>  
      </div>  
 </body> 
 </html> 

    The Bootstrap classes in this example create a header, just to give structure to the layout. To style the 
form, I have used the  form-group  class, which is used to style the element that contains the  label  and the 
associated  input  or  select  element. You can see the effect of the styles in Figure  2-24 .   

  Figure 2-24.    Styling the RsvpForm view       

 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

49

   Styling the Thanks View 
 The next view file to style is  Thanks.cshtml , and you can see how I have done this in Listing  2-26 , using CSS 
classes that are similar to the ones I used for the other views. To make an application easier to manage, it is 
a good principle to avoid duplicating code and markup wherever possible. MVC provides several features 
to help reduce duplication, which I describe in later chapters. These features include Razor layouts 
(Chapter   5    ), partial views (Chapter   21    ), and view components (Chapter   22    ). 

     Listing 2-26.    Applying Bootstrap to the Thanks.cshtml File   

  @model PartyInvites.Models.GuestResponse 

   @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Thanks</title> 
      <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />  
 </head> 
  <body class="text-center">  
     <p> 
         <h1>Thank you, @Model.Name!</h1> 
         @if (Model.WillAttend == true) { 
             @:It's great that you're coming. The drinks are already in the fridge! 
         } else { 
             @:Sorry to hear that you can't make it, but thanks for letting us know. 
         } 
     </p> 
      Click <a class="nav-link" asp-action="ListResponses">here</a>  
      to see who is coming.  
 </body> 
 </html> 

    Figure  2-25  shows the effect of the styles.   

http://dx.doi.org/10.1007/978-1-4842-0397-2_5
http://dx.doi.org/10.1007/978-1-4842-0397-2_21
http://dx.doi.org/10.1007/978-1-4842-0397-2_22


CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

50

   Styling the List View 
 The final view to style is  ListResponses , which presents the list of attendees. Styling the content follows the 
same basic approach as used for all Bootstrap styles, as shown in Listing  2-27 . 

     Listing 2-27.    Adding Bootstrap to the ListResponses.cshtml File   

  @model IEnumerable<PartyInvites.Models.GuestResponse> 

   @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
      <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />  
     <title>Responses</title> 
 </head> 
 <body> 
      <div class="panel-body">  
         <h2>Here is the list of people attending the party</h2> 
          <table class="table table-sm table-striped table-bordered">  
             <thead> 
                 <tr> 
                     <th>Name</th> 
                     <th>Email</th> 
                     <th>Phone</th> 
                 </tr> 
             </thead> 
             <tbody> 

  Figure 2-25.    Styling the Thanks view       

 



CHAPTER 2 ■ YOUR FIRST MVC APPLICATION

51

                 @foreach (PartyInvites.Models.GuestResponse r in Model) { 
                     <tr> 
                         <td>@r.Name</td> 
                         <td>@r.Email</td> 
                         <td>@r.Phone</td> 
                     </tr> 
                 } 
             </tbody> 
         </table> 
     </div> 
 </body> 
 </html> 

    Figure  2-26  shows the way that the table of attendees is presented. Adding these styles to the view 
completes the example application, which now meets all of the development goals and has a much 
improved appearance.     

  Figure 2-26.    Styling the ListResponses view       

     Summary 
 In this chapter, I created a new MVC project and used it to construct a simple data-entry application, giving 
you a first glimpse of the ASP.NET Core MVC architecture and approach. I skipped over some key features 
(including Razor syntax, routing, and testing), but I return to these topics in depth in later chapters. In the 
next chapter, I describe the MVC design patterns, which form the foundation for effective development with 
ASP.NET Core MVC.     

 



53© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_3

    CHAPTER 3   

 The MVC Pattern, Projects, and 
Conventions                          

 Before digging into the details of ASP.NET Core MVC, I want to make sure you are familiar with the MVC 
design pattern, the thinking behind it, and the way it is translated into ASP.NET Core MVC projects. 
You might already know about some of the ideas and conventions I discuss in this chapter, especially if 
you have done advanced ASP.NET or C# development. If not, I encourage you to read carefully—a good 
understanding of what lies behind MVC can help put the features of the framework into context as you 
continue through the book. 

     The History of MVC 
    The term  model-view-controller  has been in use since the late 1970s and arose from the Smalltalk project 
at Xerox PARC, where it was conceived as a way to organize some early GUI applications. Some of the 
fine detail of the original MVC pattern was tied to Smalltalk-specific concepts, such as  screens  and  tools , 
but the broader concepts are still applicable to applications, and they are especially well suited to web 
applications.  

     Understanding the MVC Pattern 
 In high-level terms, the MVC pattern means that an MVC application will be split into at least three pieces.

•     Models , which contain or represent the data that users work with  

•    Views,  which are used to render some part of the model as a user interface  

•    Controllers , which process incoming requests, perform operations on the model, and 
select views to render to the user    

 Each piece of the MVC architecture is well-defined and self-contained, which is referred to as the 
  separation of concerns      . The logic that manipulates the data in the model is contained  only  in the model; the 
logic that displays data is  only  in the view, and the code that handles user requests and input is contained 
 only  in the controller. With a clear division between each of the pieces, your application will be easier to 
maintain and extend over its lifetime, no matter how large it becomes. 



CHAPTER 3 ■ THE MVC PATTERN, PROJECTS, AND CONVENTIONS

54

     Understanding Models 
          Models—the  M  in  MVC —contain the data that users work with. There are two broad types of model:  view 
models , which represent just data passed from the controller to the view, and  domain models , which contain 
the data in a business domain, along with the operations, transformations, and rules for creating, storing, 
and manipulating that data, collectively referred to as the  model logic . 

 Models are the definition of the universe your application works in. In a banking application, for example, 
the model represents everything in the bank that the application supports, such as accounts, the general ledger, 
and credit limits for customers, as well as the operations that can be used to manipulate the data in the model, 
such as depositing funds and making withdrawals from the accounts. The model is also responsible for preserving 
the overall state and consistency of the data—for example, making sure that all transactions are added to the 
ledger and that a client doesn’t withdraw more money than he is entitled to or more money than the bank has. 

 For each of the components in the MVC pattern, I’ll describe what should and should not be included. 
The model in an application built using the MVC pattern  should 

•    Contain the domain data  

•   Contain the logic for creating, managing, and modifying the domain data  

•   Provide a clean API that exposes the model data and operations on it    

 The model  should not 

•    Expose details of how the model data is obtained or managed (in other words, details 
of the data storage mechanism should not be exposed to controllers and views)  

•   Contain logic that transforms the model based on user interaction (because that is 
the controller’s job)  

•   Contain logic for displaying data to the user (that is the view’s job)    

 The benefits of ensuring that the model is isolated from the controller and views are that you can test 
your logic more easily (I describe unit testing in Chapter   7    ) and that enhancing and maintaining the overall 
application is simpler and easier. 

 ■   Tip    Many developers new to the MVC pattern get confused with the idea of including logic in the data 
model, believing that the goal of the MVC pattern is to separate data from logic. This is a misapprehension: 
the goal of the MVC pattern is to divide an application into three functional areas, each of which may contain 
both logic  and  data. The goal isn’t to eliminate logic from the model. Rather, it is to ensure that the model only 
contains logic for creating and managing the model data.   

     Understanding Controllers 
       Controllers are the connective tissue in the MVC pattern, acting as conduits between the data model and 
views. Controllers define actions that provide the business logic that operates on the data model and that 
provide he data that views display to the user. 

 A controller built using the MVC pattern  should 

•    Contain the actions required to update the model based on user interaction    

 The controller  should not 

•    Contain logic that manages the appearance of data (that is the job of the view)  

•   Contain logic that manages the persistence of data (that is the job of the model)     

http://dx.doi.org/10.1007/978-1-4842-0397-2_7


CHAPTER 3 ■ THE MVC PATTERN, PROJECTS, AND CONVENTIONS

55

     Understanding Views 
       Views contain the logic required to display data to the user or to capture data from the user so that it can be 
processed by a controller action. Views  should 

•    Contain the logic and markup required to present data to the user    

 Views  should not 

•    Contain complex logic (this is better placed in a controller)  

•   Contain logic that creates, stores, or manipulates the domain model    

 Views  can  contain logic, but it should be simple and used sparingly. Putting anything but the simplest 
method calls or expressions in a view makes the overall application harder to test and maintain.  

     The ASP.NET Implementation of MVC 
    As its name suggests, the ASP.NET Core MVC adapts the abstract MVC pattern to the world of ASP.NET and 
C# development. In ASP.NET Core MVC, controllers are C# classes, usually derived from the  Microsoft.
AspNetCore.Mvc.Controller  class. Each  public  method in a class derived from  Controller  is an  action 
method , which is associated with a URL. When a request is sent to the URL associated with an action 
method, the statements in that action method are executed in order to perform some operation on the 
domain model and then to select a view to display to the client. Figure  3-1  shows the interactions between 
the controller, model, and view.  

  Figure 3-1.    The interactions in an MVC application       

 ASP.NET Core MVC uses a  view engine , known as Razor, which is the component responsible for 
processing a view in order to generate a response for the browser. Razor views are HTML templates that 
contain C# logic that is used to process model data to generate dynamic content that responds to changes in 
the model. I explain how Razor works in Chapter   5    . 

 ASP.NET Core MVC doesn’t apply any constraints on the implementation of your domain model. You 
can create a model using regular C# objects and implement persistence using any of the databases, object-
relational mapping frameworks, or other data tools supported by .NET.   

     Comparing MVC to Other Patterns 
    MVC is not the only software architecture pattern, of course. There are many others, and some of them are, 
or at least have been, extremely popular. You can learn a lot about MVC by looking at the alternatives. In 
the following sections, I briefly describe different approaches to structuring an application and contrast 
them with MVC. Some of the patterns are close variations on the MVC theme, whereas others are entirely 
different. 

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_5


CHAPTER 3 ■ THE MVC PATTERN, PROJECTS, AND CONVENTIONS

56

 I am not suggesting that MVC is the perfect pattern for all situations. I am a proponent of picking the 
best approach to solve the problem at hand. As you will see, there are situations where some competing 
patterns are as useful as or better than MVC. I encourage you to make an  informed  and  deliberate  choice 
when selecting a pattern. The fact that you are reading this book suggests that you already have a certain 
commitment to the MVC pattern, but it is always helpful to maintain the widest possible perspective. 

     Understanding the Smart UI Pattern 
 One of the most common design patterns is known as the  smart user interface  (smart UI). Most programmers 
have created a smart UI application at some point in their careers—I certainly have. If you have used 
Windows Forms or ASP.NET Web Forms, you have too. 

 To build a smart UI application, developers construct a user interface, often by dragging a set of 
 components  or  controls  onto a design surface or canvas. The controls report interactions with the user by 
emitting events for button presses, keystrokes, mouse movements, and so on. The developer adds code to 
respond to these events in a series of  event handlers ; these are small blocks of code that are called when 
a specific event on a specific component is emitted. This creates a monolithic application, as shown in 
Figure  3-2 . The code that handles the user interface and the business is all mixed together with no separation 
of concerns at all. The code that defines the acceptable values for a data input and that queries for data or 
modifies a user account ends up in little pieces, coupled together by the order in which events are expected.  

  Figure 3-2.    The smart UI pattern       

 Smart UIs are ideal for simple projects because you can get some good results quickly (by comparison 
to MVC development, which, as you’ll see in Chapter   8    , requires an initial investment before delivering 
results). Smart UIs are also suited to user interface prototyping. These design surface tools can be  really  
good, and if you are sitting with a customer and want to capture the requirements for the look and flow of the 
interface, a smart UI tool can be a quick and responsive way to generate and test different ideas. 

 The biggest drawback is that smart UIs are difficult to maintain and extend. Mixing the domain model 
and business logic code in with the user interface code leads to duplication, where the same fragment of 
business logic is copied and pasted to support a newly added component. Finding all the duplicate parts and 
applying a fix can be difficult. It can be almost impossible to add a new feature without breaking an existing 
one. Testing a smart UI application can also be difficult. The only way is to simulate user interactions, which 
is far from ideal and a difficult basis from which to provide full test coverage. 

 In the world of MVC, the smart UI is often referred to as an  anti-pattern : something that should be 
avoided at all costs. This antipathy arises, at least in part, because people come to MVC looking for an 
alternative after spending part of their careers trying to develop and maintain smart UI applications that 
grow out of control. 

 That said, it is a mistake to reject the smart UI pattern out of hand. Not everything is rotten in the smart 
UI pattern, and there are positive aspects to this approach. Smart UI applications are quick and easy to 
develop. The component and design tool producers have put a lot of effort into making the development 
experience a pleasant one, and even the most inexperienced programmer can produce something 
professional-looking and reasonably functional in just a few hours. 

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_8


CHAPTER 3 ■ THE MVC PATTERN, PROJECTS, AND CONVENTIONS

57

 The biggest weakness of smart UI applications—maintainability—doesn’t arise in small development 
efforts. If you are producing a simple tool for a small audience, a smart UI application can be a good 
solution. The additional complexity of an MVC application simply isn’t warranted.  

     Understanding the Model-View Architecture 
 The area in which maintenance problems tend to arise in a smart UI application is in the business logic, 
which ends up so diffused across the application that making changes or adding features becomes a fraught 
process. An improvement in this area is offered by the  model-view  architecture, which pulls out the business 
logic into a separate domain model. In doing this, the data, processes, and rules are all concentrated in one 
part of the application, as shown in Figure  3-3 .  

  Figure 3-3.    The model-view pattern       

 The model-view architecture can be an improvement over the monolithic smart UI pattern—it is much 
easier to maintain, for example—but two problems arise. The first is that since the UI and the domain model 
are closely integrated, it can be difficult to perform unit testing on either. The second problem arises from 
practice, rather than the definition of the pattern. The model typically contains a mass of data access code—
this need not be the case, but it usually is—and this means that the data model does not contain just the 
business data, operations, and rules.  

     Understanding Classic Three-Tier Architectures 
 To address the problems of the model-view architecture, the  three-tier  or  three-layer  pattern separates the 
persistence code from the domain model and places it in a new component called the  data access layer  
(DAL). This is shown in Figure  3-4 .  

  Figure 3-4.    The three-tier pattern       

 The three-tier architecture is the most widely used pattern for business applications. It has no 
constraints on how the UI is implemented and provides good separation of concerns without being too 
complicated. And, with some care, the DAL can be created so that unit testing is relatively easy. You can see 
the obvious similarities between a classic three-tier application and the MVC pattern. The difference is that 
when the UI layer is directly coupled to a click-and-event GUI framework (such as Windows Forms or ASP.
NET Web Forms), it becomes almost impossible to perform automated unit tests. And because the UI part of 
a three-tier application can be complex, there’s a lot of code that can’t be rigorously tested. 

 

 



CHAPTER 3 ■ THE MVC PATTERN, PROJECTS, AND CONVENTIONS

58

 In the worst scenario, the three-tier pattern’s lack of enforced discipline in the UI tier means that many 
such applications end up as thinly disguised smart UI applications, with no real separation of concerns. This 
gives the worst possible outcome: an untestable, unmaintainable application that is excessively complex.  

     Understanding Variations on MVC 
 I have already described the core design principles of MVC applications, especially as they apply to the ASP.
NET Core MVC. Others interpret aspects of the pattern differently and have added to, adjusted, or otherwise 
adapted MVC to suit the scope and subject of their projects. In the following sections, I provide a brief 
overview of the two most prevalent variations on the MVC theme. Understanding these variations is not 
essential to working with ASP.NET Core MVC, and I have included this information just for completeness 
because you will hear the terms used in most discussions of software patterns. 

   Understanding the Model-View-Presenter Pattern 
 Model-view-presenter (MVP) is a variation on MVC that is designed to fit more easily with stateful GUI 
platforms such as Windows Forms or ASP.NET Web Forms. This is a worthwhile attempt to get the best 
aspects of the smart UI pattern without the problems it usually brings. 

 In this pattern, the presenter has the same responsibilities as an MVC controller, but it also takes a more 
direct relationship to a stateful view, directly managing the values displayed in the UI components according 
to the user’s inputs and actions. There are two implementations of this pattern.

•    The  passive view  implementation, in which the view contains no logic. The view is a 
container for UI controls that are directly manipulated by the presenter.  

•   The  supervising controller  implementation, in which the view may be responsible 
for some elements of presentation logic, such as data binding, and has been given a 
reference to a data source from the domain models.    

 The difference between these two approaches relates to how intelligent the view is. Either way, the 
presenter is decoupled from the GUI framework, which makes the presenter logic simpler and suitable for 
unit testing.  

   Understanding the Model-View-View Model Pattern 
 The  model-view-view model  (MVVM) pattern is a recent variation on MVC. It originated from Microsoft and 
is used in the Windows Presentation Foundation (WPF). In the MVVM pattern, models and views have the 
same roles as they do in MVC. The difference is the MVVM concept of a  view model , which is an abstract 
representation of a user interface—typically a C# class that exposes both properties for the data to be 
displayed in the UI and operations on the data that can be invoked from the UI. Unlike an MVC controller, an 
MVVM view model has no notion that a view (or any specific UI technology) exists. An MVVM view uses the 
WPF  binding  feature to bi-directionally associate properties exposed by controls in the view (items in a drop-
down menu, or the effect of pressing a button) with the properties exposed by the view model. 

 ■   Tip    The MVC pattern also uses the term  view model  but refers to a simple model class that is used only to 
pass data from a controller to a view, as opposed to  domain models , which are sophisticated representations of 
data, operations, and rules.     



CHAPTER 3 ■ THE MVC PATTERN, PROJECTS, AND CONVENTIONS

59

     Understanding ASP.NET Core MVC Projects 
    When you create a new ASP.NET Core MVC project, Visual Studio gives you some choices about the initial 
content that you want in the project. The idea is to ease the learning process for new developers and apply 
some time-saving best practices for common features and tasks. I am not a fan of this kind of approach 
to cookie-cutter projects or code. The intent is good, but the execution is always underwhelming. One 
of the characteristics I like most about ASP.NET and MVC is just how much flexibility I have in tailoring 
the platform to suit my development style. The projects, classes, and views that Visual Studio creates 
and populates make me feel constrained to work in someone else’s style. I also find the content and 
configuration too generic and too bland to be useful. Microsoft can’t possibly know what kind of application 
is needed and so it covers all the bases, but in such a generalized way that I end up just ripping out the 
default content anyway. 

 My advice (given to anyone who makes the mistake of asking) is to start with an empty project and add 
the folders, files, and packages that you need. Not only will you learn more about the way that MVC works, 
but you will have complete control over what your application contains. 

 But my preferences should not color your development experience. You may find the templates more 
useful than I do, especially if you are new to ASP.NET development and you have not yet developed a 
development style that suits you. You may also find the project templates a useful resource and a source 
of ideas, although you should be cautious about adding any functionality to an application before you 
completely understand how it works. 

     Creating the Project 
    When you first create a new ASP.NET Core project, you have three basic starting points to choose from: the 
 Empty template  , the  Web API template  , and the Web  Application   template, as shown in Figure  3-5 .      

  Figure 3-5.    The ASP.NET Core project templates       

 



CHAPTER 3 ■ THE MVC PATTERN, PROJECTS, AND CONVENTIONS

60

 The Empty project template contains the plumbing for ASP.NET Core but doesn’t include the libraries 
or configuration required for an MVC application. The Web API project template includes ASP.NET Core 
and MVC, with a sample application that demonstrates how to receive and process Ajax requests from 
clients. The Web Application project template includes ASP.NET Core and MVC, with a sample application 
that demonstrates how to generate HTML content. The Web API and Web Application templates can be 
configured with different schemes for authenticating users and authorizing their access to the application. 

 The project templates can give the impression that you need to follow a specific path to create a certain 
kind of ASP.NET application, but that’s not the case. The templates are just different starting points into 
the same functionality, and you can add whatever functionality you need to projects created with any of 
the templates. For example, I explain how to deal with Ajax requests in Chapter   20     and authentication and 
authorization in Chapters   28    –  30    , all of which I do by starting with the Empty project template. 

 So, the real difference between the project templates is the initial set of libraries, configuration files, 
code, and content that Visual Studio adds when it creates the project. There are a lot of differences between 
the simplest template (Empty) and the most complex (Web Application), as you can see in Figure  3-6 , 
which shows the Solution Explorer after a project has been created with each one. For the Web Application 
template, I had to focus the Solution Explorer on different folders because a single listing was too long for the 
printed page.  

  Figure 3-6.    The default content added to a project by the Empty and Web Application templates       

 The extra files that the Web Application template adds to the project looks daunting, but some of 
them are just placeholders or example implementations of common features. Some of the other files set up 
MVC or configure ASP.NET. Yet others are client-side libraries, which you will incorporate into the HTML 
generated by an application. The list of files may seem overwhelming now, but you’ll understand what 
everything does by the time you finish this book. 

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_20
http://dx.doi.org/10.1007/978-1-4842-0397-2_28
http://dx.doi.org/10.1007/978-1-4842-0397-2_30


CHAPTER 3 ■ THE MVC PATTERN, PROJECTS, AND CONVENTIONS

61

 Regardless of the template that you use to create a project, there are some common folders and files 
that will appear. Some of the items in a project have special roles that are hard-coded into ASP.NET or MVC 
or one of the tools that Visual Studio provides support for. Others are subject to naming conventions that are 
used in most ASP.NET or MVC projects. In Table  3-1 , I have described the important files and folders that 
you will encounter in an ASP.NET Core MVC project, some of which are not present in project by default but 
which I introduce in later chapters.  

 ■   Note    All of the folders and files described in Table  3-1  are found in the  src  folder, which is where Visual 
Studio creates the ASP.NET Core MVC Project inside of the project solution.   

    Table 3-1.    Summary of MVC Project Items   

 Folder or File  Description 

  /Areas   Areas are a way of partitioning a large application into smaller pieces. 
I describe areas in Chapter   16    .     

  /Dependencies   The Dependencies item provides details of all the packages a project relies on. 
I describe the package managers that Visual Studio uses in Chapter   6    .     

  /Components   This is where view component classes, which are used to display self-
contained features such as shopping carts, are defined. I describe view 
components in Chapter   22    .     

  /Controllers   This is where you put your controller classes. This is a convention. You can put 
your controller classes anywhere you like, because they are all compiled into 
the same assembly. I describe controllers in detail in Chapter   17    .        

  /Data   This is where database context classes are defined, although I prefer to ignore 
this convention and define them in the  Models  folder, as demonstrated in 
Chapter   8    .     

  /Migrations   This is where details of database schemas are stored so that deployment 
databases can be updated. I demonstrate the deployment process in Chapter 
  12    .     

  /Models   This is where you put your view model and domain model classes. This is a 
convention. You can define your model classes anywhere in the project or in a 
separate project.     

  /Views   This directory holds views and partial views, usually grouped together in 
folders named after the controller with which they are associated. I describe 
views in detail in Chapter   21    .        

  /Views/Shared   This directory holds layouts and views that are not specific to a single 
controller. I describe views in detail in Chapter   21    . 

  /Views/_ViewImports.
cshtml  

 This file is used to specify the namespaces that will be included in Razor 
view files, as described in Chapter   5    . It is also used to set up tag helpers, as 
described in Chapter   23    .     

  /Views/_ViewStart.
cshtml  

 This file is used to specify a default layout for the Razor view engine, as 
described in Chapter   5    .     

(continued)

http://dx.doi.org/10.1007/978-1-4842-0397-2_16
http://dx.doi.org/10.1007/978-1-4842-0397-2_6
http://dx.doi.org/10.1007/978-1-4842-0397-2_22
http://dx.doi.org/10.1007/978-1-4842-0397-2_17
http://dx.doi.org/10.1007/978-1-4842-0397-2_8
http://dx.doi.org/10.1007/978-1-4842-0397-2_12
http://dx.doi.org/10.1007/978-1-4842-0397-2_21
http://dx.doi.org/10.1007/978-1-4842-0397-2_21
http://dx.doi.org/10.1007/978-1-4842-0397-2_5
http://dx.doi.org/10.1007/978-1-4842-0397-2_23
http://dx.doi.org/10.1007/978-1-4842-0397-2_5


CHAPTER 3 ■ THE MVC PATTERN, PROJECTS, AND CONVENTIONS

62

     Understanding MVC Conventions 
       There are two kinds of conventions in an MVC project. The first kind is just suggestions as to how you 
might like to structure your project. For example, it is conventional to put the third-party JavaScript and 
CSS packages you rely on in the  wwwroot/lib  folder. This is where other MVC developers would expect to 
find them and where the package manager will install them. But you are free to rename the  lib  folder, or 
remove it entirely and put your packages somewhere else. That would not prevent MVC from running your 
application as long as the  script  and  link  elements in your views refer to the location you settle on. 

 The other kind of convention arises from the principle of   convention over configuration    , which was one 
of the main selling points that made Ruby on Rails so popular. Convention over configuration means that 
you don’t need to explicitly configure associations between controllers and their views, for example. You 
just follow a certain naming convention for your files, and everything just works. There is less flexibility in 
changing your project structure when dealing with this kind of convention. The following sections explain 
the conventions that are used in place of configuration. 

 ■   Tip    All of the conventions can be changed by replacing the standard MVC components with your own 
implementations. I describe different ways of doing this throughout the book to help explain how MVC 
applications work, but these are the conventions you will be dealing with in most projects.  

   Following Conventions for Controller Classes 
       Controller classes have names that end with  Controller , such as  ProductController ,  AdminController , 
and  HomeController . When referencing a controller from elsewhere in the project, such as when using an 
HTML helper method, you specify the first part of the name (such as  Product ), and MVC automatically 
appends  Controller  to the name and starts looking for the controller class. 

 ■   Tip    You can change this by creating a model convention, which I describe in Chapter   31    .   

Table 3-1. (continued)

 Folder or File  Description 

  /bower.json   This file is hidden by default. It contains the list of packages managed by the 
Bower package manager, as described in Chapter   6    .     

  /project.json   This file specifies some basic configuration options for the project, including 
the NuGet packages it uses, as described in Chapter   6    .     

  /Program.cs   This class configures the hosting platform for the application, as described in 
Chapter   14    .     

  /Startup.cs   This class configures the application, as described in Chapter   14    .     

  /wwwroot   This is where you put static content such as CSS files and images. It is also 
where the Bower package manager installs JavaScript and CSS packages, as 
described in Chapter   6    .       

http://dx.doi.org/10.1007/978-1-4842-0397-2_31
http://dx.doi.org/10.1007/978-1-4842-0397-2_6
http://dx.doi.org/10.1007/978-1-4842-0397-2_6
http://dx.doi.org/10.1007/978-1-4842-0397-2_14
http://dx.doi.org/10.1007/978-1-4842-0397-2_14
http://dx.doi.org/10.1007/978-1-4842-0397-2_6


CHAPTER 3 ■ THE MVC PATTERN, PROJECTS, AND CONVENTIONS

63

   Following Conventions for Views 
       Views go into the folder  /Views/  Controllername . For example, a view associated with the 
 ProductController  class would go in the  /Views/Product  folder. 

 ■   Tip    Notice that I omit the  Controller  part of the class from the  Views  folder:  /Views/Product ,  not   /
Views/ProductController . This may seem counterintuitive at first, but it quickly becomes second nature.  

 MVC expects that the default view for an action method should be named after that method. For 
example, the default view associated with an action method called  List  should be called  List.cshtml . 
Thus, for the  List  action method in the  ProductController  class, the default view is expected to be  /Views/
Product/List.cshtml . The default view is used when you return the result of calling the  View  method in an 
action method, like this: 

   ... 
 return View(); 
 ... 

   You can specify a different view by name, like this: 

   ... 
 return View("MyOtherView"); 
 ... 

   Notice that I do not include the file name extension or the path to the view. When looking for a view, 
MVC looks in the folder named after the controller and then in the  /Views/Shared  folder. This means that I 
can put views that will be used by more than one controller in the  /Views/Shared  folder and MVC will 
find them.  

   Following Conventions for Layouts 
    The naming convention for layouts is to prefix the file with an underscore ( _ ) character, and layout files 
are placed in the  /Views/Shared  folder. This layout is applied to all views by default through the  /Views/_
ViewStart.cshtml  file. If you do not want the default layout applied to views, you can change the settings in 
 _ViewStart.cshtml  (or delete the file entirely) to specify another layout in the view, like this: 

   @{ 
     Layout = "~/_MyLayout.cshtml"; 
 } 

   Or you can disable any layout for a given view, like this: 

   @{ 
     Layout = null; 
 } 



CHAPTER 3 ■ THE MVC PATTERN, PROJECTS, AND CONVENTIONS

64

          Summary 
 In this chapter, I introduced you to the MVC architectural pattern and compared it to some other patterns 
you may have seen or heard of before. I discussed the significance of the domain model and introduced 
dependency injection, which allows you to decouple components to enforce a strict separation between 
the parts of an application. In the next chapter, I explain the structure of Visual Studio MVC projects and 
describe the essential C# language features that are used in MVC web application development.     



65© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_4

    CHAPTER 4   

 Essential C# Features                          

 In this chapter, I describe C# features used in web application development that are not widely understood 
or often cause confusion. This is not a book about C#, however, and so I provide only a brief example for 
each feature so that you can follow the examples in the rest of the book and take advantage of these features 
in your own projects. Table  4-1  summarizes this chapter.  

   Table 4-1.    Chapter Summary   

 Problem  Solution  Listing 

 Avoid accessing properties on null references  Use the null conditional operator  6–9 

 Simplify C# properties  Use automatically implemented 
properties 

 10–12 

 Simplify string composition  Use string interpolation  13 

 Create an object and set its properties in a single 
step 

 Use an object or collection initializer  14–17 

 Add functionality to a class that cannot be 
modified 

 Use an extension method  18–25 

 Simplify the use of delegates and single-
statement methods 

 Use a lambda expression  26–33 

 Use implicit typing  Use the  var  keyword  34 

 Create objects without defining a type  Use an anonymous type  35–36 

 Simplify the use of asynchronous methods  Use the  async  and  await  keywords  37–40 

 Get the name of a class method or property 
without defining a static string 

 Use a  nameof  expression  41–42 

     Preparing the Example Project 
 For this chapter I created a new Visual Studio project called LanguageFeatures using the ASP.NET Core Web 
Application (.NET Core) template. I unchecked the Add Application Insights to Project option and clicked 
the OK button, as shown in Figure  4-1 .  



CHAPTER 4 ■ ESSENTIAL C# FEATURES

66

 When presented with the different ASP.NET project configurations, I selected the Empty template, as 
shown in Figure  4-2 , and clicked the OK button to create the project.  

  Figure 4-1.    Selecting the project type       

  Figure 4-2.    Selecting the initial project content       

 

 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

67

     Enabling ASP.NET Core MVC 
 The Empty project template creates a project that contains a minimal ASP.NET Core configuration without 
any MVC support. This means that the placeholder content that is added by the Web Application template 
isn’t present, but it also means that some extra steps are required to enable MVC so that features such as 
controllers and views work. In this section, I make the changes required to add enable an MVC setup in the 
project, but I won’t get into the details of what each step does for the moment. The first step is to add the 
.NET assemblies for MVC, which is done in the  dependencies  section of the  project.json  file, as shown in 
Listing  4-1 . 

     Listing 4-1.    Adding the MVC Assemblies in the project.json File   

  ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 

     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
    "Microsoft.AspNetCore.Mvc": "1.0.0"  
 }, 
 ... 

    The  dependencies  section of the  project.json  file lists the assemblies that are required for a project. I 
have added the  Microsoft.AspNetCore.Mvc  assembly, which contains the MVC classes. Notice the addition 
of the comma at the end of the line before the one that adds the  Microsoft.AspNetCore.Mvc  assembly. 
JSON configuration files are sensitive to correct formatting, and it is easy to forget to add the comma, which 
produces an error. 

 ■   Tip    Each assembly is specified with a version number. You must make sure that all the assembly versions 
you specify work together. When you edit the  project.json  file, Visual Studio will provide a list of available 
assembly versions, and the simplest approach is to make sure that the version you specify for  Microsoft.
AspNetCore.Mvc  is the same as the version of the existing assemblies in the  dependencies  section that were 
added by Visual Studio when the project was created.  

 The next step is to tell ASP.NET to use MVC, which is done in the  Startup  class, as shown in Listing  4-2 . 

      Listing 4-2.    Enabling MVC in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

68

   namespace LanguageFeatures { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

    I explain how to configure ASP.NET Core MVC applications in Chapter   14    , but the two statements 
added in Listing  4-2  provide a basic MVC setup using the default configuration and conventions.  

     Creating the MVC Application Components 
 Now that MVC is set up, I can add the MVC application components that I will use to demonstrate the 
important C# language features. 

   Creating the Model 
 I started by creating a simple model class so that I can have some data to work with. I added a folder called 
 Models  and created a class file called  Product.cs  within it, which I used to define the class shown in Listing  4-3 . 

     Listing 4-3.    The Contents of the Product.cs File in the Models Folder   

  namespace LanguageFeatures.Models { 
     public class Product { 

           public string Name { get; set; } 
         public decimal? Price { get; set; } 

           public static Product[] GetProducts() { 
             Product kayak = new Product { 
                 Name = "Kayak", Price = 275M 
             }; 
             Product lifejacket = new Product { 
                 Name = "Lifejacket", Price = 48.95M 
             }; 
             return new Product[] { kayak, lifejacket, null }; 
         } 
     } 
 } 

    The  Products  class defines  Name  and  Price  properties, and there is a  static  method called 
 GetProducts  that returns a  Products  array. One of the elements contained in the array returned by the 
 GetProducts  method is set to  null .  

http://dx.doi.org/10.1007/978-1-4842-0397-2_14


CHAPTER 4 ■ ESSENTIAL C# FEATURES

69

   Creating the Controller and View 
 For the examples in this chapter, I use a simple controller to demonstrate different language features. I 
created a  Controllers  folder and added to it a class file called  HomeController.cs , the contents of which are 
shown in Listing  4-4 . When using the default MVC configuration, the  Home  controller is where MVC will send 
HTTP requests by default. 

     Listing 4-4.    The Contents of the HomeController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 
             return View(new string[] { "C#", "Language", "Features" }); 
         } 
     } 
 } 

    The  Index  action method tells MVC to render the default view and passes it an array of strings to be 
included in the HTML sent to the client. To create the corresponding view, I added a  Views/Home  folder (by 
creating a Views folder and then adding a Home folder within it) and added a view file called  Index.cshtml , 
the contents of which are shown in Listing  4-5 . 

     Listing 4-5.    The Contents of the Index.cshtml File in the Views/Home Folder   

  @model IEnumerable<string> 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Language Features</title> 
 </head> 
 <body> 
     <ul> 
         @foreach (string s in Model) { 
             <li>@s</li> 
         } 
     </ul> 
 </body> 
 </html> 

    If you run the example application by selecting Start Debugging from the Debug menu, you will see the 
output shown in Figure  4-3 .  



CHAPTER 4 ■ ESSENTIAL C# FEATURES

70

 Since the output from all the examples in this chapter are text, I will show the messages displayed by the 
browser like this: 

   C# 
 Language 
 Features 

          Using the Null Conditional Operator 
             The null conditional operator allows for  null  values to be detected more elegantly. There can be a lot of 
testing for nulls in MVC development as you work out whether a request contains a specific header or value 
or whether the model contains a particular data item. Traditionally, dealing with nulls requires making an 
explicit check, and this can become tedious and error-prone when both an object and its properties have 
to be inspected. The null conditional operator makes this process simpler and more concise, as shown in 
Listing  4-6 . 

     Listing 4-6.    Detecting null Values in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
  using System.Collections.Generic;  
  using LanguageFeatures.Models;  

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 

                List<string> results = new List<string>();  

                foreach (Product p in Product.GetProducts()) {  
                  string name = p?.Name;  
                  decimal? price = p?.Price;  
                  results.Add(string.Format("Name: {0}, Price: {1}", name, price));  
              }  

  Figure 4-3.    Running the example application       

 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

71

                return View(results);  
         } 
     } 
 } 

    The static  GetProducts  method defined by the  Product  class returns an array of objects that I inspect in 
the controller's  Index  action method in order to get a list of the  Name  and  Price  values. The problem is that 
both the object in the array and the value of the properties could be  null , which means that I can’t just refer 
to  p.Name  or  p.Price  within the  foreach  loop without causing a  NullReferenceException . To avoid this, I 
used the null conditional operator, like this: 

   ... 
 string name =  p?.Name ; 
 decimal? price =  p?.Price ; 
 ... 

   The null conditional operator is a single question mark (the  ?  character). If  p  is  null , then  name  will be set to 
 null  as well. If  p  is not  null , then  name  will be set to the value of the  Person.Name  property. The  Price  property is 
subject to the same test. Notice that the variable you assign to when using the null conditional operator must be 
able to be assigned  null , which is why the  price  variable is declared as a nullable decimal ( decimal? ). 

     Chaining the Null Conditional Operator 
 The null conditional operator can be chained together to navigate through a hierarchy of objects, which is 
where it really becomes an effective tool for simplifying code and allowing safe navigation. In Listing  4-7 , I 
have added a property to the  Product  class that nests references, creating a more complex object hierarchy. 

     Listing 4-7.    Adding a Property in the Product.cs File   

  namespace LanguageFeatures.Models { 
     public class Product { 

           public string Name { get; set; } 
         public decimal? Price { get; set; } 
          public Product Related { get; set; }  

           public static Product[] GetProducts() { 

               Product kayak = new Product { 
                 Name = "Kayak", Price = 275M 
             }; 
             Product lifejacket = new Product { 
                 Name = "Lifejacket", Price = 48.95M 
             }; 

                kayak.Related = lifejacket;  

               return new Product[] { kayak, lifejacket, null }; 
         } 
     } 
 } 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

72

    Each  Product  object has a  Related  property that can refer to another  Product  object. In the 
 GetProducts  method, I set the  Related  property for the  Product  object that represents a kayak. Listing  4-8  
shows how I can chain the null conditional operator together to navigate through the object properties 
without causing an exception. 

     Listing 4-8.    Detecting Nested null Values in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 

               List<string> results = new List<string>(); 

               foreach (Product p in Product.GetProducts()) { 
                 string name = p?.Name; 
                 decimal? price = p?.Price; 
                  string relatedName = p?.Related?.Name;  
                  results.Add(string.Format("Name: {0}, Price: {1}, Related: {2}",  
                      name, price, relatedName));  
             } 

               return View(results); 
         } 
     } 
 } 

    The  null  conditional operator can be applied to each part of a chain of properties, like this: 

   ... 
 string relatedName =  p?.Related? .Name; 
 ... 

   The result is that the  relatedName  variable will be  null  when  p  is  null  or when  p.Related  is  null . 
Otherwise, the variable will be assigned the value of the  p.Related.Name  property. If you run the example, 
you will see the following output in the browser window: 

   Name: Kayak, Price: 275, Related: Lifejacket 
 Name: Lifejacket, Price: 48.95, Related: 
 Name: , Price: , Related: 

        Combining the Conditional and Coalescing Operators 
 It can be useful to combine the null conditional operator (a single question mark) with the null coalescing 
operator (two question marks) to set a fallback value to present  null  values being used in the application, as 
shown in Listing  4-9 . 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

73

     Listing 4-9.    Combining Null Operators in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 

               List<string> results = new List<string>(); 

               foreach (Product p in Product.GetProducts()) { 
                  string name = p?.Name ?? "<No Name>";  
                  decimal? price = p?.Price ?? 0;  
                  string relatedName = p?.Related?.Name ?? "<None>";  
                 results.Add(string.Format("Name: {0}, Price: {1}, Related: {2}", 
                     name, price, relatedName)); 
             } 

               return View(results); 
         } 
     } 
 } 

    The null conditional operator ensures that I don’t get a  NullReferenceException  when navigating 
through the object properties, and the null coalescing operator ensures that I don’t include  null  values in 
the results displayed in the browser. If you run the example, you will see the following results displayed in 
the browser window: 

   Name: Kayak, Price: 275, Related: Lifejacket 
 Name: Lifejacket, Price: 48.95, Related:  <None>  
 Name:  <No Name> , Price:  0 , Related:  <None>  

         Using Automatically Implemented Properties 
       C# supports automatically implemented properties, and I used them when defining properties for the 
 Person  class in the previous section, like this: 

    namespace LanguageFeatures.Models { 
     public class Product { 

            public string Name { get; set; }  
          public decimal? Price { get; set; }  
          public Product Related { get; set; }  

           public static Product[] GetProducts() { 

               Product kayak = new Product { 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

74

                 Name = "Kayak", Price = 275M 
             }; 
             Product lifejacket = new Product { 
                 Name = "Lifejacket", Price = 48.95M 
             }; 

               kayak.Related = lifejacket; 

               return new Product[] { kayak, lifejacket, null }; 
         } 
     } 
 } 

    This feature allows me to define properties without having to implement the  get  and  set  bodies. Using 
the auto-implemented property feature means that defining a property like this: 

   ... 
 public string Name { get; set; } 
 ... 

   is equivalent to the following code: 

   ... 
 public string Name { 
     get { return name; } 
     set { name = value; } 
 } 
 ... 

   This type of feature is known as  syntactic sugar , which means that it makes C# more pleasant to work with—in 
this case by eliminating redundant code that ends up being duplicated for every property—without substantially 
altering the way that the language behaves. The term  sugar  may seem pejorative, but any enhancements that 
make code easier to write and maintain can be beneficial, especially in large and complex projects. 

     Using Auto-Implemented Property Initializers 
 Automatically implemented properties have been supported since C# 3.0. The latest version of C# supports 
initializers for automatically implemented properties, which allows an initial value to be set without having 
to use the constructor, as shown in Listing  4-10 . 

     Listing 4-10.    Using an Auto-Implemented Property Initializer in the Product.cs File   

  namespace LanguageFeatures.Models { 
     public class Product { 

           public string Name { get; set; } 
          public string Category { get; set; } = "Watersports";  
         public decimal? Price { get; set; } 
         public Product Related { get; set; } 

           public static Product[] GetProducts() { 
              Product kayak = new Product {  



CHAPTER 4 ■ ESSENTIAL C# FEATURES

75

                  Name = "Kayak",  
                  Category = "Water Craft",  
                  Price = 275M  
              };  
             Product lifejacket = new Product { 
                 Name = "Lifejacket", Price = 48.95M 
             }; 

               kayak.Related = lifejacket; 

               return new Product[] { kayak, lifejacket, null }; 
         } 
     } 
 } 

    Assigning a value to an auto-implemented property doesn’t prevent the setter from being used to 
change the property later and just tidies up the code for simple types that ended up with a constructor that 
contained a list of property assignments to provide default values. In the example, the initializer assigns a 
value of  Watersports  to the  Category  property. The initial value can be changed, which I do when I create 
the  kayak  object and specify a value of  Water Craft  instead.  

     Creating Read-Only Automatically Implemented Properties 
 You can create a read-only property by using an initializer and omitting the  set  keyword from an auto-
implemented property that has an initializer, as shown in Listing  4-11 . 

     Listing 4-11.    Creating a Read-Only Property in the Product.cs File   

  namespace LanguageFeatures.Models { 
     public class Product { 

           public string Name { get; set; } 
         public string Category { get; set; } = "Watersports"; 
         public decimal? Price { get; set; } 
         public Product Related { get; set; } 
          public bool InStock { get; } = true;  

           public static Product[] GetProducts() { 

               Product kayak = new Product { 
                 Name = "Kayak", 
                 Category = "Water Craft", 
                 Price = 275M 
             }; 
             Product lifejacket = new Product { 
                 Name = "Lifejacket", Price = 48.95M 
             }; 

               kayak.Related = lifejacket; 

               return new Product[] { kayak, lifejacket, null }; 
         } 
     } 
 } 

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org


CHAPTER 4 ■ ESSENTIAL C# FEATURES

76

    The  InStock  property is initialized to  true  and cannot be changed; however, the value can be assigned 
to in the type’s constructor, as shown in Listing  4-12 . 

     Listing 4-12.    Assigning a Value to a Read-Only Property in the Product.cs File   

  namespace LanguageFeatures.Models { 
     public class Product { 

            public Product(bool stock = true) {  
              InStock = stock;  
          }  

           public string Name { get; set; } 
         public string Category { get; set; } = "Watersports"; 
         public decimal? Price { get; set; } 
         public Product Related { get; set; } 
          public bool InStock { get; }  

           public static Product[] GetProducts() { 
             Product kayak = new Product { 
                 Name = "Kayak", 
                 Category = "Water Craft", 
                 Price = 275M 
             }; 

                Product lifejacket = new Product(false) {  
                  Name = "Lifejacket",  
                  Price = 48.95M  
              };  

               kayak.Related = lifejacket; 

               return new Product[] { kayak, lifejacket, null }; 
         } 
     } 
 } 

    The constructor allows the value for the read-only property to be specified as an argument and defaults 
to  true  if no value is provided. The property value cannot be changed once set by the constructor.   

     Using String Interpolation 
       The  string.Format  method is the traditional C# tool for composing strings that contain data values. Here is 
an example of this technique from the  Home  controller: 

   ... 
 results.Add( string.Format("Name: {0}, Price: {1}, Related: {2}",  
                      name, price, relatedName) ); 
 ... 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

77

   C# 6.0 adds support for a different approach, known as  string interpolation , that avoids the need to 
ensure that the  {0}  references in the string template match up with the variables specified as arguments. 
Instead, string interpolation uses the variable names directly, as shown in Listing  4-13 . 

     Listing 4-13.    Using String Interpolation in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 

               List<string> results = new List<string>(); 

               foreach (Product p in Product.GetProducts()) { 
                 string name = p?.Name ?? "<No Name>"; 
                 decimal? price = p?.Price ?? 0; 
                 string relatedName = p?.Related?.Name ?? "<None>"; 
                  results.Add($"Name: {name}, Price: {price}, Related: {relatedName}");  
             } 

               return View(results); 
         } 
     } 
 } 

    Interpolated strings are prefixed with the  $  character and contain  holes , which are references to values 
contained within the  {  and  }  characters. When the string is evaluated, the holes are filled in with the current 
values of the variables or constants that are specified. 

 Visual Studio provides IntelliSense support for creating interpolated strings and offers a list of the 
available members when the  {  character is typed; this helps to minimize typos, and the result is a string 
format that is easier to understand. 

 ■   Tip    String interpolation supports all the format specifies that are available with the  string.Format  
method. The format specifies are included as part of the hole, so  $"Price: {price:C2}"  would format the 
 price  value as a currency value with two decimal digits.   

     Using Object and Collection Initializers 
       When I create an object in the static  GetProducts  method of the  Product  class, I use an  object initializer , 
which allows me to create an object and specify its property values in a single step, like this: 

   ... 
 Product kayak =  new Product {  
      Name = "Kayak",  



CHAPTER 4 ■ ESSENTIAL C# FEATURES

78

      Category = "Water Craft",  
      Price = 275M  
  };  
 ... 

   This is another syntactic sugar feature that makes C# easier to use. Without this feature, I would have to 
call the  Product  constructor and then use the newly created object to set each of the properties, like this: 

   ... 
 Product kayak = new Product(); 
 kayak.Name = "Kayak"; 
 kayak.Category = "Water Craft"; 
 kayak.Price = 275M; 
 ... 

   A related feature is the  collection initializer , which allows the creation of a collection and its contents to 
be specified in a single step. Without an initializer, creating a string array, for example, requires the size of 
the array and the array elements to be specified separately, as shown in Listing  4-14 . 

       Listing 4-14.    Initializing an Object in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 
              string[] names = new string[3];  
              names[0] = "Bob";  
              names[1] = "Joe";  
              names[2] = "Alice";  
              return View("Index", names);  
         } 
     } 
 } 

    Using a collection initializer allows the contents of the array to be specified as part of the construction, 
which implicitly provides the compiler with the size of the array, as shown in Listing  4-15 . 

      Listing 4-15.    Using a Collection Initializer in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

79

           public ViewResult Index() { 
              return View("Index", new string[] { "Bob", "Joe", "Alice" });  
         } 
     } 
 } 

    The array elements are specified between the  {  and  }  characters, which allows for a more concise 
definition of the collection and makes it possible to define a collection inline within a method call. The code 
in Listing  4-15  has the same effect as the code in Listing  4-14 , and if you run the example application, you 
will see the following output in the browser window: 

   Bob 
 Joe 
 Alice 

       Using an Index Initializer 
 C# 6 tidies up the way that collection initializers are used to create collections that use indexes, such as 
dictionaries. Listing  4-16  shows the  Index  action rewritten to define a collection using the C# 5 approach to 
initializing a dictionary. 

    Listing 4-16.    Initializing a Dictionary in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 
              Dictionary<string, Product> products = new Dictionary<string, Product> {  
                  { "Kayak", new Product { Name = "Kayak", Price = 275M } },  
                  { "Lifejacket",  new Product{ Name = "Lifejacket", Price = 48.95M } }  
              };  
              return View("Index", products.Keys);  
         } 
     } 
 } 

    The syntax for initializing this type of collection relies too much on the  {  and  }  characters, especially 
when the collection values are creating using object initializers. The C# 6 compiler supports a more natural 
approach to initializing indexed collections that is consistent with the way that values are retrieved or 
modified once the collection has been initialized, as shown in Listing  4-17 . 

     Listing 4-17.    Using the C# Collection Initializer Syntax in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

80

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 
             Dictionary<string, Product> products = new Dictionary<string, Product> { 
                  ["Kayak"] = new Product { Name = "Kayak", Price = 275M },  
                  ["Lifejacket"] = new Product { Name = "Lifejacket", Price = 48.95M }  
             }; 

               return View("Index", products.Keys); 
         } 
     } 
 } 

    The effect is the same—to create a dictionary whose keys are  Kayak  and  Lifejacket  and whose values 
are  Product  objects—but the elements are created using the index notation that is used for other collection 
operations. If you run the application, you will see the following results in the browser: 

   Kayak 
 Lifejacket 

         Using Extension Methods 
        Extension methods  are a convenient way of adding methods to classes that you do not own and cannot 
modify directly. Listing  4-18  shows the definition of the  ShoppingCart  class, which I added to the  Models  
folder in a file called  ShoppingCart.cs  file and which represents a collection of  Product  objects. 

     Listing 4-18.    The Contents of the ShoppingCart.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace LanguageFeatures.Models { 

       public class ShoppingCart { 
         public IEnumerable<Product> Products { get; set; } 
     } 
 } 

    This is a simple class that acts as a wrapper around a  List  of  Product  objects (I only need a basic 
class for this example). Suppose I need to be able to determine the total value of the  Product  objects in the 
 ShoppingCart  class but I cannot modify the class itself, perhaps because it comes from a third party and I do 
not have the source code. I can use an extension method to add the functionality I need. Listing  4-19  shows 
the  MyExtensionMethods  class that I added to the  Models  folder in the  MyExtensionMethods.cs  file. 

     Listing 4-19.    The Contents of the MyExtensionMethods.cs File in the Models Folder   

  namespace LanguageFeatures.Models { 

       public static class MyExtensionMethods { 

           public static decimal TotalPrices(this ShoppingCart cartParam) { 
             decimal total = 0; 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

81

             foreach (Product prod in cartParam.Products) { 
                 total += prod?.Price ?? 0; 
             } 
             return total; 
         } 
     } 
 } 

    The  this  keyword in front of the first parameter marks  TotalPrices  as an extension method. The first 
parameter tells .NET which class the extension method can be applied to— ShoppingCart  in this case. I can 
refer to the instance of the  ShoppingCart  that the extension method has been applied to by using the  cartParam  
parameter. My method enumerates the  Product s in the  ShoppingCart  and returns the sum of the  Product.Price  
property. Listing  4-20  shows how I apply the extension method in the  Home  controller’s action method. 

 ■   Note    Extension methods do not let you break through the access rules that classes define for their 
methods, fields, and properties. You can extend the functionality of a class by using an extension method, but 
only using the class members that you had access to anyway.  

     Listing 4-20.    Applying an Extension Method in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 
              ShoppingCart cart  
                  = new ShoppingCart { Products = Product.GetProducts() };  
              decimal cartTotal = cart.TotalPrices();  
              return View("Index", new string[] { $"Total: {cartTotal:C2}" });  
         } 
     } 
 } 

    The key statement is this one: 

   ... 
 decimal cartTotal = cart.TotalPrices(); 
 ... 

   I call the  TotalPrices  method on a  ShoppingCart  object as though it were part of the  ShoppingCart  
class, even though it is an extension method defined by a different class altogether. .NET will find extension 
classes if they are in the scope of the current class, meaning that they are part of the same namespace or in 
a namespace that is the subject of a  using  statement. If you run the application, you will see the following 
output in the browser window: 

   Total: $323.95 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

82

       Applying Extension Methods to an Interface 
 I can also create extension methods that apply to an interface, which allows me to call the extension method 
on all the classes that implement the interface. Listing  4-21  shows the  ShoppingCart  class updated to 
implement the  IEnumerable<Product > interface. 

     Listing 4-21.    Implementing an Interface in the ShoppingCart.cs File   

   using System.Collections;  
 using System.Collections.Generic; 

   namespace LanguageFeatures.Models { 

        public class ShoppingCart : IEnumerable<Product> {  
         public IEnumerable<Product> Products { get; set; } 

            public IEnumerator<Product> GetEnumerator() {  
              return Products.GetEnumerator();  
          }  

            IEnumerator IEnumerable.GetEnumerator() {  
              return GetEnumerator();  
          }  
     } 
 } 

    I can now update the extension method so that it deals with  IEnumerable<Product> , as shown in 
Listing  4-22 . 

     Listing 4-22.    Updating an Extension Method in the MyExtensionMethods.cs File   

   using System.Collections.Generic;  

   namespace LanguageFeatures.Models { 

       public static class MyExtensionMethods { 

            public static decimal TotalPrices(this IEnumerable<Product> products) {  
             decimal total = 0; 
             foreach (Product prod in products) { 
                  total += prod?.Price ?? 0;  
             } 
             return total; 
         } 
     } 
 } 

    The first parameter type has changed to  IEnumerable<Product> , which means that the  foreach  loop 
in the method body works directly on  Product  objects. The change to using the interface means that I can 
calculate the total value of the  Product  objects enumerated by any  IEnumerable<Product> , which includes 
instances of  ShoppingCart  but also arrays of  Product  objects, as shown in Listing  4-23 . 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

83

     Listing 4-23.    Applying an Extension Method to an Array in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 

               ShoppingCart cart 
                 = new ShoppingCart { Products = Product.GetProducts() }; 

                Product[] productArray = {  
                  new Product {Name = "Kayak", Price = 275M},  
                  new Product {Name = "Lifejacket", Price = 48.95M}  
              };  

                decimal cartTotal = cart.TotalPrices();  
              decimal arrayTotal = productArray.TotalPrices();  

                return View("Index", new string[] {  
                  $"Cart Total: {cartTotal:C2}",  
                  $"Array Total: {arrayTotal:C2}" });  
         } 
     } 
 } 

    If you start the project, you will see the following results, which demonstrate that I get the same result 
from the extension method, irrespective of how the  Product  objects are collected: 

   Cart Total: $323.95 
 Array Total: $323.95 

        Creating Filtering Extension Methods 
 The last thing I want to show you about extension methods is that they can be used to filter collections of objects. 
An extension method that operates on an  IEnumerable<T  > and that also returns an  IEnumerable<T  > can use the 
 yield  keyword to apply selection criteria to items in the source data to produce a reduced set of results. Listing  4-24  
demonstrates such a method, which I have added to the  MyExtensionMethods  class. 

     Listing 4-24.    Adding Filtering Extension Method in the MyExtensionMethods.cs File   

  using System.Collections.Generic; 

   namespace LanguageFeatures.Models { 

       public static class MyExtensionMethods { 

           public static decimal TotalPrices(this IEnumerable<Product> products) { 
             decimal total = 0; 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

84

             foreach (Product prod in products) { 
                 total += prod?.Price ?? 0; 
             } 
             return total; 
         } 

            public static IEnumerable<Product> FilterByPrice(  
                  this IEnumerable<Product> productEnum, decimal minimumPrice) {  

                foreach (Product prod in productEnum) {  
                  if ((prod?.Price ?? 0) >= minimumPrice) {  
                      yield return prod;  
                  }  
              }  
          }  
     } 
 } 

    This extension method, called  FilterByPrice , takes an additional parameter that allows me to filter 
products so that  Product  objects whose  Price  property matches or exceeds the parameter are returned in 
the result. Listing  4-25  shows this method being used. 

     Listing 4-25.    Using the Filtering Extension Method in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 

               Product[] productArray = { 
                 new Product {Name = "Kayak", Price = 275M}, 
                 new Product {Name = "Lifejacket", Price = 48.95M}, 
                  new Product {Name = "Soccer ball", Price = 19.50M},  
                  new Product {Name = "Corner flag", Price = 34.95M}  
             }; 

                decimal arrayTotal = productArray.FilterByPrice(20).TotalPrices();  

                return View("Index", new string[] { $"Array Total: {arrayTotal:C2}" });  
         } 
     } 
 } 

    When I call the  FilterByPrice  method on the array of  Product  objects, only those that cost more than 
$20 are received by the  TotalPrices  method and used to calculate the total. If you run the application, you 
will see the following output in the browser window: 

   Total: $358.90 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

85

         Using Lambda Expressions 
             Lambda expressions are a feature that causes a lot of confusion, not least because the feature they simplify 
is also confusing. To understand the problem that is being solved, consider the  FilterByPrice  extension 
method that I defined in the previous section. This method is written so that it can filter  Product  objects by 
price, which means that if I want to filter by name, I have to create a second method, like the one shown in 
Listing  4-26 . 

     Listing 4-26.    Adding a Filter Method in the MyExtensionMethods.cs File   

  using System.Collections.Generic; 

   namespace LanguageFeatures.Models { 

       public static class MyExtensionMethods { 

           public static decimal TotalPrices(this IEnumerable<Product> products) { 
             decimal total = 0; 
             foreach (Product prod in products) { 
                 total += prod?.Price ?? 0; 
             } 
             return total; 
         } 

           public static IEnumerable<Product> FilterByPrice( 
                 this IEnumerable<Product> productEnum, decimal minimumPrice) { 

               foreach (Product prod in productEnum) { 
                 if ((prod?.Price ?? 0) >= minimumPrice) { 
                     yield return prod; 
                 } 
             } 
         } 

            public static IEnumerable<Product> FilterByName(  
                  this IEnumerable<Product> productEnum, char firstLetter) {  

                foreach (Product prod in productEnum) {  
                  if (prod?.Name?[0] == firstLetter) {  
                      yield return prod;  
                  }  
              }  
          }  
     } 
 } 

    Listing  4-27  shows the use of both filter methods applied in the controller to create two different totals. 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

86

     Listing 4-27.    Using Two Filter Methods in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 

               Product[] productArray = { 
                 new Product {Name = "Kayak", Price = 275M}, 
                 new Product {Name = "Lifejacket", Price = 48.95M}, 
                 new Product {Name = "Soccer ball", Price = 19.50M}, 
                 new Product {Name = "Corner flag", Price = 34.95M} 
             }; 

                decimal priceFilterTotal = productArray.FilterByPrice(20).TotalPrices();  
              decimal nameFilterTotal = productArray.FilterByName('S').TotalPrices();  

                return View("Index", new string[] {  
                  $"Price Total: {priceFilterTotal:C2}",  
                  $"Name Total: {nameFilterTotal:C2}" });  
         } 
     } 
 } 

    The first filter selects all of the products with a price of $20 or more, and the second filter selects 
products that whose name starts with the letter  S . You will see the following output in the browser window if 
you run the example application: 

   Price Total: $358.90 
 Name Total: $19.50 

       Defining Functions 
 I can repeat this process indefinitely and create a different filter method for every property and every 
combination of properties that I am interested in. A more elegant approach is to separate out the code that 
processes the enumeration from the selection criteria. C# makes this easy by allowing functions to be passed 
around as objects. Listing  4-28  shows a single extension method that filters an enumeration of  Product  
objects but that delegates the decision about which ones are included in the results to a separate function. 

     Listing 4-28.    Creating a General Filter Method in the MyExtensionMethods.cs File   

  using System.Collections.Generic; 
  using System;  

   namespace LanguageFeatures.Models { 

       public static class MyExtensionMethods { 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

87

           public static decimal TotalPrices(this IEnumerable<Product> products) { 
             decimal total = 0; 
             foreach (Product prod in products) { 
                 total += prod?.Price ?? 0; 
             } 
             return total; 
         } 

            public static IEnumerable<Product> Filter(  
                  this IEnumerable<Product> productEnum,  
                  Func<Product, bool> selector) {  

                foreach (Product prod in productEnum) {  
                  if (selector(prod)) {  
                      yield return prod;  
                  }  
              }  
          }  
     } 
 } 

    The second argument to the  Filter  method is a function that accepts a  Product  object and that returns 
a  bool  value. The  Filter  method calls the function for each  Product  object and includes it in the result if the 
function returns  true . To use the  Filter  method, I can specify a method or create a stand-alone function, as 
shown in Listing  4-29 . 

     Listing 4-29.    Using a Function to Filter Product Objects in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 
  using System;  

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

            bool FilterByPrice(Product p) {  
              return (p?.Price ?? 0) >= 20;  
          }  

           public ViewResult Index() { 

               Product[] productArray = { 
                 new Product {Name = "Kayak", Price = 275M}, 
                 new Product {Name = "Lifejacket", Price = 48.95M}, 
                 new Product {Name = "Soccer ball", Price = 19.50M}, 
                 new Product {Name = "Corner flag", Price = 34.95M} 
             }; 

                Func<Product, bool> nameFilter = delegate (Product prod) {  
                  return prod?.Name?[0] == 'S';  
              };  



CHAPTER 4 ■ ESSENTIAL C# FEATURES

88

                decimal priceFilterTotal = productArray  
                  .Filter(FilterByPrice)  
                  .TotalPrices();  
              decimal nameFilterTotal = productArray  
                  .Filter(nameFilter)  
                  .TotalPrices();  

               return View("Index", new string[] { 
                 $"Price Total: {priceFilterTotal:C2}", 
                 $"Name Total: {nameFilterTotal:C2}" }); 
         } 
     } 
 } 

    Neither approach is ideal. Defining methods like  FilterByPrice  clutters up a class definition. Creating 
a  Func<Product, bool  > object avoids this problem but uses an awkward syntax that is hard to read and hard 
to maintain. It is this issue that lambda expressions address by allowing functions to be defined in a more 
elegant and expressive way, as shown in Listing  4-30 . 

     Listing 4-30.    Using Lambda Expression in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 
 using System; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 

               Product[] productArray = { 
                 new Product {Name = "Kayak", Price = 275M}, 
                 new Product {Name = "Lifejacket", Price = 48.95M}, 
                 new Product {Name = "Soccer ball", Price = 19.50M}, 
                 new Product {Name = "Corner flag", Price = 34.95M} 
             }; 

               decimal priceFilterTotal = productArray 
                  .Filter(p => (p?.Price ?? 0) >= 20)  
                 .TotalPrices(); 
             decimal nameFilterTotal = productArray 
                  .Filter(p => p?.Name?[0] == 'S')  
                 .TotalPrices(); 

               return View("Index", new string[] { 
                 $"Price Total: {priceFilterTotal:C2}", 
                 $"Name Total: {nameFilterTotal:C2}" }); 
         } 
     } 
 } 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

89

    The lambda expressions are shown in bold. The parameters are expressed without specifying a type, 
which will be inferred automatically. The  =  > characters are read aloud as “goes to” and link the parameter 
to the result of the lambda expression. In my examples, a  Product  parameter called  p  goes to a  bool  result, 
which will be  true  if the  Price  property is equal or greater than 20 in the first expression or if the  Name  
property starts with  S  in the second expression. This code works in the same way as the separate method and 
the function delegate but is more concise and is—for most people—easier to read. 

 OTHER FORMS FOR LAMBDA EXPRESSIONS

 I don’t need to express the logic of my delegate in the lambda expression. I can as easily call a method, 
like this: 

   prod => EvaluateProduct(prod) 

   If I need a lambda expression for a delegate that has multiple parameters, I must wrap the parameters 
in parentheses, like this: 

   (prod, count) => prod.Price > 20 && count > 0 

   And, finally, if I need logic in the lambda expression that requires more than one statement, I can do so 
by using braces ( {} ) and finishing with a  return  statement, like this: 

   (prod, count) => { 
     // ... multiple code statements...  
     return result; 
 } 

   You do not need to use lambda expressions in your code, but they are a neat way of expressing complex 
functions simply and in a manner that is readable and clear. I like them a lot, and you will see them used 
liberally throughout this book.   

     Using Lambda Expression Methods and Properties 
 In C# 6, support for lambda expressions has been extended so that they can be used to implement methods 
and properties. In MVC development, especially when writing controllers, you will often end up with 
methods that contain a single statement that selects the data to display and the view to render. In Listing  4-31 , 
I have rewritten the  Index  action method so that it follows this common pattern. 

      Listing 4-31.    Creating a Common Action Pattern in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 
 using System; 
  using System.Linq;  



CHAPTER 4 ■ ESSENTIAL C# FEATURES

90

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 
              return View(Product.GetProducts().Select(p => p?.Name));  
         } 
     } 
 } 

    The action method gets a collection of  Product  objects from the static  Product.GetProducts  method 
and uses LINQ to project the values of the  Name  properties, which are then used as the view model for the 
default view. If you run the application, you will see the following output displayed in the browser window: 

   Kayak 
 Lifejacket 

   There will be an empty list item in the browser window as well because the  GetProducts  method 
includes a  null  reference in its results, but that doesn’t matter for this section of the chapter. 

 When a method body consists of a single statement, it can be rewritten as a lambda expression, as 
shown in Listing  4-32 . 

      Listing 4-32.    Expressing an Action Method as a Lambda Expression in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 
 using System; 
 using System.Linq; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

            public ViewResult Index() =>  
              View(Product.GetProducts().Select(p => p?.Name));  
     } 
 } 

    Lambda expressions for methods omit the  return  keyword and use  =  > (goes to) to associate the method 
signature (including its arguments) with its implementation. The  Index  method shown in Listing  4-32  works 
in the same way as the one shown in Listing  4-31  but is expressed more concisely. 

 The same basic approach can also be used to define properties. Listing  4-33  shows the addition of a 
property that uses a lambda express to the  Product  class. 

     Listing 4-33.    Expressing a Property as a Lambda Expression in the Product.cs File   

  namespace LanguageFeatures.Models { 
     public class Product { 

           public Product(bool stock = true) { 
             InStock = stock; 
         } 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

91

           public string Name { get; set; } 
         public string Category { get; set; } = "Watersports"; 
         public decimal? Price { get; set; } 
         public Product Related { get; set; } 
         public bool InStock { get; } 
          public bool NameBeginsWithS => Name?[0] == 'S';  

           public static Product[] GetProducts() { 

               Product kayak = new Product { 
                 Name = "Kayak", 
                 Category = "Water Craft", 
                 Price = 275M 
             }; 

               Product lifejacket = new Product(false) { 
                 Name = "Lifejacket", 
                 Price = 48.95M 
             }; 

               kayak.Related = lifejacket; 

               return new Product[] { kayak, lifejacket, null }; 
         } 
     } 
 } 

          Using Type Inference and Anonymous Types 
       The C#  var  keyword allows you to define a local variable without explicitly specifying the variable type, as 
demonstrated by Listing  4-34 . This is called  type inference , or  implicit typing . 

     Listing 4-34.    Using Type Inference in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 
 using System; 
 using System.Linq; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 
              var names = new [] { "Kayak", "Lifejacket", "Soccer ball" };  
              return View(names);  
         } 
     } 
 } 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

92

    It is not that the  names  variable does not have a type; instead, I am asking the compiler to infer the type 
from the code. The compiler examines the array declaration and works out that it is a string array. Running 
the example produces the following output: 

   Kayak 
 Lifejacket 
 Soccer ball 

       Using Anonymous Types 
 By combining object initializers and type inference, I can create simple view model objects that are useful 
for transferring data between a controller and a view without having to define a class or struct, as shown in 
Listing  4-35 . 

     Listing 4-35.    Creating an Anonymous Type in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 
 using System; 
 using System.Linq; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 
              var products = new [] {  
                  new { Name = "Kayak", Price = 275M },  
                  new { Name = "Lifejacket", Price = 48.95M },  
                  new { Name = "Soccer ball", Price = 19.50M },  
                  new { Name = "Corner flag", Price = 34.95M }  
              };  

                return View(products.Select(p => p.Name));  
         } 
     } 
 } 

    Each of the objects in the  products  array is an anonymously typed object. This does not mean that it 
is dynamic in the sense that JavaScript variables are dynamic. It just means that the type definition will be 
created automatically by the compiler. Strong typing is still enforced. You can get and set only the properties 
that have been defined in the initializer, for example. If you run the example, you will see the following 
output in the browser window: 

   Kayak 
 Lifejacket 
 Soccer ball 
 Corner flag 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

93

   The C# compiler generates the class based on the name and type of the parameters in the initializer. 
Two anonymously typed objects that have the same property names and types will be assigned to the same 
automatically generated class. This means that all the objects in the  products  array will have the same type 
because they define the same properties. 

 ■   Tip    I have to use the  var  keyword to define the array of anonymously typed objects because the type isn’t 
created until the code is compiled and so I don’t know the name of the type to use. The elements in an array of 
anonymously typed objects must all define the same properties; otherwise, the compiler can’t work out what 
the array type should be.  

 To demonstrate this, I have changed the output from the example in Listing  4-36  so that it shows the 
type name rather than the value of the  Name  property. 

     Listing 4-36.    Displaying the Anonymous Type Name in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 
 using System; 
 using System.Linq; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 
             var products = new [] { 
                 new { Name = "Kayak", Price = 275M }, 
                 new { Name = "Lifejacket", Price = 48.95M }, 
                 new { Name = "Soccer ball", Price = 19.50M }, 
                 new { Name = "Corner flag", Price = 34.95M } 
             }; 

                return View(products.Select(p => p.GetType().Name));  
         } 
     } 
 } 

    All the objects in the array have been assigned the same type, which you can see if you run the example. 
The type name isn’t user-friendly but isn’t intended to be used directly, and you may see a different name 
than the one shown in the following output: 

   <>f__AnonymousType0`2 
 <>f__AnonymousType0`2 
 <>f__AnonymousType0`2 
 <>f__AnonymousType0`2 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

94

         Using Asynchronous Methods 
       One of the big recent additions to C# is improvements in the way that  asynchronous methods  are dealt with. 
Asynchronous methods go off and do work in the background and notify you when they are complete, 
allowing your code to take care of other business while the background work is performed. Asynchronous 
methods are an important tool in removing bottlenecks from code and allow applications to take advantage 
of multiple processors and processor cores to perform work in parallel. 

 In MVC, asynchronous methods can be used to improve the overall performance of an application by 
allowing the server more flexibility in the way that requests are scheduled and executed. Two C# keywords—
 async  and  await —are used to perform work asynchronously. 

 To prepare for this section, I need to add a new .NET assembly to the example project so that I can make 
asynchronous HTTP requests. Listing  4-37  shows the addition I made to the  dependencies  section of the 
 project.json  file. 

     Listing 4-37.    Adding an Assembly Reference in the project.json File   

  ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 

     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
   "Microsoft.AspNetCore.Mvc": "1.0.0", 
    "System.Net.Http": "4.1.0"  
 }, 
 ... 

    When you save the  project.json  file, Visual Studio will download the  System.Net.Http  assembly and 
add it to the project. I describe this process in more detail in Chapter   6    . 

     Working with Tasks Directly 
 C# and .NET have excellent support for asynchronous methods, but the code has tended to be verbose, and 
developers who are not used to parallel programming often get bogged down by the unusual syntax. As 
an example, Listing  4-38  shows an asynchronous method called  GetPageLength , which I defined in a class 
called  MyAsyncMethods  and added to the  Models  folder in a class file called  MyAsyncMethods.cs . 

     Listing 4-38.    The Contents of the MyAsyncMethods.cs File in the Models Folder   

  using System.Net.Http; 
 using System.Threading.Tasks; 

   namespace LanguageFeatures.Models { 

       public class MyAsyncMethods { 

http://dx.doi.org/10.1007/978-1-4842-0397-2_6


CHAPTER 4 ■ ESSENTIAL C# FEATURES

95

           public static Task<long?> GetPageLength() { 

               HttpClient client = new HttpClient(); 

               var httpTask = client.GetAsync("http://apress.com"); 

               // we could do other things here while the HTTP request is performed 

               return httpTask.ContinueWith((Task<HttpResponseMessage> antecedent) => { 
                 return antecedent.Result.Content.Headers.ContentLength; 
             }); 
         } 
     } 
 } 

    This method uses a  System.Net.Http.HttpClient  object to request the contents of the Apress home 
page and returns its length. .NET represents work that will be done asynchronously as a  Task. Task  objects 
are strongly typed based on the result that the background work produces. So, when I call the  HttpClient.
GetAsync  method, what I get back is a  Task<HttpResponseMessage> . This tells me that the request will be 
performed in the background and that the result of the request will be an  HttpResponseMessage  object. 

 ■   Tip    When I use words like  background , I am skipping over a lot of detail in order to make the key points 
that are important to the world of MVC. The .NET support for asynchronous methods and parallel programming 
in general is excellent, and I encourage you to learn more about it if you want to create truly high-performing 
applications that can take advantage of multicore and multiprocessor hardware. You will see how MVC makes it 
easy to create asynchronous web applications throughout this book as I introduce different features.  

 The part that most programmers get bogged down with is the  continuation , which is the mechanism by 
which you specify what you want to happen when the background task is complete. In the example, I have 
used the  ContinueWith  method to process the  HttpResponseMessage  object I get from the  HttpClient.
GetAsync  method, which I do using a lambda expression that returns the value of a property that contains 
the length of the content I get from the Apress web server. Here is the continuation code: 

   ... 
 return httpTask.ContinueWith((Task<HttpResponseMessage> antecedent) => { 
     return antecedent.Result.Content.Headers.ContentLength; 
 }); 
 ... 

   Notice that I use the  return  keyword twice. This is the part that causes confusion. The first use of the 
 return  keyword specifies that I am returning a  Task<HttpResponseMessage  > object, which, when the task is 
complete, will  return  the length of the  ContentLength  header. The  ContentLength  header returns a  long?  
result (a nullable long value), and this means that the result of my  GetPageLength  method is  Task<long?> , 
like this: 

   ... 
 public static  Task<long?>  GetPageLength() { 
 ... 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

96

   Do not worry if this does not make sense—you are not alone in your confusion. It is for this reason that 
Microsoft added keywords to C# to simplify asynchronous methods.  

     Applying the async and await Keywords 
       Microsoft introduced two keywords to C# that are specifically intended to simplify using asynchronous 
methods like  HttpClient.GetAsync . The keywords are  async  and  await , and you can see how I have used 
them to simplify my example method in Listing  4-39 . 

     Listing 4-39.    Using the async and await Keywords in the MyAsyncMethods.cs File   

  using System.Net.Http; 
 using System.Threading.Tasks; 

   namespace LanguageFeatures.Models { 

       public class MyAsyncMethods { 

           public  async  static  Task<long?>  GetPageLength() { 

               HttpClient client = new HttpClient(); 

               var httpMessage =  await  client.GetAsync("http://apress.com"); 

                return  httpMessage.Content.Headers.ContentLength; 
         } 
     } 
 } 

    I used the  await  keyword when calling the asynchronous method. This tells the C# compiler that I 
want to wait for the result of the  Task  that the  GetAsync  method returns and then carry on executing other 
statements in the same method. 

 Applying the  await  keyword means I can treat the result from the  GetAsync  method as though it were 
a regular method and just assign the  HttpResponseMessage  object that it returns to a variable. And, even 
better, I can then use the  return  keyword in the normal way to produce a result from other method—in this 
case, the value of the  ContentLength  property. This is a much more natural technique, and it means I do not 
have to worry about the  ContinueWith  method and multiple uses of the  return  keyword. 

 When you use the  await  keyword, you must also add the  async  keyword to the method signature, as I 
have done in the example. The method result type does not change—my example  GetPageLength  method 
still returns a  Task<long?> . This is because  await  and  async  are implemented using some clever compiler 
tricks, meaning that they allow a more natural syntax, but they do not change what is happening in the 
methods to which they are applied. Someone who is calling my  GetPageLength  method still has to deal 
with a  Task<long?  > result because there is still a background operation that produces a  nullable  long—
although, of course, that programmer can also choose to use the  await  and  async  keywords as well. 

 This pattern follows through into the MVC controller, which makes it easy to write asynchronous action 
methods, as shown in Listing  4-40 . 

     Listing 4-40.    Defining an Asynchronous Action Methods in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 



CHAPTER 4 ■ ESSENTIAL C# FEATURES

97

 using LanguageFeatures.Models; 
 using System; 
 using System.Linq; 
  using System.Threading.Tasks;  

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

            public async Task<ViewResult> Index() {  
              long? length = await MyAsyncMethods.GetPageLength();  
              return View(new string[] { $"Length: {length}" });  
         } 
     } 
 } 

    I have changed the result of the  Index  action method to  Task<ViewResult> , which tells MVC that the action 
method will return a  Task  that will produce a  ViewResult  object when it completes, which will provide details of 
the view that should be rendered and the data that it requires. I have added the  async  keyword to the method’s 
definition, which allows me to use the  await  keyword when calling the  MyAsyncMethods.GetPathLength  method. 
MVC and .NET take care of dealing with the continuations, and the result is asynchronous code that is easy to 
write, easy to read, and easy to maintain. If you run the application, you will see output similar to the following 
(although with a different length since the content of the Apress website changes often): 

   Length: 62164 

         Getting Names 
    There are many tasks in web application development in which you need to refer to the name of an 
argument, variable, method, or class. Common examples include when you throw an exception or create a 
validation error when processing input from the user. The traditional approach has been to use a string value 
hard-coded with the name, as shown in Listing  4-41 . 

     Listing 4-41.    Hard-Coding a Name in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 
 using System; 
 using System.Linq; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 

                var products = new [] {  
                  new { Name = "Kayak", Price = 275M },  
                  new { Name = "Lifejacket", Price = 48.95M },  
                  new { Name = "Soccer ball", Price = 19.50M },  
                  new { Name = "Corner flag", Price = 34.95M }  
              };  



CHAPTER 4 ■ ESSENTIAL C# FEATURES

98

                return View(products.Select(p => $"Name: {p.Name}, Price: {p.Price}"));  
         } 
     } 
 } 

    The call to the LINQ  Select  method generates a sequence of strings, each of which contains a hard-
coded reference to the  Name  and  Price  properties. Running the application produces the following output in 
the browser window: 

   Name: Kayak, Price: 275 
 Name: Lifejacket, Price: 48.95 
 Name: Soccer ball, Price: 19.50 
 Name: Corner flag, Price: 34.95 

   The problem with this approach is that it is prone to errors, either because the name was mistyped or 
the code was refactored and the name in the string isn’t correctly updated. The result can be misleading, 
which can be especially problematic for messages that are displayed to the user. C# 6 introduces the  nameof  
expression, in which the compiler takes responsibility for producing a name string, as shown in Listing  4-42 . 

     Listing 4-42.    Using nameof Expressions in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using LanguageFeatures.Models; 
 using System; 
 using System.Linq; 

   namespace LanguageFeatures.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 

               var products = new [] { 
                 new { Name = "Kayak", Price = 275M }, 
                 new { Name = "Lifejacket", Price = 48.95M }, 
                 new { Name = "Soccer ball", Price = 19.50M }, 
                 new { Name = "Corner flag", Price = 34.95M } 
             }; 

                return View(products.Select(p =>  
                  $"{nameof(p.Name)}: {p.Name}, {nameof(p.Price)}: {p.Price}"));  
         } 
     } 
 } 

    The compiler processes a reference such as  p.Name  so that only the last part is included in the string, 
producing the same output as in previous examples. Visual Studio includes IntelliSense support for  nameof  
expressions, so you will be prompted to select references, and expressions will be correctly updated when 
you refactor code. Since the compiler is responsible for dealing with  nameof , using an invalid reference 
causes a compiler error, which prevents incorrect or outdates references from escaping notice.  



CHAPTER 4 ■ ESSENTIAL C# FEATURES

99

     Summary 
 In this chapter, I gave you an overview of the key C# language features that an effective MVC programmer 
needs to know. C# is a sufficiently flexible language that there are usually different ways to approach any 
problem, but these are the features that you will encounter most often during web application development 
and see throughout the examples in this book. In the next chapter, I introduce the Razor view engine and 
explain how it is used to generate dynamic content in MVC web applications.     



101© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_5

    CHAPTER 5   

 Working with Razor                          

 In an ASP.NET Core MVC application, a component called the  view engine  is used to produce the 
content sent to clients. The default view engine is called Razor, and it processes annotated HTML files for 
instructions that insert dynamic content into the output sent to the browser. 

 In this chapter, I give you a quick tour of the Razor syntax so you can recognize Razor expressions when 
you see them. I am not going to supply an exhaustive Razor reference in this chapter; think of this more as 
a crash course in the syntax. I explore Razor in depth as I continue through the book, within the context of 
other MVC features. Table  5-1  puts Razor  in context.     

   Table 5-1.    Putting Razor in Context   

 Question  Answer 

 What is it?  Razor is the view engine responsible for incorporating data into 
HTML documents. 

 Why is it useful?  The ability to dynamically generate content is essential to being 
able to write a web application. Razor provides features that make 
it easy to work with the rest of the ASP.NET Core MVC using C# 
statements. 

 How is it used?  Razor expressions are added to static HTML in view files. The 
expressions are evaluated to generate responses to client requests. 

 Are there any pitfalls or limitations?  Razor expressions can contain almost any C# statement, and it can 
be hard to decide whether logic should belong in the view or in 
the controller, which can erode the separation of concerns that is 
central to the MVC pattern. 

 Are there any alternatives?  You can write your own view engine, as I explain in Chapter   21    . 
There are some third-party view engines available, but they tend to 
be useful for niche situations and don’t attract long-term support. 

 Has it changed since MVC 5?  Razor works in largely the same way as in MVC 5 but has some 
useful enhancements. The view imports file is used to specify 
namespaces that will be searched for types when the view is 
processed and also defines where tag helpers, which I describe in 
Chapter   23    , are located. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_21
http://dx.doi.org/10.1007/978-1-4842-0397-2_23


CHAPTER 5 ■ WORKING WITH RAZOR

102

 Table  5-2  summarizes the chapter.  

   Table 5-2.    Chapter Summary   

 Problem  Solution  Listing 

 Access the view model  Use an  @Model  expression to define the 
model type and  @model  expressions to 
access the model object 

 6, 15, 18 

 Use type names without qualifying them with 
namespaces 

 Create a view imports file  7–8 

 Define content that will be used by multiple 
views 

 Use a layout  9–11 

 Specify a default layout  Use a view start file  12–14 

 Pass data from the controller to the view outside 
of the view model 

 Use the view bag  16–17 

 Generate content selectively  Use Razor conditional expressions  19, 20 

 Generate content for each item in an array or 
collection 

 Use a Razor  foreach  expression  21–22 

     Preparing the Example Project 
 To demonstrate how Razor works, I created an ASP.NET Core Web Application (.NET Core) project called 
 Razor  using the  Empty  template, just as in the previous chapter. I added the MVC assembly by editing 
 dependencies  section of the  project.json  file, as shown in Listing  5-1 . 

     Listing 5-1.    Adding the MVC Assembly in the project.json File   

  ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 

     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
    "Microsoft.AspNetCore.Mvc": "1.0.0"  
 }, 
 ... 

    When you save the changes to the  project.json  file, Visual Studio adds the  Microsoft.AspNetCore.
Mvc  assembly to the project. Next, I enabled MVC with its default configuration in the  Startup.cs  file, as 
shown in Listing  5-2 . 



CHAPTER 5 ■ WORKING WITH RAZOR

103

     Listing 5-2.    Enabling MVC in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 

   namespace Razor { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                     ILoggerFactory loggerFactory) { 
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

        Defining the Model 
 Next, I created a  Models  folder and added to it a class file called  Product.cs , which I used to define the 
simple model class shown in Listing  5-3 . 

     Listing 5-3.    The Contents of the Product.cs File in the Models Folder   

  namespace Razor.Models { 

       public class Product { 

           public int ProductID { get; set; } 
         public string Name { get; set; } 
         public string Description { get; set; } 
         public decimal Price { get; set; } 
         public string Category { set; get; } 
     } 
 } 

         Creating the Controller 
 The default configuration that I set up in the  Startup.cs  file follows the MVC convention of sending 
requests to a controller called  Home  by default. I created a  Controllers  folder and added to it a class file 
called  HomeController.cs , which I used to define the simple controller shown in Listing  5-4 . 



CHAPTER 5 ■ WORKING WITH RAZOR

104

     Listing 5-4.    The Contents of the HomeController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 
 using Razor.Models; 

   namespace Razor.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 
             Product myProduct = new Product { 
                 ProductID = 1, 
                 Name = "Kayak", 
                 Description = "A boat for one person", 
                 Category = "Watersports", 
                 Price = 275 M 
             }; 

               return View(myProduct); 
         } 
     } 
 } 

    The controller defines an action method called  Index , in which I create and populate the properties 
of a  Product  object. I pass the  Product  to the  View  method so that it is used as the model when the view is 
rendered. I do not specify the name of a view file when I call the  View  method, so the default view for the 
action method will be used.  

     Creating the View 
 To create the default view for the  Index  action method, I created a  Views/Home  folder and added to it an 
MVC View Page file called  Index.cshtml , to which I added the content shown in Listing  5-5 . 

     Listing 5-5.    The Contents of the Index.cshtml File in the Views/Home Folder   

  @model Razor.Models.Product 

   @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Index</title> 
 </head> 
 <body> 
     Content will go here 
 </body> 
 </html> 

    In the sections that follow, I go through the different parts of a Razor view and demonstrate some of 
the different things you can do with one. When learning about Razor, it is helpful to bear in mind that views 
exist to express one or more parts of the model to the user—and that means generating HTML that displays 



CHAPTER 5 ■ WORKING WITH RAZOR

105

data that is retrieved from one or more objects. If you remember that I am always trying to build an HTML 
page that can be sent to the client, then everything that Razor does begins to make sense. If you run the 
application, you will see the simple output shown in Figure  5-1 .    

  Figure 5-1.    Running the example application       

     Working with the Model Object 
 Let’s start with the first line in the  Index.cshtml  view file: 

   ... 
 @model Razor.Models.Product 
 ... 

      Razor expressions start with the  @  character. In this case, the   @model  expression   declares the type of the 
model object that I will pass to the view from the action method. This allows me to refer to the methods, 
fields, and properties of the view model object through  @Model , as shown in Listing  5-6 , which shows a 
simple addition to the  Index  view. 

     Listing 5-6.    Referring to a View Model Object Property in the Index.cshtml File   

  @model Razor.Models.Product 

   @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Index</title> 
 </head> 
 <body> 
      @Model.Name  
 </body> 
 </html> 

 ■      Note    Notice that I declare the view model object type using  @model  (a lowercase  m ) and access the  Name  
property using  @Model  (an uppercase  M ). This is slightly confusing when you start working with Razor, but it 
becomes second nature pretty quickly.      

 



CHAPTER 5 ■ WORKING WITH RAZOR

106

 If you run the application, you will see the output shown in Figure  5-2 .  

  Figure 5-2.    The effect of reading a property value in the view       

  Figure 5-3.    Visual Studio offering suggestions for member names based on the @Model expression       

 A view that uses the  @model  expression to specify a type is known as a  strongly typed view .     Visual Studio 
is able to use the  @model  expression to pop up suggestions of member names when you type  @Model  followed 
by a period, as shown in Figure  5-3 .  

 

 



CHAPTER 5 ■ WORKING WITH RAZOR

107

 The Visual  Studio   suggestions for member names help avoid errors in Razor views. You can ignore the 
suggestions if you prefer, and Visual Studio will highlight problems with member names so that you make 
corrections, just as it does with regular C# class files. You can see an example of problem highlighting in 
Figure  5-4 , where I have tried to reference  @Model.NotARealProperty . Visual Studio has realized that the 
 Product  class I specified at the model type does not have such a property and has highlighted an error in the 
editor.  

  Figure 5-4.    Visual Studio reporting a problem with an @Model expression       

     Using View Imports 
    When I defined the model object at the start of the  Index.cshtml  file, I had to include the namespace that 
contains the model class, like this: 

   ... 
 @model  Razor.Models. Product 
 ... 

   By default, all types that are referenced in a strongly typed Razor view must be qualified with a 
namespace. This isn’t a big deal when the only type reference is for the model object, but it can make a view 
more difficult to read when writing more complex Razor expressions such as the ones I describe later in this 
chapter. 

 You can specify a set of namespaces that should be searched for types by adding a  view imports  file to 
the project. The view imports file is placed in the  Views  folder and is named  _ViewImports.cshtml .        

 ■   Note    Files in the  Views  folder whose names begin with an underscore (the _character) are not returned 
to the user, which allows the file name to differentiate between views that you want to render and the files that 
support them. View imports files and layouts (which I describe shortly) are prefixed with an underscore.  

 To create the view imports file, right-click the  Views  folder in the Solution Explorer, select Add ➤ New 
Item from the pop-up menu, and select the MVC View Imports Page template from the ASP.NET category, as 
shown in Figure  5-5 .  

 Visual Studio will automatically set the name of the file to  _ViewImports.cshtml , and clicking the Add 
button will create the file. Add the expression shown in Listing  5-7 . 

 



CHAPTER 5 ■ WORKING WITH RAZOR

108

      Listing 5-7.    The Content of the _ViewImports.cshtml File in the Views Folder   

 @using Razor.Models 

   The namespaces that should be searched for classes used in Razor views are specified using the  @
using  expression, followed by the namespace. In Listing  5-7 , I have added an entry for the  Razor.Models  
namespace that contains the model class in the example application. 

 Now that the  Razor.Models  namespace is included in the view imports file, I can remove the 
namespace from the  Index.cshtml  file, as shown in Listing  5-8 . 

     Listing 5-8.    Referring to a Model Class without a Namespace in the Index.cshtml File   

   @model Product  

   @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Index</title> 
 </head> 
 <body> 

  Figure 5-5.    Creating a view imports file       

 



CHAPTER 5 ■ WORKING WITH RAZOR

109

     @Model.Name 
 </body> 
 </html> 

 ■      Tip    You can also add an  @using  expression to individual view files, which allows types to be used without 
namespaces in a single view.        

     Working with Layouts 
 There is another important Razor expression in the  Index.cshtml  view file: 

   ... 
 @{ 
     Layout = null; 
 } 
 ... 

   This is an example of a Razor  code block , which allows me to include C# statements in a view. The code 
block is opened with  @{  and closed with  } , and the statements it contains are evaluated when the view is 
rendered.           

 This code block sets the value of the  Layout  property to  null . Razor views are compiled into C# classes 
in an MVC application, and the base class that is used defines the  Layout  property. I'll show you how this all 
works in Chapter   21    , but the effect of setting the  Layout  property to  null  is to tell MVC that the view is self-
contained and will render all of the content required for the client. 

 Self-contained views are fine for simple example apps, but a real project can have dozens of views, 
and some views will have shared content. Duplicating shared content in views becomes hard to manage, 
especially when you need to make a change and have to track down all of the views that need to be altered. 

 A better approach is to use a Razor layout, which is a template that contains common content and that 
can be applied to one or more views. When you make a change to a layout, the change will automatically 
affect all the views that use it. 

     Creating the Layout 
 Layouts are typically shared by views used by multiple controllers and are stored in a folder called  Views/
Shared , which is one of the locations that Razor looks in when it tries to find a file. To create a layout, create 
the  Views/Shared  folder, right-click it, and select Add ➤ New Item from the pop-up menu. Select the MVC 
View Layout Page template from the ASP.NET category and set the file name to  _BasicLayout.cshtml , as 
shown in Figure  5-6 . Click the Add button to create the file. (Like view import files, the names of layout files 
begin with an underscore.)  

 Listing  5-9  shows the initial contents of the  _BasicLayout.cshtml  file, added by Visual Studio when it 
creates the file.     

http://dx.doi.org/10.1007/978-1-4842-0397-2_21


CHAPTER 5 ■ WORKING WITH RAZOR

110

     Listing 5-9.    The Initial Contents of the _BasicLayout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title >@ViewBag.Title </title> 
 </head> 
 <body> 
     <div> 
          @RenderBody()  
     </div> 
 </body> 
 </html> 

   Layouts are a specialized form of view, and I have highlighted the  @  expressions in the listing. The call 
to the  @RenderBody  method inserts the contents of the view specified by the action method into the layout 
markup. The other Razor expression in the layout looks for a property called  ViewBag.Title  in order to 
set the contents of the  title  element. The  ViewBag  is a handy feature that allows data values to be passed 
around an application and, in this case, between a view and its layout. You will see how this works when I 
apply the layout to a view. 

 The HTML elements in a layout will be applied to any view that uses it, providing a template for defining 
common content. In Listing  5-10 , I have added some simple markup to the layout so that its template effect 
will be obvious. 

  Figure 5-6.    Creating a layout       

 



CHAPTER 5 ■ WORKING WITH RAZOR

111

     Listing 5-10.    Adding Content to the _BasicLayout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>@ViewBag.Title</title> 
      <style>  
          #mainDiv {  
              padding: 20px;  
              border: solid medium black;  
              font-size: 20 pt  
          }  
      </style>  
 </head> 
 <body> 
      <h1>Product Information</h1>  
      <div id="mainDiv">  
         @RenderBody() 
     </div> 
 </body> 
 </html> 

   I have added a header element as well as some CSS to style the contents of the  div  element that 
contains the  @RenderBody  expression, just to make it clear what content comes from the layout and what 
comes from the view.  

     Applying a Layout 
 To apply the layout to the view, I need to set the value of the  Layout  property and remove the HTML that will 
now be provided by the layout, such as the  html ,  head , and  body  elements, as shown in Listing  5-11 . 

     Listing 5-11.    Applying a Layout in the Index.cshtml File   

  @model Product 

   @{ 
      Layout = "_BasicLayout";  
      ViewBag.Title = "Product Name";  
 } 

    Product Name: @Model.Name  

    The  Layout  property specifies the name of the layout file that will be used for the view, without the 
 cshtml  file extension. Razor will look for the specified layout file in the  /Views/Home  and  Views/Shared  
folders. 

 I also set the  ViewBag.Title  property in the listing. This will be used by the layout to set the contents of 
the  title  element when the view is rendered. 



CHAPTER 5 ■ WORKING WITH RAZOR

112

 The transformation of the view is dramatic, even for such a simple application. The layout contains all 
of the structure required for any HTML response, which leaves the view to focus on just the dynamic content 
that presents the data to the user. When MVC processes the  Index.cshtml  file, it applies the layout to create 
a unified HTML response, as shown in Figure  5-7 .   

  Figure 5-7.    The effect of applying a layout to a view       

     Using a View Start File 
 I still have a tiny wrinkle to sort out, which is that I have to specify the layout file I want in every view. 
Therefore, if I need to rename the layout file, I am going to have to find every view that refers to it and make 
a change, which will be an error-prone process and counter to the general theme of easy maintenance that 
runs through MVC development.        

 I can resolve this by using a  view start file . When it renders a view, MVC will look for a file called 
 _ViewStart.cshtml . The contents of this file will be treated as though they were contained in the view file 
itself, and I can use this feature to automatically set a value for the  Layout  property. 

 To create a view start file, right-click the  Views  folder, select Add ➤ New Item from the pop-up menu, 
and choose the MVC View Start Page template from the ASP.NET category, as shown in Figure  5-8 .  

 



CHAPTER 5 ■ WORKING WITH RAZOR

113

 Visual Studio will set the name of the file to  _ViewStart.cshtml  automatically, and clicking the Add 
button will create the file with the initial content shown in Listing  5-12 . 

     Listing 5-12.    The Initial Contents of the _ViewStart.cshtml File   

 @{ 
     Layout = "_Layout"; 
 } 

   To apply my layout to all the views in the application, I changed the value assigned to the  Layout  
property, as shown in Listing  5-13 . 

     Listing 5-13.    Applying a Default View in the _ViewStart.cshtml File   

 @{ 
      Layout = "_BasicLayout";  
 } 

   Since the view start file contains a value for the  Layout  property, I can remove the corresponding 
expression from the  Index.cshtml  file, as shown in Listing  5-14 . 

  Figure 5-8.    Creating a view start file       

 



CHAPTER 5 ■ WORKING WITH RAZOR

114

     Listing 5-14.    Updating the Index.cshtml File to Reflect the Use of a View Start File   

  @model Product 

   @{ 
     ViewBag.Title = "Product Name"; 
 } 

   Product Name: @Model.Name 

    I do not have to specify that I want to use the view start file. MVC will locate the file and use its contents 
automatically. The values defined in the view file take precedence, which makes it easy to override the view 
start file. 

 You can also use multiple view start files to set defaults for different parts of the application. Razor 
looks for the closest view start file to the view that it being processed, which means that you can override the 
default setting by adding a view start file to the  Views/Home  or  Views/Shared  folders, for example.     

 ■   Caution    It is important to understand the difference between omitting the  Layout  property from the view 
file and setting it to  null . If your view is self-contained and you do not want to use a layout, then set the  Layout  
property to  null . If you omit the  Layout  property, then MVC will assume that you  do  want a layout and that it 
should use the value it finds in the view start file.    

     Using Razor Expressions 
 Now that I have shown you the basics of views and layouts, I am going to turn to the different kinds 
of expressions that Razor supports and how you can use them to create view content. In a good MVC 
application, there is a clear separation between the roles that the action method and view perform. The rules 
are simple; I have summarized them in Table  5-3 .  

   Table 5-3.    The Roles Played by the Action Method and the View   

 Component  Does Do  Doesn’t Do 

 Action method  Passes a view model object to the view  Passes formatted data to the view 

 View  Uses the view model object to present content 
to the user 

 Changes any aspect of the view model 
object 

 I come back to this theme throughout this book. To get the best from MVC, you need to respect 
and enforce the separation between the different parts of the app. As you will see, you can do quite a lot 
with Razor, including using C# statements—but you should not use Razor to perform business logic or 
manipulate your domain model objects in any way. 

 As a simple example, Listing  5-15  shows the addition of a new expression to the  Index  view. 



CHAPTER 5 ■ WORKING WITH RAZOR

115

     Listing 5-15.    Adding an Expression to the Index.cshtml File   

  @model Product 

   @{ 
     ViewBag.Title = "Product Name"; 
 } 

    <p>Product Name: @Model.Name</p>  
  <p>Product Price: @($"{Model.Price:C2}")</p>  

    I could have formatted the value of the  Price  property in the action method and passed it to the view. 
It would have worked, but taking this approach undermines the benefit of the MVC pattern and reduces 
my ability to respond to changes in the future. As I said, I will return to this theme again, but you should 
remember that ASP.NET Core MVC does not enforce proper use of the MVC pattern and that you must 
remain aware of the effect of the design and coding decisions you make. 

 PROCESSING VERSUS FORMATTING DATA

 It is important to differentiate between  processing  data and  formatting  it. Views  format  data, which is 
why I passed the  Product  object in the previous section to the view, rather than formatting the object’s 
properties into a display string. Processing data—including selecting the data objects to display—is the 
responsibility of the controller, which will call on the model to get and modify the data it requires. It can 
sometimes be hard to figure out where the line between processing and formatting is, but as a rule of 
thumb, I recommend erring on the side of caution and pushing anything but the simplest of expressions 
out of the view and into the controller.  

     Inserting Data Values 
 The simplest thing you can do with a Razor expression is to insert a data value into the markup. The most 
common way to do this is with the  @Model  expression. The  Index  view already includes examples of this 
approach, like this:     

   ... 
 <p>Product Name:  @Model.Name </p> 
 ... 

   You can also insert values using the  ViewBag  feature, which is the feature I used in the layout to set 
the content of the  title  element. The  ViewBag  can be used to pass data from the controller to the view, 
supplementing the model, as shown in Listing  5-16 . 

     Listing 5-16.    Using the View Bag in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Razor.Models; 



CHAPTER 5 ■ WORKING WITH RAZOR

116

   namespace Razor.Controllers { 
     public class HomeController : Controller { 

           public ViewResult Index() { 
             Product myProduct = new Product { 
                 ProductID = 1, 
                 Name = "Kayak", 
                 Description = "A boat for one person", 
                 Category = "Watersports", 
                 Price = 275 M 
             }; 

                ViewBag.StockLevel = 2;  

               return View(myProduct); 
         } 
     } 
 } 

    The  ViewBag  property returns a  dynamic  object that can be used to define arbitrary properties. In 
the listing, I have defined a property called  StockLevel  and assigned a value of 2 to it. Since the  ViewBag  
is dynamic, I don’t have to declare the property names in advance, but it does mean that Visual Studio is 
unable to provide autocomplete suggestions for view bag properties. 

 Knowing when to use the view bag and when the model should be extended is a matter of experience 
and personal preference. My personal style is to use the view bag only to give a view hints about how to 
render data and not to use it for data values that are displayed to the user. But that’s just what works for me. 
If you do use the view bag for data you want to display to the user, then you access values using the  @ViewBag  
expression, as shown in Listing  5-17 . 

     Listing 5-17.    Displaying a View Bag Value in the Index.cshtml File   

  @model Product 

   @{ 
     ViewBag.Title = "Product Name"; 
 } 

   <p>Product Name: @Model.Name</p> 
 <p>Product Price: @($"{Model.Price:C2}")</p> 
  <p>Stock Level: @ViewBag.StockLevel</p>  

    Figure  5-9  shows the result of the new data value.   



CHAPTER 5 ■ WORKING WITH RAZOR

117

     Setting Attribute Values 
 All the examples so far have set the content of elements, but you can also use Razor expressions to set the 
value of element  attributes . Listing  5-18  shows the user of the  @Model  and  @ViewBag  expressions to set the 
contents of attributes on elements in the  Index  view. 

     Listing 5-18.    Using Razor Expressions to Set Attribute Values in the Index.cshtml File   

  @model Product 

   @{ 
     ViewBag.Title = "Product Name"; 
 } 

    <div data-productid="@Model.ProductID" data-stocklevel="@ViewBag.StockLevel">  
     <p>Product Name: @Model.Name</p> 
     <p>Product Price: @($"{Model.Price:C2}")</p> 
     <p>Stock Level: @ViewBag.StockLevel</p> 
  </div>  

    I used the Razor expressions to set the value for some  data  attributes on a  div  element. 

 ■   Tip    Data attributes, which are attributes whose names are prefixed by  data- , have been an informal way 
of creating custom attributes for many years and have been made part of the formal standard as part of HTML5. 
They are most often applied so that JavaScript code can locate specific elements or so that CSS styles can be 
more narrowly applied.  

  Figure 5-9.    Using Razor expressions to insert data values       

 



CHAPTER 5 ■ WORKING WITH RAZOR

118

 If you run the example application and look at the HTML source that is sent to the browser, you will see 
that Razor has set the values of the attributes. 

    <div data-stocklevel="2" data-productid="1">  
     <p>Product Name: Kayak</p> 
     <p>Product Price: $275.00</p> 
     <p>Stock Level: 120</p> 
 </div> 

        Using Conditional Statements 
 Razor is able to process conditional statements, which means that I can tailor the output from a view based 
on values in the view data. This kind of technique is at the heart of Razor and allows you to create complex 
and fluid layouts that are still reasonably simple to read and maintain. In Listing  5-19 , I have updated the 
 Index  view so that it includes a conditional statement.     

     Listing 5-19.    Using a Conditional Razor Statement in the Index.cshtml File   

  @model Product 

   @{ 
     ViewBag.Title = "Product Name"; 
 } 

   <div data-productid="@Model.ProductID" data-stocklevel="@ViewBag.StockLevel"> 
     <p>Product Name: @Model.Name</p> 
     <p>Product Price: @($"{Model.Price:C2}")</p> 
     <p>Stock Level: 
          @switch ((int)ViewBag.StockLevel) {  
              case 0:  
                  @:Out of Stock  
                  break;  
              case 1:  
              case 2:  
              case 3:  
                  <b>Low Stock (@ViewBag.StockLevel)</b>  
                  break;  
              default:  
                  @: @ViewBag.StockLevel in Stock  
                  break;  
          }  
     </p> 
 </div> 

    To start a conditional statement, you place an  @  character in front of the C# conditional keyword, which 
is  switch  in this example. You terminate the code block with a close brace character ( } ) just as you would 
with a regular C# code block. 

 ■   Tip    Notice that I had to cast the value of the  ViewBag.ProductCount  property to an  int  in order to use 
it with a  switch  statement. This is required because the Razor  switch  expression cannot evaluate a dynamic 
property—you must cast to a specific type so that it knows how to perform comparisons.  



CHAPTER 5 ■ WORKING WITH RAZOR

119

 Inside the Razor code block, you can include HTML elements and data values into the view output just 
by defining the HTML and Razor expressions, like this: 

    ...  
  <b>Low Stock (@ViewBag.StockLevel)</b>  
  ...  

   I do not have to put the elements or expressions in quotes or denote them in any special way—the Razor 
engine will interpret these as output to be processed. However, if you want to insert literal text into the view 
when it is not contained in an HTML element, then you need to give Razor a helping hand and prefix the line 
like this: 

   ... 
  @:  Out of Stock 
 ... 

   The  @:  characters prevent Razor from interpreting this as a C# statement, which is the default behavior 
when it encounters text. You can see the result of the conditional statement in Figure  5-10 .  

  Figure 5-10.    Using a switch statement in a Razor view       

 Conditional statements are important in Razor views because they allow content to be varied based on 
the data values that the view receives from the action method. As an additional demonstration, Listing  5-20  
shows the addition of an  if  statement to the  Index.cshtml  view. As you might imagine, this is a commonly 
used conditional statement. 

 



CHAPTER 5 ■ WORKING WITH RAZOR

120

     Listing 5-20.    Using an if Statement in a Razor View in the Index.cshtml File   

  @model Product 

   @{ 
     ViewBag.Title = "Product Name"; 
 } 

   <div data-productid="@Model.ProductID" data-stocklevel="@ViewBag.StockLevel"> 
     <p>Product Name: @Model.Name</p> 
     <p>Product Price: @($"{Model.Price:C2}")</p> 
     <p>Stock Level: 
          @if (ViewBag.StockLevel == 0) {  
              @:Out of Stock  
          } else if (ViewBag.StockLevel > 0  &&  ViewBag.StockLevel <= 3) {  
              <b>Low Stock (@ViewBag.StockLevel)</b>  
          } else {  
              @: @ViewBag.StockLevel in Stock  
          }  
     </p> 
 </div> 

    This conditional statement produces the same results as the  switch  statement, but I wanted to 
demonstrate how you can mesh C# conditional statements with Razor views. I explain how this works in 
Chapter   21    , when I describe views in depth.  

     Enumerating Arrays and Collections 
 When writing an MVC application, you will often want to enumerate the contents of an array or some other kind 
of collection of objects and generate content that details each one. To demonstrate how this is done, in Listing  5-21  
I have revised the  Index  action in the  Home  controller to pass an array of  Product  objects to the view. 

     Listing 5-21.    Using an Array in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Razor.Models; 

   namespace Razor.Controllers { 
     public class HomeController : Controller { 

           public IActionResult Index() { 
              Product[] array = {  
                  new Product {Name = "Kayak", Price = 275 M},  
                  new Product {Name = "Lifejacket", Price = 48.95 M},  
                  new Product {Name = "Soccer ball", Price = 19.50 M},  
                  new Product {Name = "Corner flag", Price = 34.95 M}  
              };  
              return View(array);  
         } 
     } 
 } 

http://dx.doi.org/10.1007/978-1-4842-0397-2_21


CHAPTER 5 ■ WORKING WITH RAZOR

121

    This action method creates a  Product[]  object that contains simple data values and passes them to the 
 View  method so that the data is rendered using the default view. In Listing  5-22 , I have changed the model 
type for the  Index  view and used a  foreach  loop to enumerate the objects in the array. 

 ■   Tip    The  Model  term in Listing  5-22  doesn’t need to be prefixed with an @ character because it is part of a 
larger C# expression. It can be difficult to figure out when an @ character is required and when it is not but the 
Visual Studio IntelliSense for Razor files will tell you when you get it wrong by underlining errors.  

      Listing 5-22.    Enumerating an Array in the Index.cshtml File   

   @model Product[]  

   @{ 
     ViewBag.Title = "Product Name"; 
 } 

    <table>  
      <thead>  
          <tr><th>Name</th><th>Price</th></tr>  
      </thead>  
      <tbody>  
          @foreach (Product p in Model) {  
              <tr>  
                  <td>@p.Name</td>  
                  <td>@($"{p.Price:C2}")</td>  
              </tr>  
          }  
      </tbody>  
  </table>  

    The  @foreach  statement enumerates the contents of the model array and generates a row in a table for 
each of them. You can see how I created a local variable called  p  in the  foreach  loop and then referred to its 
properties using the Razor expressions  @p.Name  and  @p.Price . You can see the result in Figure  5-11 .    



CHAPTER 5 ■ WORKING WITH RAZOR

122

     Summary 
 In this chapter, I gave you an overview of the Razor view engine and how it can be used to generate HTML. 
I showed you how to refer to data passed from the controller via the view model object and the view bag 
and how Razor expressions can be used to tailor responses to the user based on data values. You will see 
many different examples of how Razor can be used in the rest of the book, and I describe how the MVC view 
mechanism works in detail in Chapter   21    . In the next chapter, I introduce some of the features provided by 
Visual Studio for working with ASP.NET Core MVC projects.     

  Figure 5-11.    Using Razor to enumerate an array       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_21


123© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_6

    CHAPTER 6   

 Working with Visual Studio                          

 In this chapter, I describe the key features that Visual Studio provides for developing ASP.NET Core MVC 
projects. Table  6-1  summarizes the chapter.  

   Table 6-1.    Chapter Summary   

 Problem  Solution  Listing 

 Add .NET packages to a project  Edit the dependencies section of the 
 project.json  file or use the NuGet tool 

 1-6 

 Add JavaScript or CSS packages to a project  Create a  bower.json  file and add the 
required packages to the  dependencies  
section. 

 7, 8 

 See the effect of view or class changes  Use the iterative development model  9–11 

 Display detailed messages in the browser  Use developer exception pages  12 

 Get detailed information and control about 
application execution 

 Use the debugger  13 

 Reload one or more browsers using Visual 
Studio 

 Use Browser Link  14–16 

 Reduce the number of HTTP requests and the 
amount of bandwidth required for JavaScript 
and CSS files 

 Use the Bundler & Minifier extension  17-28 

 ■   Note    As I explained in Chapter   2    , Microsoft has said that it will change the tools that are used to create 
ASP.NET Core applications in future releases of Visual Studio. This means that the instructions in this chapter 
may become outdated. See the Apress.com page for this book for revised instructions, which I will write when 
the new tools have been released and are stable.  

     Preparing the Example Project 
 For this chapter, I created a new ASP.NET Core Web Application (.NET Core) project called 
WorkingWithVisualStudio using the Empty template. I added the MVC assembly by editing the 
 dependencies  section of the  project.json  file, as shown in Listing  6-1 . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_2


CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

124

      Listing 6-1.    Adding the MVC Assembly in the project.json File   

  ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 

     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
    "Microsoft.AspNetCore.Mvc": "1.0.0"  
 }, 
 ... 

    Next, I enabled MVC with its default configuration in the  Startup.cs  file, as shown in Listing  6-2 . 

     Listing 6-2.    Enabling MVC in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 

   namespace WorkingWithVisualStudio { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

        Creating the Model 
 I created a  Models  folder and added to it a class file called  Product.cs , which I used to define the class 
shown in Listing  6-3 . 

     Listing 6-3.    The Contents of the Product.cs File in the Models Folder   

  namespace WorkingWithVisualStudio.Models { 

       public class Product { 
         public string Name { get; set; } 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

125

         public decimal Price { get; set; } 
     } 
 } 

    To create a simple store of  Product  objects, I added a class file called  SimpleRepository.cs  to the 
 Models  folder and used it to define the class shown in Listing  6-4 . 

      Listing 6-4.    The Contents of the SimpleRepository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace WorkingWithVisualStudio.Models { 
     public class SimpleRepository { 
         private static SimpleRepository sharedRepository = new SimpleRepository(); 
         private Dictionary<string, Product> products 
             = new Dictionary<string, Product>(); 

           public static SimpleRepository SharedRepository => sharedRepository; 

           public SimpleRepository() { 
             var initialItems = new[] { 
                 new Product { Name = "Kayak", Price = 275M }, 
                 new Product { Name = "Lifejacket", Price = 48.95M }, 
                 new Product { Name = "Soccer ball", Price = 19.50M }, 
                 new Product { Name = "Corner flag", Price = 34.95M } 
             }; 
             foreach (var p in initialItems) { 
                 AddProduct(p); 
             } 
         } 

           public IEnumerable<Product> Products => products.Values; 

           public void AddProduct(Product p) => products.Add(p.Name, p); 
     } 
 } 

    This class stores model objects in memory, which means that any changes to the model are lost when 
the application is stopped or restarted. A non-persistent store is sufficient for the examples in this chapter, 
but it isn’t an approach that can be used in many real projects; see Chapter   8     for an example of creating a 
repository that stores model objects persistently using a relational database. 

 ■   Note    In Listing  6-4 , I defined a static property called  SharedRepository  that provides access to a single 
 SimpleRepository  object that can be used throughout the application. This isn’t best practice, but I want to 
demonstrate a common problem that you will encounter in MVC development; I describe a better way to work 
with shared components in Chapter   18    .   

http://dx.doi.org/10.1007/978-1-4842-0397-2_8
http://dx.doi.org/10.1007/978-1-4842-0397-2_18


CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

126

     Creating the Controller and View 
 I added a  Controllers  folder to the project and added to it a class file called  HomeController.cs , which I 
used to define the controller shown in Listing  6-5 . 

     Listing 6-5.    The Contents of the HomeController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 
 using WorkingWithVisualStudio.Models; 

   namespace WorkingWithVisualStudio.Controllers { 
     public class HomeController : Controller { 

           public IActionResult Index() 
             => View(SimpleRepository.SharedRepository.Products); 
     } 
 } 

    There is a single action—called  Index —that gets all of the model objects and passes them to the  View  
method to render the default view. To add that view, I created the  Views/Home  folder and added a view file 
called  Index.cshtml , the contents of which are shown in Listing  6-6 . 

     Listing 6-6.    The Contents of the Index.cshtml File in the Views/Home Folder   

  @model IEnumerable<WorkingWithVisualStudio.Models.Product> 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Working with Visual Studio</title> 
 </head> 
 <body> 
     <table> 
         <thead> 
             <tr><td>Name</td><td>Price</td></tr> 
         </thead> 
         <tbody> 
             @foreach (var p in Model) { 
                 <tr> 
                     <td>@p.Name</td> 
                     <td>@p.Price</td> 
                 </tr> 
             } 
         </tbody> 
     </table> 
 </body> 
 </html> 

    The view contains a table that uses a Razor  foreach  loop to create rows for each model object, where 
each row contains cells for the  Name  and  Price  properties. If you run the example application, you will see 
the results shown in Figure  6-1 .  



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

127

 SELECTING A .NET RUNTIME

 When you create a new ASP.NET Core project, you have to choose between two similarly named 
project templates: ASP.NET Core Web Application (.NET Core) and ASP.NET Core Web Application (.NET 
Framework). Both templates can be used to create applications using ASP.NET Core MVC, and the 
difference between them is the .NET runtime that executes the code. 

 .NET Core is a small optimized runtime originally created specifically for ASP.NET but that has now 
taken on a broader role for other types of .NET application. It has been designed to be cross-platform 
and provides opportunities for deploying ASP.NET applications outside of the traditional set of Windows 
platforms and into lightweight cloud containers like Docker. The.NET Core runtime will support Windows, 
Mac OS, FreeBSD, and Linux; it has been designed to be modular and includes only the assemblies that 
an application requires, which gives a smaller and simpler footprint for deployment. The .NET Core API 
is also smaller because it removes features that are specific to Windows and that cannot be supported 
on other platforms. 

 In the short-term, the choice of runtime for your projects will be driven by the tools and libraries that 
you depend on. It will take a while for third-party software to be updated to work with .NET Core and to 
reach the levels of stability required for production use. If you depend on a package of tool that requires 
the full .NET Framework (or if you have a legacy codebase that you can’t update), then you should use 
the ASP.NET Core Web Application (.NET Framework) option when you create your ASP.NET projects. You 
can still use all of the features that I describe in this book, and the only difference is the runtime that 
executes the code. 

 That said, the future of ASP.NET is .NET Core. That doesn’t mean you have to switch existing projects 
immediately, but it does mean that you shouldn’t create any new dependencies on the .NET Framework 
if you can help it, and you should consider the path to .NET Core support when selecting new tools 
and libraries. You can learn more about.NET Core at    https://docs.microsoft.com/en-us/dotnet/
articles/welcome     .    

  Figure 6-1.    Running the example application       

 

https://docs.microsoft.com/en-us/dotnet/articles/welcome
https://docs.microsoft.com/en-us/dotnet/articles/welcome


CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

128

     Managing Software Packages 
 There are two different types of software package required for ASP.NET Core MVC projects. In the 
sections that follow, I describe each type of package and the tools that are provided by Visual Studio for 
managing them. 

     Understanding NuGet 
 Visual Studio provides a graphical tool for managing the .NET packages that are included in a project. To 
open the tool, select Manage NuGet Packages for Solution from the Tools ➤ NuGet Package Manager menu. 
The NuGet tool opens and displays a list of the packages that are already installed, as shown in Figure  6-2 .         

  Figure 6-2.    Using the NuGet package manager       

 The Installed tab provides a summary of the packages that are already installed in the project. The 
Browse tab can be used to locate and install new packages and the Updates tab can be used to list packages 
for which more recent versions have been released. 

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

129

   Understanding the NuGet Packages List and Location 
 The NuGet tool manages the contents of the dependencies section of the  project.json  file, which is created 
by Visual Studio when a new project is set up, even when using the  Empty  template. 

 ■   Note    Microsoft intends to change the tooling for ASP.NET in future releases of Visual Studio. One change 
that has been announced (but not implemented) is that the  project.json  file won’t be used to manage NuGet 
packages. See the Apress.com page for this book for updates when the Microsoft releases the new versions.  

 I describe the other sections of the  project.json  file in Chapter   14    , but if you inspect the list of 
packages shown in the NuGet tool you will see it corresponds to the  dependencies  items, which are as 
follows for the example project: 

   ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
   "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
   "Microsoft.AspNetCore.Mvc": "1.0.0" 
 }, 
 ... 

   Each package is specified with its name and the version number that is required. Some packages, such 
as the  Microsoft.NetCore.App  package in the example project, have additional configuration information, 
which I explain in Chapter   14    . Visual Studio monitors the contents of the project.json file, which means that 
you can add or remove packages by editing the file directly, which is what I do throughout this book because 
it helps ensure that you will get the expected results if you are following along. 

 When you use NuGet to add a package to a project, it is automatically installed along with any packages 
it depends on. You can explore the NuGet packages and their dependencies by opening the References 
item in the Solution Explorer, which contains an entry for each NuGet package in the  project.json  file. 
Expanding a package item shows the packages it depends on, as shown in Figure  6-3 . As the figure shows, 
when I added the  Microsoft.AspNetCore.Mvc  package in Listing  6-1 , NuGet downloaded and installed that 
package and many others that are required for MVC development.    

http://dx.doi.org/10.1007/978-1-4842-0397-2_14
http://dx.doi.org/10.1007/978-1-4842-0397-2_14


CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

130

     Understanding Bower 
 A client-side package is one that contains content that is sent the client, such as JavaScript files, CSS 
stylesheets or images. NuGet used to be used to manage these projects as well, but ASP.NET Core MVC relies 
on a new tool, called Bower. Bower is an open-source tool that has been developed outside of Microsoft and 
the .NET world and is widely used in non-ASP.NET web application development. In fact, Bower has become 
so successful that some popular client-side packages are only distributed through  Bower.          

   Understanding the Bower Packages List 
 Bower packages are specified through the  bower.json  file. To create this file, right click the 
WorkingWithVisualStudio project item in the Solution Explorer, select Add ➤ New Item from the pop-up 
menu, and choose the Bower Configuration File item template from the Client-Side category, as shown in 
Figure  6-4 .         

  Figure 6-3.    The References section of the Solution Explorer       

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

131

 ■   Note    Bower uses the  git  tool to download client-side packages. You must replace the Visual Studio 
version of  git  for Bower to work correctly, as described in Chapter   2    .  

 Visual Studio sets the name to  bower.json , and clicking the Add button adds the file to the project with 
the default content shown in Listing  6-7 . 

 ■   Tip    Visual Studio hides  bower.json  by default, and it must be revealed by clicking the Show All Files 
button at the top of the Solution Explorer window.  

     Listing 6-7.    The Default Contents of the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
   } 
 } 

  Figure 6-4.    Creating the Bower configuration file       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_2


CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

132

   Listing  6-8  shows the addition of a client-side package to the  bower.json  file, which is done by adding 
an entry to the  dependencies  section using the same format as the  project.json  file. 

 ■   Tip    The repository for Bower packages is    http://bower.io/search     , where you can search for packages 
to add to your project.  

      Listing 6-8.    Adding Packages to the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6"  
   } 
 } 

   The addition in the listing adds the Bootstrap CSS package to the example project. When you edit the 
 bower.json  file, Visual Studio will offer you a list of package names and list the versions of the packages that 
are available, as shown in Figure  6-5 .  

  Figure 6-5.    Listing the available versions of the client-side package       

 At the time of writing, the latest version of the  bootstrap  package is 3.3.6. Notice, however, that there 
are three options offered by Visual Studio:  3.3.6 ,  ̂ 3.3.6 , and  ~3.3.6 . Version numbers can be specified in a 
range of different ways in the  bower.json  file, the most useful of which are described in Table  6-2 . The safest 
way to specify a package is to use an explicit version number. This ensures that you will always be working 
with the same version unless you deliberately update the  bower.json  file to request a different one.      

 

http://bower.io/search


CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

133

 ■   Tip    For the examples in this book, I create and edit the  bower.json  file directly. The file is simple 
to edit and it helps ensure that you get the expected results if you are following along. Visual Studio also 
provides a graphical tool for managing Bower packages, which can be opened by right clicking on the 
 WorkingWithVisualStudio  project in the Solution Explorer (the item that is the parent of the  bower.json  file) 
and selecting Manage Bower Packages from the popup menu.  

 Visual Studio monitors the  bower.json  files for changes and automatically uses the Bower tool to 
download and install packages. When you save the change to the file for Listing  6-8 , Visual Studio will 
download the Bootstrap package and install it into the  wwwroot/lib  folder, as shown in Figure  6-6 .  

   Table 6-2.    Common Formats for Version Numbers in the bower.json File   

 Format  Description 

  3.3.6   Expressing a version number directly will install the package with the exactly 
matching version number, e.g.,  3.3.6 . 

  *   Using an asterisk will allow Bower to download and install any version of the package. 

  >3.3.6 >=3.3.6   Prefixing a version number with > or  > =  will allow Bower to install any version of the 
package that is greater than or greater than or equal to a given version. 

  <3.3.6 <=3.3.6   Prefixing a version number with < or  < =  will allow Bower to install any version of the 
package that is less than or less than or equal to a given version. 

  ~3.3.6   Prefixing a version number with a tilde (the ~ character) will allow Bower to install 
versions even if the patch level number (the last of the three version numbers) doesn’t 
match). For example, specifying  ~3.3.6  will allow Bower to install version 3.3.7 or 
3.3.8 (which would be patches to version 3.3.6) but not version 3.4.0 (which would be 
a new minor release). 

  ̂ 3.3.6   Prefixing a version number with a caret (the  ̂   character) will allow Bower to install 
versions even if the minor release number (the second of the three version numbers) 
or the patch number doesn’t match. For example, specifying  ̂ 3.3.0  will allow Bower 
to install versions 3.3.1, 3.4.0, and 3.5.0, for example, but not version 4.0.0. 

  Figure 6-6.    Adding client-side packages to the project       

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

134

 Like NuGet, Bower manages the dependencies of the packages you add to a project. Bootstrap relies on 
the jQuery JavaScript library for some of its advanced features, which is why there are two packages shown 
in the figure. You can see the list of packages and their dependencies by expanding the  Dependencies  item in 
the Solution Explorer, as shown in Figure  6-7 .  

  Figure 6-7.    Examining the client-side packages and their dependencies       

 WHAT HAPPENED TO NPM AND GULP?

 During the early development of ASP.NET Core, Microsoft adopted two other popular open-source development 
tools from outside the .NET ecosystem: NPM and Gulp. NPM is a package manager for development tools that 
are executed by the Node.js JavaScript engine and Gulp is a JavaScript-based task runner that allows scripts 
to be written to perform development tasks, such as concatenating and minifying files. 

 Just before the release of ASP.NET Core 1.0, Microsoft had a change of heart and these tools are no 
longer used automatically in the MVC project templates. One of the most common tasks for which Gulp 
is used is now provided by the Visual Studio extension that I describe in the  Preparing JavaScript and 
CSS for Deployment  section of this chapter. 

 Visual Studio still supports NPM and Gulp and they can still be used for projects that have a complex 
client-side component. This can be useful because there are useful tools and packages that are only 
available through NPM and which can only be customized using Gulp. See my  Pro Client Development 
for ASP.NET Core MVC Developers  book for details.     

     Understanding Iterative Development 
 Web application development can often be an iterative process, where you make small changes to views 
or classes and run the application to test their effect. MVC and Visual Studio work together to support this 
iterative approach to make seeing the impact of changes quick and easy.     

     Making Changes to Razor Views 
 During development, changes to Razor views take effect as soon as an HTTP request is received from the 
browser. To demonstrate how this works, start the application by selecting Start Debugging from the Debug 
menu and, once a browser tab has been opened and the data displayed, make the changes shown in Listing  6-9  
to the  Index.cshtml  file. 

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

135

     Listing 6-9.    Making Changes to the Index.cshtml File   

  @model IEnumerable<WorkingWithVisualStudio.Models.Product> 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Working with Visual Studio</title> 
 </head> 
 <body> 
      <h3>Products</h3>  
     <table> 
         <thead> 
             <tr><td>Name</td><td>Price</td></tr> 
         </thead> 
         <tbody> 
             @foreach (var p in Model) { 
                 <tr> 
                     <td>@p.Name</td> 
                      <td>@($"{p.Price:C2}")</td>  
                 </tr> 
             } 
         </tbody> 
     </table> 
 </body> 
 </html> 

    Save the changes to the  Index  view and reload the current web page using the browser reload button. 
The changes to the view (the addition of a header and formatting the  Price  model property as a currency) 
take effect and are shown in the browser, as illustrated in Figure  6-8 .  

  Figure 6-8.    Making a change to a view       

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

136

 ■   Tip    I explain the process by which Razor views are prepared for use in Chapter   21    .   

     Making Changes to C# Classes 
 For C# classes, including controllers and models, the way that changes are handled depend on how you 
start the application. In the sections that follow, I describe the two approaches available, which are selected 
through different items in the Debug menu, as described in Table  6-3  for quick reference.  

   Table 6-3.    The Debug Menu Items   

 Menu Item  Description 

 Start Without Debugging  The classes in the project are compiled automatically when an HTTP request 
is received, allowing for a more dynamic development experience. The 
application is run without the debugger, which cannot be used to take control 
of code execution. 

 Start Debugging  In this development style you must explicitly compile your project and restart the 
application for changes to take effect. The debugger is attached to the application 
when it runs, allowing inspection of its state and analysis of any problems. 

   Compiling Classes Automatically 
 During normal development, a fast iterative cycle lets you see the effect of your changes immediately, 
whether it is the effect of adding a new action or changing the way that view model data is selected. For this 
kind of development, Visual Studio supports detecting changes as soon as an HTTP request is received from 
the browser and recompiling classes automatically. To see how this works, select Start Without Debugging 
from the Visual Studio Debug menu. Once the browser displays the application data, make the changes 
shown in Listing  6-10  to the  Home  controller. 

     Listing 6-10.    Filtering Model Data in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using WorkingWithVisualStudio.Models; 
  using System.Linq;  

   namespace WorkingWithVisualStudio.Controllers { 
     public class HomeController : Controller { 

           public IActionResult Index() 
              => View(SimpleRepository.SharedRepository.Products  
                          .Where(p => p.Price < 50));  
     } 
 } 

    The changes use LINQ to filter the  Product  objects so that only those whose  Price  property is less 
than 50 are passed to the view. Save the changes to the controller class file and reload the browser window 
without stopping or restarting the application in Visual Studio. The HTTP request from the browser will 
trigger the compilation process, and the application will be restarted using the modified controller class, 
producing the results shown in Figure  6-9 , which omit the  Kayak  product from the table.  

http://dx.doi.org/10.1007/978-1-4842-0397-2_21


CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

137

 The automated compilation feature is useful when everything is going to plan. The drawback is that 
compiler and runtime errors are displayed in the browser rather than Visual Studio, which can make it hard 
to figure out what is happening when there is a problem. As an example, Listing  6-11  shows the addition of a 
 null  reference to the collection of model objects in the repository. 

     Listing 6-11.    Adding a null Reference in the SimpleRepository.cs File   

  using System.Collections.Generic; 

   namespace WorkingWithVisualStudio.Models { 
     public class SimpleRepository { 
         private static SimpleRepository sharedRepository = new SimpleRepository(); 
         private Dictionary<string, Product> products 
             = new Dictionary<string, Product>(); 

           public static SimpleRepository SharedRepository => sharedRepository; 

           public SimpleRepository() { 
             var initialItems = new[] { 
                 new Product { Name = "Kayak", Price = 275 M }, 
                 new Product { Name = "Lifejacket", Price = 48.95 M }, 
                 new Product { Name = "Soccer ball", Price = 19.50 M }, 
                 new Product { Name = "Corner flag", Price = 34.95 M } 
             }; 
             foreach (var p in initialItems) { 
                 AddProduct(p); 
             } 
              products.Add("Error", null);  
         } 

  Figure 6-9.    Automatically compiling classes       

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

138

           public IEnumerable<Product> Products => products.Values; 

           public void AddProduct(Product p) => products.Add(p.Name, p); 
     } 
 } 

    Visual Studio’s IntelliSense feature will highlight syntax problems, but a problem like a  null  reference 
won’t show up until the application is running. Reloading the browser page will cause the  SimpleRepository  
class to be compiled, and the application will be restarted. When MVC creates an instance of the controller 
class to process the HTTP request from the browser, the  HomeController  constructor will instantiate the 
 SimpleRepository  class, which will, in turn, try to process the  null  reference added in the listing. 

 The null value causes a problem, but it isn’t obvious what the problem is because the browser doesn’t 
display a helpful message (and, if you are using Chrome, doesn’t display a message at all, preferring instead 
to display an empty tab).  

   Enabling Developer Exception Pages 
    During the development process, it can be helpful to display more useful information in the browser 
window when there is a problem. This can be done by enabling developer exception pages, which requires a 
configuration change in the  Startup  class, as shown in Listing  6-12 . 

 I explain the role of the  Startup  class in detail in Chapter   14    , but for now it is enough to know that 
calling the  UseDeveloperExceptionPage  extension method sets up the descriptive error pages. 

     Listing 6-12.    Enabling Developer Exception Pages in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 

   namespace WorkingWithVisualStudio { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 

                app.UseDeveloperExceptionPage();  
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    If you reload the browser window, the automatically compilation process will rebuild the application 
and produce a more useful error message in the browser, as shown in Figure  6-10 .  

http://dx.doi.org/10.1007/978-1-4842-0397-2_14


CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

139

 The error message shown by the browser can be sufficient to figure out simple problems, especially 
since the iterative style of development means that the most recent changes made are likely to be the cause. 
But for more complex problems—and for problems that don't become immediately apparent—the Visual 
Studio debugger is required.  

   Using the Debugger 
    Visual Studio also supports running an MVC application using a debugger, which allows execution to be 
halted to inspect the application’s state and the path that a request follows through the code. This requires 
a different style of development because modifications to C# classes are not applied until the application is 
restarted (although changes to Razor views still take effect automatically). 

 This style of development isn’t as dynamic as using the automatic compilation feature, but the Visual 
Studio debugger is excellent and can provide much deeper insights into the way an application works than is 
possible with a message displayed in a browser window. 

 To run an application using the debugger, select Start Debugging from the Visual Studio Debug menu. 
Visual Studio will compile the C# classes in the project before launching the application, but you can also 
manually compile your code by using the items in the Build menu. 

 The example application still contains the  null  reference, which means that the unhandled 
 NullReferenceException  that thrown by the  SimpleRepository  class will interrupt the application and pass 
execution control to the developer, as shown in Figure  6-11 .  

  Figure 6-10.    A developer exception page       

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

140

 ■   Tip    If the debugger doesn’t intercept the exception, then select Windows > Exception Settings from the 
Visual Studio Debug menu and make sure that all the exception types in the Common Language Runtime 
Exceptions list are checked.  

   Setting a Breakpoint 

    The debugger doesn’t indicate the root cause of the problem, only where it manifested itself. The statement 
that Visual Studio highlights indicates that the problem occurs when filtering the objects using LINQ, but a 
little work is required to dig into the detail and get to the underlying cause. 

 A  breakpoint  is an instruction that tells the debugger to halt execution of the application and hand 
control to the programmer. You can inspect the state of the application and see what is happening and, 
optionally, resume execution again. 

 To create a breakpoint, right-click a code statement and select Breakpoint ➤ Insert Breakpoint from the 
pop-up menu. As a demonstration, apply a breakpoint to the  AddProduct  method in the  SimpleRepository  
class, as shown in Figure  6-12 .  

  Figure 6-11.    Dealing with an unhandled exception       

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

141

 Select Debug ➤ Start Debugging to start the application using the debugger or Debug ➤ Restart if the 
application is already running. During the initial HTTP request from the browser, the  SimpleRepository  
class will be instantiated, and the execution of the code will reach the breakpoint, at which point execution 
of the application will stop. 

 At this point, you can use the Visual Studio Debug menu items or the controls at the top of the 
window to control execution of the application or use the different debugger views available through the 
Debug ➤ Windows menu to inspect the application state.  

   Viewing Data Values in the Code Editor 

 The most common use for breakpoints is to track down bugs in your code. Before you can fix a bug, you have 
to figure out what is going on, and one of the most useful features that Visual Studio provides is the ability to 
view and monitor the values of variables right in the code editor. 

 If you move the mouse over the  p  argument to the  AddProduct  method highlighted by the debugger, a 
pop-up will appear that shows you the current value of  p , as shown in Figure  6-13 . It can be hard to make out 
the pop-up, so I have shown a magnified version in the figure.  

  Figure 6-12.    Creating a breakpoint       

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

142

 This may not seem impressive since the data object is defined in the same constructor as the breakpoint, 
but this feature works for any variable. You can explore values to see their property and field values. Each value 
has a small pin button to its right that you can use to monitor a value when code execution continues. 

 Hover the mouse over the  p  variable and pin the  Product  reference. Expand the pinned reference so 
that you can also pin the  Name  and  Price  properties, creating the effect shown in Figure  6-14 .  

  Figure 6-14.    Pinning values in the code editor       

  Figure 6-13.    Inspecting a data value       

 Select Continue from the Visual Studio Debug menu to continue execution of the application. Since the 
application is executing a  foreach  loop, execution will be halted again when the breakpoint is encountered 
again. The pinned values show how the object assigned to the  p  variable and its properties change, as 
illustrated by Figure  6-15 .   

 

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

143

   Using the Locals Window 

    A related feature is the Locals window, which is opened by selecting the Debug ➤ Windows ➤ Locals menu 
item. The Locals window displays data values in a similar way to pinning, but it displays all of the local 
objects relative to the breakpoint, as shown in Figure  6-16 .  

  Figure 6-15.    Monitoring state change using pinned values       

  Figure 6-16.    The Locals window       

 Each time you select Continue, execution of the application will resume, and another object will 
be processed by the  foreach  loop. If you keep going, you will see the  null  reference appear, both in the 
 Locals  window and in the pinned values displayed in the code editor. By using the debugger to control the 
execution of the application, you can follow the flow through your code and get a sense of what is going on. 

 I could fix the  null  reference problem by cleaning up the collection of  Product  objects, but an 
alternative approach is to make the controller more robust, as shown in Listing  6-13 , where I have applied 
the  null  conditional operator to check for  null  values (as described in Chapter   4    ). 

     Listing 6-13.    Fixing the null Reference Problem in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using WorkingWithVisualStudio.Models; 
 using System.Linq; 

   namespace WorkingWithVisualStudio.Controllers { 
     public class HomeController : Controller { 

           public IActionResult Index() 
             => View(SimpleRepository.SharedRepository.Products 
                          .Where(p => p?.Price < 50));  
     } 
 } 

 

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_4


CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

144

    Disable the breakpoint by right-clicking the code statement to which it has been applied and selecting 
Breakpoint ➤ Delete Breakpoint from the pop-up menu. Restart the application and you will see the simple 
data table shown in Figure  6-17 .  

  Figure 6-17.    Fixing the bug       

 This is a simple problem to solve compared to the problems that require real bug hunting, but the 
Visual Studio debugger is excellent, and by using the many different views of the application that are 
available and controlling execution, you can really dig into the detail to figure out what is going wrong.    

     Using Browser Link 
    The Browser Link feature can simplify the development process by putting one or more browsers under the 
control of Visual Studio. This feature is especially useful if you need to see the effect of changes on a range of 
browsers. The Browser Link feature works with or without the debugger, but I find it most useful when using 
the automatic class compilation feature because it means I can modify any file in the project and see the 
effect of the change without having to switch to the browser and manually reload the page. 

   Setting Up Browser Link 
 Enabling Browser Link means adding an assembly to the project and changing its configuration. In Listing  6-14 , 
you can see how I added the  Microsoft.VisualStudio.Web.BrowserLink.Loader  assembly to the  dependencies  
section of the  project.json  file. 

     Listing 6-14.    Adding the Browser Link Assembly in the project.json File   

  ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

145

   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 

     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
   "Microsoft.AspNetCore.Mvc": "1.0.0", 
    "Microsoft.VisualStudio.Web.BrowserLink.Loader": "14.0.0"  
 }, 
 ... 

    Listing  6-15  shows the corresponding change to the  Startup  class. 

     Listing 6-15.    Enabling Browser Link in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 

   namespace WorkingWithVisualStudio { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 

               app.UseDeveloperExceptionPage(); 
              app.UseBrowserLink();  
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

       Using Browser Link 
 To understand how Browser Link works, select Start Without Debugging from the Visual Studio Debug 
menu. Visual Studio will start the application and open a new browser tab to display the results. Inspect the 
HTML sent to the browser and you will see that it contains an additional section like this: 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Working with Visual Studio</title> 
 </head> 
 <body> 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

146

     <h3>Products</h3> 
     <table> 
         <thead> 
             <tr><td>Name</td><td>Price</td></tr> 
         </thead> 
         <tbody> 
                 <tr><td>Lifejacket</td><td>$48.95</td></tr> 
                 <tr><td>Soccer ball</td><td>$19.50</td></tr> 
                 <tr><td>Corner flag</td><td>$34.95</td></tr> 
         </tbody> 
     </table> 
 <!--  Visual Studio Browser Link  --> 
  <script type="application/json" id="__browserLink_initializationData">  
      {"requestId":"9e00c6f8058f4369818e7ba315c9bdde","requestMappingFromServer":false}  
  </script>  
  <script type="text/javascript" src="http://localhost:56147/e7b85fe070c54198a041d57c363cee40/
browserLink" async="async"></script>  
 <!--  End Browser Link  --> 
 </body> 
 </html> 

   Visual Studio adds a pair of  script  elements to the HTML sent to the browser, which are used to open 
a long-lived HTTP connection back to the application server so that Visual Studio can force the browser to 
reload the page. (If you don’t see the  script  elements, then make sure that Enable Browser Link is selected 
in the menu shown in Figure  6-18 ). Listing  6-16  shows a change to the  Index  view that will illustrate the 
effect of using Browser Link.  

  Figure 6-18.    Using Browser Link to reload a browser       

     Listing 6-16.    Adding a Timestamp in the Index.cshtml File   

  @model IEnumerable<WorkingWithVisualStudio.Models.Product> 
 @{ Layout = null; } 

   <!DOCTYPE html> 

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

147

 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Working with Visual Studio</title> 
 </head> 
 <body> 
     <h3>Products</h3> 
      <p>Request Time: @DateTime.Now.ToString("HH:mm:ss")</p>  
     <table> 
         <thead> 
             <tr><td>Name</td><td>Price</td></tr> 
         </thead> 
         <tbody> 
             @foreach (var p in Model) { 
                 <tr> 
                     <td>@p.Name</td> 
                     <td>@($"{p.Price:C2}")</td> 
                 </tr> 
             } 
         </tbody> 
     </table> 
 </body> 
 </html> 

    Save the change to the view file and select Refresh Linked Browsers from the Browser Link menu on the 
Visual Studio toolbar, as shown in Figure  6-18 . (If Browser Link doesn’t work, try restarting Visual Studio and 
trying again). 

 The JavaScript code embedded in the HTML sent to the browser will reload the page, showing the effect 
of the addition, which is to add a simple timestamp. Each time you select the Visual Studio menu item, the 
browser will make a new request to the server. The request will result in the  Index  view being rendered to 
generate a new HTML page with an updated timestamp. 

 ■   Note    Browser Link’s  script  elements are embedded only in successful responses, meaning that if an 
exception is thrown when compiling a class, rendering a Razor view, or handling a request, then the connection 
between the browser and Visual Studio is lost and you will have to reload the page using the browser once you 
have resolved the problem.   

   Using Multiple Browsers 
 Browser Link can be used to display an application in multiple browsers simultaneously, which can 
be useful when you want to iron out implementation differences between browsers (especially when 
implementing custom CSS stylesheets) or see how an application is rendered on a mix of desktop and 
mobile browsers. 

 To pick the browsers that will be used, select Browse With from the IIS Express button on the Visual 
Studio toolbar as shown in Figure  6-19 .  



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

148

 Visual Studio displays a list of the browsers that it knows about. Figure  6-20  shows the browsers I have 
installed on my system, some of which are installed with Windows (Internet Explorer and Edge) and others 
that I install because they are in widespread use.  

  Figure 6-19.    Selecting multiple browsers       

  Figure 6-20.    Picking browsers from the list       

 

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

149

 Visual Studio looks for common browsers during the installation process, but you can use the Add 
button to set up browsers that were not discovered automatically. You can also set up third-party testing 
tools like Browser Stack, which run browsers on cloud-hosted virtual machines so that you don’t have to 
manage a large matrix of operating systems and browsers for testing. 

 I selected three browsers in the figure: Chrome, Internet Explorer, and Edge. Clicking the Browse button 
starts all three browsers and causes them to load the example application’s URL, as shown in Figure  6-21 .  

  Figure 6-21.    Working with multiple browsers       

  Figure 6-22.    The Browser Link Dashboard window       

 You can see which browsers Browser Link is managing by selecting the Browser Link Dashboard menu 
item, which opens the window shown in Figure  6-22 . The dashboard shows the URL displayed by each 
browser, and each browser can be refreshed individually.     

 

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

150

     Preparing JavaScript and CSS for Deployment 
 When you create the client-side part of a web application, you will usually create a number of custom 
JavaScript and CSS files, which are used to supplement those in the packages installed by Bower. These files 
require processing to optimize them for delivery in a production environment, to minimize the number of 
HTTP requests and the amount of network bandwidth required to deliver them to the client. In this section, I 
describe the Visual Studio extension that Microsoft has provided to perform this task. 

     Enabling Static Content Delivery 
 ASP.NET Core includes support for delivering static files from the  wwwroot  folder to clients but it isn’t 
enabled by default when the  Empty  template is used to create the project. To enable static file support, a new 
package is required in the dependencies section of the  project.json  file, as shown in Listing  6-17 . 

     Listing 6-17.    Adding a Package in the project.json File   

  ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 

     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
   "Microsoft.AspNetCore.Mvc": "1.0.0", 
   "Microsoft.VisualStudio.Web.BrowserLink.Loader": "14.0.0", 
    "Microsoft.AspNetCore.StaticFiles": "1.0.0"  
 }, 
 ... 

    The  Microsoft.AspNetCore.StaticFiles  package contains the functionality for handling static files, 
which must be enabled in the  Startup  class, as shown in Listing  6-18 . 

     Listing 6-18.    Enabling Static Files Support in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 

   namespace WorkingWithVisualStudio { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

151

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 

               app.UseDeveloperExceptionPage(); 
             app.UseBrowserLink(); 
              app.UseStaticFiles();  
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

         Adding Static Content to the Project 
 To demonstrate the bundling and minification process, I need to add some static content to the project 
and add the ability to deliver it to the client. First, I created the  wwwroot/css  folder, which is where custom 
CSS files are stored. I then added a file called  first.css  using the Style Sheet item template, as shown in 
Figure  6-23 .  

  Figure 6-23.    Creating a CSS stylesheet       

 I edited the  first.css  file to add the CSS styles shown in Listing  6-19 . 

     Listing 6-19.    The Contents of the first.css File in the wwwroot/css Folder   

 h3 { 
     font-size: 18 pt; 
     font-family: sans-serif; 
 } 

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

152

 table, td { 
     border: 2px solid black; 
     border-collapse:collapse; 
     padding: 5px; 
     font-family: sans-serif; 
 } 

   I repeated the process to create another style sheet called  second.css  in the  wwwroot/css  folder, with 
the content shown in Listing  6-20 . 

     Listing 6-20.    The Contents of the second.css File in the wwwroot/css Folder   

 p { 
     font-family: sans-serif; 
     font-size: 10 pt; 
     color: darkgreen; 
     background-color:antiquewhite; 
     border: 1px solid black; 
     padding: 2px; 
 } 

   Custom JavaScript files are stored in the  wwwroot/js  folder. I created this folder and used the JavaScript 
File item template to create a file called  third.js , as shown in Figure  6-24 .  

  Figure 6-24.    Creating a JavaScript File       

 I added some simple JavaScript code to the new file, as shown in Listing  6-21 . 

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

153

     Listing 6-21.    The Contents of the third.js File in the wwwroot/js Folder   

 document.addEventListener("DOMContentLoaded", function () { 
     var element = document.createElement("p"); 
     element.textContent = "This is the element from the third.js file"; 
     document.querySelector("body").appendChild(element); 
 }); 

   I need one more JavaScript file. I created a file called  fourth.js  in the  wwroot/js  folder and added the 
code shown in Listing  6-22 . 

     Listing 6-22.    The Contents of the fourth.js File in the wwwroot/js Folder   

 document.addEventListener("DOMContentLoaded", function () { 
     var element = document.createElement("p"); 
     element.textContent = "This is the element from the fourth.js file"; 
     document.querySelector("body").appendChild(element); 
 }); 

        Updating the View 
 The final preparatory step is to update the  Index.cshtml  view to use the new CSS stylesheets and JavaScript 
files, as shown in Listing  6-23 . 

     Listing 6-23.    Adding script and link Elements to the Index.cshtml File   

  @model IEnumerable<WorkingWithVisualStudio.Models.Product> 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Working with Visual Studio</title> 
      <link rel="stylesheet" href="css/first.css" />  
      <link rel="stylesheet" href="css/second.css" />  
      <script src="js/third.js"></script>  
      <script src="js/fourth.js"></script>  
 </head> 
 <body> 
     <h3>Products</h3> 
     <p>Request Time: @DateTime.Now.ToString("HH:mm:ss")</p> 
     <table> 
         <thead> 
             <tr><td>Name</td><td>Price</td></tr> 
         </thead> 
         <tbody> 
             @foreach (var p in Model) { 
                 <tr> 
                     <td>@p.Name</td> 
                     <td>@($"{p.Price:C2}")</td> 
                 </tr> 
             } 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

154

         </tbody> 
     </table> 
 </body> 
 </html> 

    If you run the example application, you will see the content shown in Figure  6-25 . The existing content 
has been styled by the CSS style sheets and the JavaScript code has added new content.   

  Figure 6-25.    Running the example application       

     Bundling and Minifying in MVC Applications 
          At the moment, there are four static files and the browser has to make four requests in order to get the 
static files. And each of those files takes more bandwidth than it should to deliver to the client because they 
contain whitespace and variable names that are meaningful to the developer but have no significance to the 
browser. 

 Combining files of the same type is called bundling. Making files smaller is called minification. Both of 
these tasks are performed in ASP.NET Core MVC applications by the Bundler & Minifier extension for Visual 
Studio. 

   Installing the Visual Studio Extension 
 The first step is to install the extension. Select the  Tools  ➤  Extensions and Updates  menu and click on the 
Online category to display the gallery of available Visual Studio extensions. Enter  Bundler & Minifier  in to 
the search box in the top right corner of the window, as shown in Figure  6-26 . Locate the Bundler & Minifier 
extension and click the Download button to add it to Visual Studio. Complete the installation process and 
restart Visual Studio.   

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

155

  Figure 6-26.    Finding the Visual Studio extension       

  Figure 6-27.    Bundling and minifying CSS files       

   Bundling and Minifying Files 
 Once the extension has been installed and Visual Studio has been restarted, you can select multiple files of 
the same type, bundle them together and minify their contents. As an example, select the  first.css  and 
 second.css  files in the Solution Explorer, right-click and then select Bundler & Minifier ➤ Bundle and Minify 
Files from the popup menu, as shown in Figure  6-27 .  

 

 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

156

 Save the output file as  bundle.css  and the extension will process the CSS files. The Solution Explorer 
will show a new  bundle.css  item, which you can expand to reveal the minified file, called  bundle.min.css . 
If you open the minified file, you will see that the contents of both separate CSS files have been combined 
and all of the whitespace has been removed. You won’t want to work directly with this file but it is smaller 
and requires only a single HTTP connection to deliver the CSS styles to the client. 

 Repeat the process with the  third.js  and  fourth.js  files in order to create new files called  bundle.js  
and  bundle.min.js  in the  wwwroot/js  folder, 

 ■   Caution    Make sure that you select the files in the order in which they are loaded by the browser in order 
to preserve the order of the styles or code statements in the output files. So, for example, ensure that you select 
the  third.js  file before selecting the  fourth.js  file to ensure that the code is executed in the right order.  

 In Listing  6-24 , I have replaced the  link  elements for the separate files with one that requests the 
bundled and minified files in the  Index.cshtml  view. 

     Listing 6-24.    Using the Bundled and Minified Files in the Index.cshtml File   

  @model IEnumerable<WorkingWithVisualStudio.Models.Product> 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Working with Visual Studio</title> 
      <link rel="stylesheet" href="css/bundle.min.css" />  
      <script src="js/bundle.min.js"></script>  
 </head> 
 <body> 
     <h3>Products</h3> 
     <p>Request Time: @DateTime.Now.ToString("HH:mm:ss")</p> 
     <table> 
         <thead> 
             <tr><td>Name</td><td>Price</td></tr> 
         </thead> 
         <tbody> 
             @foreach (var p in Model) { 
                 <tr> 
                     <td>@p.Name</td> 
                     <td>@($"{p.Price:C2}")</td> 
                 </tr> 
             } 
         </tbody> 
     </table> 
 </body> 
 </html> 



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

157

    There isn’t any visual change if you run the application but the bundled and minified files are s used to 
provide the browser with all of the styles and code that were defined in the separate files. 

 As you perform bundling and minification operations, the extension keeps a record of the files that have 
been processed in a file called  bundleconfig.json  in the root folder of the project. Here is the configuration 
that was produced for the files in the example application: 

   [ 
   { 
     "outputFileName": "wwwroot/css/bundle.css", 
     "inputFiles": [ 
       "wwwroot/css/first.css", 
       "wwwroot/css/second.css" 
     ] 
   }, 
   { 
     "outputFileName": "wwwroot/js/bundle.js", 
     "inputFiles": [ 
       "wwwroot/js/third.js", 
       "wwwroot/js/fourth.js" 
     ] 
   } 
 ] 

   The extension automatically monitors the input files for changes and regenerates the output files when 
there are changes, ensuring that any edits you make are reflected in the bundled and minified files. To 
demonstrate, Listing  6-25  shows a change to the  third.js  file. 

     Listing 6-25.    Making a Change in the third.js File   

 document.addEventListener("DOMContentLoaded", function () { 
     var element = document.createElement("p"); 
      element.textContent = "This is the element from the (modified) third.js file";  
     document.querySelector("body").appendChild(element); 
 }); 

   As soon as the file is saved, the extension regenerates the  bundle.min.js  file. If you reload the browser, 
you will see the change shown in Figure  6-28 .     



CHAPTER 6 ■ WORKING WITH VISUAL STUDIO

158

     Summary 
 In this chapter, I explained the structure of MVC projects, described the two different .NET runtimes that are 
available, and described some of the features that Visual Studio provides for web application development, 
including automatic class compilation, Browser Link and bundling and minification. In the next chapter, I 
explain how ASP.NET Core MVC projects lend themselves to unit testing.     

  Figure 6-28.    Change detection in bundled and minified files       

 



159© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_7

    CHAPTER 7   

 Unit Testing MVC Applications                          

 In this chapter, I demonstrate how to unit test MVC applications. Unit testing is a form of testing in which 
individual components are isolated from the rest of the application so their behavior can be thoroughly 
validated. ASP.NET Core MVC has been designed to make it easy to create unit tests, and Visual Studio 
provides support for a wide range of unit testing frameworks. I show you how to set up a unit test project, 
explain how to install one of the most popular testing frameworks, and describe the process for writing and 
running tests. Table  7-1  summarizes the chapter.  

   Table 7-1.    Chapter Summary   

 Problem  Solution  Listing 

 Create a unit test  Create a unit test project, install a test package, 
and add classes that contain tests 

 1–8 

 Isolate components for unit testing  Use interfaces to separate application 
components and use fake implementations with 
restricted test data in the unit tests 

 9–16 

 Run the same xUnit tests with different 
data values 

 Use a parametrized unit test or get the test data 
from a method or property 

 17–19 

 Simplify the process of creating fake test 
objects 

 Use a mocking framework  20–22 

 DECIDING WHETHER TO UNIT TEST

 Being able to easily perform unit testing is one of the benefits of using ASP.NET Core MVC, but it isn’t for 
everyone, and I have no intention of pretending otherwise. 

 I like unit testing and I use it in my own projects, but not all of them and not as consistently as you 
might expect. I tend to focus on writing unit tests for features and functions that I know will be hard to 
write and that are likely to be the source of bugs in deployment. In these situations, unit testing helps 
structure my thoughts about how to best implement what I need. I find that just thinking about what I 
need to test helps produce ideas about potential problems, and that’s before I start dealing with actual 
bugs and defects. 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

160

 That said, unit testing is a tool and not a religion, and only you know how much testing you require. 
If you don’t find unit testing useful or if you have a different methodology that suits you better, then 
don’t feel you need to unit test just because it is fashionable. (However, if you  don’t  have a better 
methodology and you are not testing at all, then you are probably letting users find your bugs, which is 
rarely ideal .  You don’t  have  to unit test, but you really should consider doing  some  testing of  some  kind.) 

 If you have not encountered unit testing before, then I encourage you to give it a try and see how it 
works. If you are not a fan unit testing, then you can skip this chapter and move on to Chapter   8    , where 
I start to build a more realistic MVC application.  

     Preparing the Example Project 
 In this chapter, I continue to use the WorkingWithVisualStudio project that I created in Chapter   6    . For this 
chapter, I will add support for creating new  Product  objects in the repository. 

     Enabling the Built-in Tag Helpers 
 I use one of the built-in tag helpers in this chapter to set the  href  attribute of an anchor element. I explain 
how tag helpers work in detail in Chapters   23    –  25    , but to simply enable them, I created a view imports file by 
right-clicking the  Views  folder, selecting Add ➤ New Item from the pop-up menu, and choosing the MVC 
View Imports Page item template from the ASP.NET category. Visual Studio automatically sets the name of 
the file to  _ViewImports.cshtml , and clicking the Add button created the file, which allowed me to add the 
statements shown in Listing  7-1 . 

     Listing 7-1.    The Contents of the _ViewImports.cshtml File in the Views Folder   

 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

   This statement enables the built-in tag helpers, including the one that I use in the  Index  view shortly. 
I could add  using  statements to import namespaces from the projects, but the views are not important 
parts of the example application in this chapter, and referring to model types with their namespaces isn’t a 
problem.  

     Adding Actions to the Controller 
 The first step is to add actions to the  Home  controller that will render a view for entering data and for receiving 
that data from the browser, as shown in Listing  7-2 . These actions follow the same pattern that I used in 
Chapter   2     and that I explain in detail in Chapter   17    . 

     Listing 7-2.    Adding Action Methods in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using WorkingWithVisualStudio.Models; 
 using System.Linq; 

   namespace WorkingWithVisualStudio.Controllers { 
     public class HomeController : Controller { 

http://dx.doi.org/10.1007/978-1-4842-0397-2_8
http://dx.doi.org/10.1007/978-1-4842-0397-2_6
http://dx.doi.org/10.1007/978-1-4842-0397-2_23
http://dx.doi.org/10.1007/978-1-4842-0397-2_25
http://dx.doi.org/10.1007/978-1-4842-0397-2_2
http://dx.doi.org/10.1007/978-1-4842-0397-2_17


CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

161

            SimpleRepository Repository = SimpleRepository.SharedRepository;  

            public IActionResult Index() => View(Repository.Products  
                      .Where(p => p?.Price < 50));  

            [HttpGet]  
          public IActionResult AddProduct() => View(new Product());  

            [HttpPost]  
          public IActionResult AddProduct(Product p) {  
              Repository.AddProduct(p);  
              return RedirectToAction("Index");  
          }  
     } 
 } 

         Creating the Data Entry Form 
 To allow the user to create a new product, I created a Razor view called  AddProduct.cshtml  in the  Views/
Home  folder. This is the file name and location conventions that correspond to the default view rendered by 
the  AddProduct  method in the  Home  controller. Listing  7-3  shows the contents of the new view, which relies 
on the Boostrap package that I added to the project using Bower in Chapter   6    . 

     Listing 7-3.    The Contents of the AddProduct.cshtml File in the Views/Home Folder   

  @model WorkingWithVisualStudio.Models.Product 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Working with Visual Studio</title> 
     <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <h3>Create Product</h3> 
     <form asp-action="AddProduct" method="post"> 
         <div class="form-group"> 
             <label asp-for="Name">Name:</label> 
             <input asp-for="Name" class="form-control" /> 
         </div> 
         <div class="form-group"> 
             <label asp-for="Price">Price:</label> 
             <input asp-for="Price" class="form-control" /> 
         </div> 
         <button type="submit" class="btn btn-primary">Add</button> 
         <a asp-action="Index" class="btn btn-default">Cancel</a> 
     </form> 
 </body> 
 </html> 

http://dx.doi.org/10.1007/978-1-4842-0397-2_6


CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

162

    This view contains an HTML form that uses an HTTP  POST  request to send  Name  and  Price  values to the 
 AddProduct  action on the  Home  controller. The content is styled using the Bootstrap CSS package.  

     Updating the Index View 
 The final preparatory step is to update the  Index  view so that it contains a link to the new form, as shown 
in Listing  7-4 . I have also taken the opportunity to remove the JavaScript files I used in the previous chapter 
and to replace the custom CSS stylesheets with Bootstrap, which I have applied to the HTML elements in the 
view. 

     Listing 7-4.    Updating the Content in the Index.cshtml File   

  @model IEnumerable<WorkingWithVisualStudio.Models.Product> 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Working with Visual Studio</title> 
      <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.min.css" />  
 </head> 
  <body class="panel-body">  
      <h3 class="text-center">Products</h3>  
      <table class="table table-bordered table-striped">  
         <thead> 
             <tr><td>Name</td><td>Price</td></tr> 
         </thead> 
         <tbody> 
             @foreach (var p in Model) { 
                 <tr> 
                     <td>@p.Name</td> 
                     <td>@($"{p.Price:C2}")</td> 
                 </tr> 
             } 
         </tbody> 
     </table> 
      <div class="text-center">  
          <a class="btn btn-primary" asp-action="AddProduct">  
              Add New Product  
          </a>  
      </div>  
 </body> 
 </html> 

    If you run the example, you will see the newly styled content and the Add New Product button, which 
leads to the data entry form. Submitting the form will add a new  Product  object to the repository and 
redirect the browser so that the initial application view is displayed, as shown in Figure  7-1 .  



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

163

 ■   Tip    Remember that the repository in this example stores its objects only in memory, which means that any 
new products you create will be lost when the application is restarted.    

     Unit Testing MVC Applications 
    Unit tests are used to validate the behavior of individual components and features in an application, and 
ASP.NET Core and ASP.NET Core MVC have been designed to make it as easy as possible to set up and run 
unit tests for web applications. In the sections that follow, I explain how to set up unit testing in Visual Studio 
and demonstrate how to write unit tests for MVC applications. I also introduce some useful tools that make 
unit testing simpler and more reliable. 

 There are a range of different unit test packages available. The one I use in this book is called xUnit.net; 
I selected it because it integrates well with Visual Studio, and it is used by the Microsoft team to write its unit 
tests for ASP.NET. Table  7-2  puts xUnit.net in context.  

  Figure 7-1.    Running the example application       

   Table 7-2.    Putting xUnit.net in Context   

 Question  Answer 

 What is it?  xUnit.net is a unit test framework that can be used to test ASP.NET Core MVC 
applications. 

 Why is it useful?  xUnit is a well-written test framework that integrates easily into Visual Studio. 

 How is it used?  Tests are defined as methods that are annotated with the  Fact  or  Theory  attribute. 
Within the method body, methods defined by the  Assert  class are used to 
compare the expected result of a test with what actually happened. 

(continued)

 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

164

 ■   Note    Just about everything in unit testing is a matter of personal preference and a subject of vociferous 
disagreement. Some developers don’t like separating their unit tests from their application code and prefer to 
define tests in the same project or even in the same class file. The approach I describe here is commonly used 
and is the approach that I follow, but if it doesn’t feel right, you should experiment with different styles of testing 
until you find something you like.  

     Creating a Unit test Project 
 For ASP.NET Core applications, you generally create a separate Visual Studio project to hold the unit tests, 
each of which is defined as a method in a C# class. Using a separate project means you can deploy your 
application without also deploying the tests. 

 The convention is to name the unit test project  < ApplicationName>.Tests  and create it in a folder 
called  test  at the same level as the  src  folder. For the WorkingWithVisualStudio application, the name of the 
unit test project will be  WorkingWithVisualStudio.Tests . Figure  7-2  shows the conventional structure of a 
Visual Studio ASP.NET Core project that contains unit tests.      

  Figure 7-2.    The conventional project structure when unit testing       

 Question  Answer 

 Are there any pitfalls 
or limitations? 

 The main pitfall with unit testing is not effectively isolating the component under 
test. See the “Isolating Components for Unit Testing” section for more details.  The 
biggest problem that is specific to xUnit.net is a lack of documentation. There is 
some basic information available at    http://xunit.github.io     , but advanced use 
requires some trial and error. 

 Are there any 
alternatives? 

 Lots of test frameworks are available. Two popular alternatives are MSTest (which 
comes from Microsoft) and NUnit. 

 Has it changed since 
MVC 5? 

 ASP.NET Core MVC makes it easy to perform unit testing but doesn’t require or 
mandate its use or demand any specific test tools. You are free to use any tools you 
like or to not perform testing at all. 

Table 7-2. (continued) 

 Creating this structure requires a little work because of the way that Visual Studio tries to separate the 
contents of a solution from the files on the disk. 

 The first step is to use the File Explorer or the command prompt to create the  test  folder within the 
 WorkingWithVisualStudio  solution folder so that it appears alongside the existing  src  folder. 

 

http://xunit.github.io/


CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

165

 ■   Tip    Visual Studio includes a Unit Test project template, but it isn’t set up for use with .NET Core and 
doesn’t support features like the  project.json  file.  

 Next, right-click the WorkingWithVisualStudio solution item in the Visual Studio Solution Explorer (the 
top-level item that encompasses everything else), select Add ➤ New Solution Folder from the pop-up menu, 
and set the name of the new folder to  test . (You won’t be able to add the solution folder if the debugger is 
running; select Stop Debugging from the Debug menu and try again.) 

 Right-click the  test  folder item in the Solution Explorer and select Add ➤ New Project from the pop-up 
menu. Select Class Library (.NET Core) from the Installed ➤ Visual C# ➤ .NET Core category, set the name 
of the project to WorkingWithVisualStudio.Tests, and change the location to the  test  folder, as shown in 
Figure  7-3 .  

  Figure 7-3.    Creating the tests project       

 Click the OK button to create the project. The result is that the structure of the projects shown in the 
Solution Explorer matches the structure of the projects on the filesystem. 

   Configuring the Unit Test Project 
 To prepare the unit test project, open the  project.json  file from the WorkingWithVisualStudio.Tests project 
and replace the contents with those shown in Listing  7-5 .        

 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

166

 ■   Caution    Be careful to make the changes to the  project.json  file in the unit test project and not the main 
application project.  

     Listing 7-5.    The Contents of the project.json file in the WorkingWithVisualStudio.Tests Project   

 { 
   "version": "1.0.0-*", 
    "testRunner": "xunit",  
   "dependencies": { 
      "Microsoft.NETCore.App": {  
        "type": "platform",  
        "version": "1.0.0"  
      },  
      "xunit": "2.1.0",  
      "dotnet-test-xunit": "2.2.0-preview2-build1029"  
   }, 
   "frameworks": { 
      "netcoreapp1.0": {  
        "imports": ["dotnet5.6", "portable-net45+win8"]  
      }  
   } 
 } 

   This configuration tells Visual Studio that three packages are required. The  Microsoft.NETCore.App  
package provides the .NET Core API. The  xunit  package provides the testing framework and the  dotnet-
test-xunit  package provides the integration between xUnit and Visual Studio. At the time of writing, the 
 dotnet-test-xunit  package support for .NET Core applications is still in preview and you may find a later 
version is available when you read this chapter. 

 When you save the changes to the  project.json  file, Visual Studio will download and install the 
xUnit NuGet packages and their dependencies. This can take a while since there are a lot of dependencies 
to resolve. The process for creating unit tests projects for ASP.NET Core MVC applications is likely to be 
simplified in future releases of Visual Studio and these additional steps will no longer be required.  

   Adding the Application Project Reference 
 To be able to test the classes in the application, I have to add a reference to the application project in the 
 project.json  file of the test project, as shown in Listing  7-6 . 

     Listing 7-6.    Adding a Reference to the Application Project in the Tests project.json File   

 { 
   "version": "1.0.0-*", 
   "testRunner": "xunit", 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "type": "platform", 
       "version": "1.0.0" 
     }, 
     "xunit": "2.1.0", 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

167

     "dotnet-test-xunit": "2.2.0-preview2-build1029", 
      "WorkingWithVisualStudio": "1.0.0"  
   }, 
   "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6", "portable-net45+win8"] 
     } 
   } 
 } 

         Writing and Running Unit Tests 
 Now that all the preparation is complete, I can write some tests. To get started, I added a class file called 
 ProductTests.cs  to the  WorkingWithVisualStudio.Tests  project and defined the class shown in Listing  7-7 . 
This is a simple class, but it contains everything required to get started with unit testing. 

 ■   Note    The  CanChangeProductPrice  method contains a deliberate error that I resolve later in this section.  

      Listing 7-7.    The Contents of the ProductTests.cs File   

  using WorkingWithVisualStudio.Models; 
 using Xunit; 

   namespace WorkingWithVisualStudio.Tests { 

       public class ProductTests { 

           [Fact] 
         public void CanChangeProductName() { 

               // Arrange 
             var p = new Product { Name = "Test", Price = 100M }; 

               // Act 
             p.Name = "New Name"; 

               //Assert 
             Assert.Equal("New Name", p.Name); 
         } 

           [Fact] 
         public void CanChangeProductPrice() { 

               // Arrange 
             var p = new Product { Name = "Test", Price = 100M }; 

               // Act 
             p.Price = 200M; 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

168

               //Assert 
             Assert.Equal(100M, p.Price); 
         } 
     } 
 } 

    There are two unit tests in the  ProductTests  class, each of which tests a different behavior of the 
 Product  model class from the WorkingWithVisualStudio project. A test project can contain many classes, 
each of which can contain many unit tests.     

 Conventionally, the name of the test methods describes what the test does, and the name of the class 
describes what is being tested. This makes it easier to structure the tests in a project and to understand what 
the results of all the tests are when they are run by Visual Studio. The name  ProductTests  indicates that the 
class contains tests for the  Product  class, and the method names indicate that they test the ability to change 
the name and price of a  Product  object. 

 The  Fact  attribute is applied to each method to indicate that it is a test. Within the method body, a unit 
test follows a pattern called  arrange, act, assert  (A/A/A).  Arrange  refers to setting up the conditions for the test, 
 act  refers to performing the test, and  assert  refers to verifying that the result was the one that was expected. 

 The arrange and act sections of these tests are regular C# code, but the assert section is handled by 
xUnit.net, which provides a class called  Assert , whose methods are used to check that the outcome of an 
action is the one that is expected. 

 ■   Tip    The  Fact  attribute and the  Asset  class are defined in the  Xunit  namespace, for which there must be 
a  using  statement in every test class.  

 The methods of the  Assert  class are static and are used to perform different kinds of comparison 
between the expected and actual results. Table  7-3  shows the most commonly used  Assert  methods.  

   Table 7-3.    Commonly Used xUnit.net Assert Methods   

 Name  Description 

  Equal(expected, result)   This method asserts that the result is equal to the expected outcome. 
There are overloaded versions of this method for comparing different 
types and for comparing collections. There is also a version of 
this method that accepts an additional argument of an object that 
implements the  IEqualityComparer<T  > interface for comparing objects. 

  NotEqual(expected, result)   This method asserts that the result is not equal to the expected outcome. 

  True(result)   This method asserts that the result is  true . 

  False(result)   This method asserts that the result is  false . 

  IsType(expected, result)   This method asserts that the result is of a specific type. 

  IsNotType(expected, result)   This method asserts that the result is not a specific type. 

  IsNull(result)   This method asserts that the result is  null . 

  IsNotNull(result)   This method asserts that the result is not  null . 

  InRange(result, low, high)   This method asserts that the result falls between  low  and  high . 

  NotInRange(result, low, high)   This method asserts that the result falls outside  low  and  high . 

  Throws(exception, expression)   This method asserts that the specified expression throws a specific 
exception type. 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

169

 Each  Assert  method allows different types of comparison to be made and throws an exception if 
the result is not what was expected. The exception is used to indicate that a test has failed. In the tests 
in Listing  7-7 , I used the  Equal  method to determine whether the value of a property has been changed 
correctly: 

   ... 
 Assert. Equal ("New Name", p.Name); 
 ... 

     Running Tests with the Test Explorer 
 Visual Studio includes support for finding and running unit tests through the Test Explorer window, which is 
available through the Test ➤ Windows ➤ Test Explorer menu and which is shown in Figure  7-4 .         

  Figure 7-4.    The Visual Studio Test Explorer       

 ■   Tip    Build the solution if you don’t see the unit tests in the Test Explorer window. Compilation triggers the 
process by which unit tests are discovered.  

 Run the tests by clicking Run All in the Test Explorer window. Visual Studio will use xUnit.net to run 
the tests in the project and display the results. As noted, the  CanChangeProductPrice  test contains an error 
that causes the test to fail. The problem is with the arguments to the  Assert.Equal  method, which compare 
the test result to the original  Price  property value rather than the value it has been changed to. Listing  7-8  
corrects the problem. 

 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

170

 ■   Tip    When a test fails, it is always a good idea to check the accuracy of the test before looking at the 
component it targets, especially if the test is new or has been recently modified.  

     Listing 7-8.    Correcting a Test in the ProductTests.cs File   

  using WorkingWithVisualStudio.Models; 
 using Xunit; 

   namespace WorkingWithVisualStudio.Tests { 

       public class ProductTests { 

           [Fact] 
         public void CanChangeProductName() { 

               // Arrange 
             var p = new Product { Name = "Test", Price = 100M }; 

               // Act 
             p.Name = "New Name"; 

               //Assert 
             Assert.Equal("New Name", p.Name); 
         } 

           [Fact] 
         public void CanChangeProductPrice() { 

               // Arrange 
             var p = new Product { Name = "Test", Price = 100M }; 

               // Act 
             p.Price = 200M; 

               //Assert 
              Assert.Equal(200M, p.Price);  
         } 
     } 
 } 

    If you have a lot of tests, it can take a while for them all to be performed. So that you can work rapidly 
and iteratively, the Test Explorer window offers different options for selecting subsets of tests to perform. The 
most useful subset is the set of tests that have failed, as shown in Figure  7-5 . Run the corrected test again and 
the Test Explorer will show that no tests have failed.    



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

171

     Isolating Components for Unit Testing 
 Writing unit tests for model classes like  Product  is easy. Not only is the  Product  class simple, but it is self-
contained, which means that when I perform an action on a  Product  object, I can be confident that I am 
testing the functionality provided by the  Product  class.     

 The situation is more complicated with other components in an MVC application because there are 
dependencies between them. The next set of tests that I define will operate on the controller, examining the 
sequence of  Product  objects that are passed between the controller and the view. 

 When comparing objects instantiated from custom classes, you will need to use the xUnit.net  Assert.
Equal  method that accepts an argument that implements the  IEqualityComparer<T  ➤ interface so that the 
objects can be compared. My first step is to add a class file called  Comparer.cs  to the unit test project and 
use it to define the helper classes shown in Listing  7-9 . 

     Listing 7-9.    The Contents of the Comparer.cs File in the WorkingWithVisualStudio.Tests Project   

  using System; 
 using System.Collections.Generic; 

   namespace WorkingWithVisualStudio.Tests { 

       public class Comparer { 

           public static Comparer<U> Get<U>(Func<U, U, bool> func) { 
             return new Comparer<U>(func); 
         } 
     } 

  Figure 7-5.    Selectively running tests       

 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

172

       public class Comparer<T> : Comparer, IEqualityComparer<T> { 
         private Func<T, T, bool> comparisonFunction; 

           public Comparer(Func<T, T, bool> func) { 
             comparisonFunction = func; 
         } 

           public bool Equals(T x, T y) { 
             return comparisonFunction(x, y); 
         } 

           public int GetHashCode(T obj) { 
             return obj.GetHashCode(); 
         } 
     } 
 } 

    These classes will allow me to create  IEqualityComparer<T  ➤ objects using lambda expressions rather 
than having to define a new class for each type of comparison that I want to make. This isn’t essential, but it 
will simplify the code in my unit test classes and make them easier to read and maintain. 

 Now that I can easily make comparisons, I can illustrate the problem of dependencies between 
components in the application. I added a new class called  HomeControllerTests.cs  to the 
WorkingWithVisualStudio.Tests project and used it to define the unit test shown in Listing  7-10 . 

     Listing 7-10.    The HomeControllerTests.cs File in the WorkingWithVisualStudio.Tests Project   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using WorkingWithVisualStudio.Controllers; 
 using WorkingWithVisualStudio.Models; 
 using Xunit; 

   namespace WorkingWithVisualStudio.Tests { 
     public class HomeControllerTests { 

           [Fact] 
         public void IndexActionModelIsComplete() { 
             // Arrange 
             var controller = new HomeController(); 

               // Act 
             var model = (controller.Index() as ViewResult)?.ViewData.Model 
                 as IEnumerable<Product>; 

               // Assert 
             Assert.Equal(SimpleRepository.SharedRepository.Products, model, 
                 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name 
                     && p1.Price == p2.Price)); 
         } 
     } 
 } 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

173

    The unit test in the listing checks that the  Index  action method passes all the objects in the repository 
to the view. (Ignore the act section of the test for the moment; I explain the  ViewResult  class and the role it 
plays in MVC applications in Chapter   17    . For the moment, it is enough to know that I am getting the model 
data returned by the  Index  action method.) 

 If you run the test, you will see that it fails, indicating that the set of objects in the repository differs 
from the set of objects returned by the  Index  method. But when it comes to figuring out why the test fails, 
there is a problem: the test is supposed to act on the  Home  controller, but the controller class depends on the 
 SimpleRepository  class, which makes it difficult to figure out whether the test is revealing a problem with 
the class it is intended to target or a problem with another part of the application. 

 The example application is simple enough that you could easily figure out the problem just by looking 
at the code for the  HomeController  and  SimpleRepository  classes. Visual inspection isn’t as easy in a real 
application, where the chain of dependencies can make it difficult to understand what causes a test to fail. 
Typically, the repository would rely on some kind of persistent storage system, such as a database, and a 
library that provides access to it and a unit test can act on a whole chain of complex components, any of 
which could be causing the problem. 

 Unit tests are effective when they target small parts of an application, such as an individual method 
or class. What I need is the ability to isolate the  Home  controller from the rest of the application so that I can 
limit the scope of the test and rule out any impact caused by the repository. 

   Isolating a Component 
 The key to isolating components is to use C# interfaces. To separate the controller from the repository, I added a 
new class file called  IRepository.cs  to the  Models  folder and used it to define the interface shown in Listing  7-11 . 

     Listing 7-11.    The Contents of the IRepository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace WorkingWithVisualStudio.Models { 

       public interface IRepository { 

           IEnumerable<Product> Products { get; } 
         void AddProduct(Product p); 
     } 
 } 

    There is nothing special about this interface (except that it doesn’t define the full set of operations that 
would usually be needed in a web application; see Chapter   8     for a more realistic and complete example). 
However, adding an interface like this allows me to easily isolate a component for testing. The first step is to 
update the  SimpleRepository  class so that it implements the new interface, as shown in Listing  7-12 . 

     Listing 7-12.    Implementing an Interface in the SimpleRepository.cs File   

  using System.Collections.Generic; 

   namespace WorkingWithVisualStudio.Models { 
      public class SimpleRepository : IRepository {  
         private static SimpleRepository sharedRepository = new SimpleRepository(); 
         private Dictionary<string, Product> products 

http://dx.doi.org/10.1007/978-1-4842-0397-2_17
http://dx.doi.org/10.1007/978-1-4842-0397-2_8


CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

174

             = new Dictionary<string, Product>(); 

           public static SimpleRepository SharedRepository => sharedRepository; 

           public SimpleRepository() { 
             var initialItems = new[] { 
                 new Product { Name = "Kayak", Price = 275M }, 
                 new Product { Name = "Lifejacket", Price = 48.95M }, 
                 new Product { Name = "Soccer ball", Price = 19.50M }, 
                 new Product { Name = "Corner flag", Price = 34.95M } 
             }; 
             foreach (var p in initialItems) { 
                 AddProduct(p); 
             } 
             products.Add("Error", null); 
         } 

           public IEnumerable<Product> Products => products.Values; 

           public void AddProduct(Product p) => products.Add(p.Name, p); 
     } 
 } 

    The next step is to modify the controller so that the property used to refer to the repository uses the 
interface and not the class type, as shown in Listing  7-13 . 

 ■   Tip    ASP.NET Core MVC supports a more elegant approach for solving this problem, known as  dependency 
injection , which I describe in Chapter   18    . Dependency injection often causes confusion, so I isolate components 
in a simpler and more manual way in this chapter.  

     Listing 7-13.    Adding a Repository Property in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using WorkingWithVisualStudio.Models; 
 using System.Linq; 

   namespace WorkingWithVisualStudio.Controllers { 
     public class HomeController : Controller { 
          public IRepository Repository = SimpleRepository.SharedRepository;  

           public IActionResult Index() => View(Repository.Products 
                     .Where(p => p?.Price < 50)); 

           [HttpGet] 
         public IActionResult AddProduct() => View(); 

           [HttpPost] 
         public IActionResult AddProduct(Product p) { 
             Repository.AddProduct(p); 

http://dx.doi.org/10.1007/978-1-4842-0397-2_18


CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

175

             return RedirectToAction("Index"); 
         } 
     } 
 } 

    This may not seem like a significant change, but it allows me to change the repository that the controller 
uses during testing, which is how I can isolate the controller. In Listing  7-14 , I have updated the controller 
unit tests so they use a special version of the repository. 

     Listing 7-14.    Isolating the Controller in the Unit Test in the HomeControllerTests.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using WorkingWithVisualStudio.Controllers; 
 using WorkingWithVisualStudio.Models; 
 using Xunit; 

   namespace WorkingWithVisualStudio.Tests { 
     public class HomeControllerTests { 

            class ModelCompleteFakeRepository : IRepository {  

                public IEnumerable<Product> Products { get; } = new Product[] {  
                  new Product { Name = "P1", Price = 275M },  
                  new Product { Name = "P2", Price = 48.95M },  
                  new Product { Name = "P3", Price = 19.50M },  
                  new Product { Name = "P3", Price = 34.95M }};  

                public void AddProduct(Product p) {  
                  // do nothing - not required for test  
              }  
          }  

           [Fact] 
         public void IndexActionModelIsComplete() { 
             // Arrange 
             var controller = new HomeController(); 
              controller.Repository = new ModelCompleteFakeRepository();  

               // Act 
             var model = (controller.Index() as ViewResult)?.ViewData.Model 
                 as IEnumerable<Product>; 

               // Assert 
              Assert.Equal(controller.Repository.Products, model,  
                 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name 
                     && p1.Price == p2.Price)); 
         } 
     } 
 } 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

176

    I have defined a fake implementation of the  IRepository  interface that implements only the property 
I need for the test and uses test data that will always be consistent (something that may not be the case when 
working with a real database, especially if you are sharing it with other developers who will be making their 
own changes). 

 The revised unit test still fails, which indicates that the problem is caused by the  Index  action method in 
the  HomeController  class and not the components it depends on. The action method that is being acted on 
by the unit test is sufficiently simple that the problem is obvious from inspecting it. 

   ... 
 public IActionResult Index() => View(Repository.Products.Where(p => p.Price < 50)); 
 ... 

   The problem is caused by the use of the LINQ  Where  method, which is being used to filter out any 
 Product  objects whose  Price  property has a value of 50 or more. At this point, I have a solid lead as to the 
cause of the problem, but it is good practice to create a test that confirms the problem before making a 
corrective change, as shown in Listing  7-15 . 

 ■   Tip    There is a lot of duplication in these tests. I describe how to simplify tests in the next section.  

     Listing 7-15.    Adding a Test in the HomeControllerTests.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using WorkingWithVisualStudio.Controllers; 
 using WorkingWithVisualStudio.Models; 
 using Xunit; 

   namespace WorkingWithVisualStudio.Tests { 
     public class HomeControllerTests { 

           class ModelCompleteFakeRepository : IRepository { 

               public IEnumerable<Product> Products { get; } = new Product[] { 
                 new Product { Name = "P1", Price = 275M }, 
                 new Product { Name = "P2", Price = 48.95M }, 
                 new Product { Name = "P3", Price = 19.50M }, 
                 new Product { Name = "P3", Price = 34.95M }}; 

               public void AddProduct(Product p) { 
                 // do nothing - not required for test 
             } 
         } 

           [Fact] 
         public void IndexActionModelIsComplete() { 
             // Arrange 
             var controller = new HomeController(); 
             controller.Repository = new ModelCompleteFakeRepository(); 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

177

               // Act 
             var model = (controller.Index() as ViewResult)?.ViewData.Model 
                 as IEnumerable<Product>; 

               // Assert 
             Assert.Equal(controller.Repository.Products, model, 
                 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name 
                     && p1.Price == p2.Price)); 
         } 

            class ModelCompleteFakeRepositoryPricesUnder50 : IRepository {  

                public IEnumerable<Product> Products { get; } = new Product[] {  
                  new Product { Name = "P1", Price = 5M },  
                  new Product { Name = "P2", Price = 48.95M },  
                  new Product { Name = "P3", Price = 19.50M },  
                  new Product { Name = "P3", Price = 34.95M }};  

                public void AddProduct(Product p) {  
                  // do nothing - not required for test  
              }  
          }  

            [Fact]  
          public void IndexActionModelIsCompletePricesUnder50() {  
              // Arrange  
              var controller = new HomeController();  
              controller.Repository = new ModelCompleteFakeRepositoryPricesUnder50();  

                // Act  
              var model = (controller.Index() as ViewResult)?.ViewData.Model  
                  as IEnumerable<Product>;  

                // Assert  
              Assert.Equal(controller.Repository.Products, model,  
                  Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name  
                     &&  p1.Price == p2.Price));  
          }  
     } 
 } 

    I have defined a new fake repository that only contains  Product  objects with  Price  values that are less 
than 50 and used it in a new test. If you run this test, you will see that it succeeds, which adds weight to the 
idea that the problem is caused by the use of the  Where  method in the  Index  action method. 

 In a real project, understanding why a test fails is the point at which you need to reconcile the purpose 
of the test with the specification for the application. It may well be the case that the  Index  method is 
supposed to filter  Product  objects by  Price , in which case the test will need to be revised. This is a common 
outcome, and a failed test doesn’t always indicate a real problem in the application. On the other hand, if the 
 Index  action method shouldn’t be filtering the model objects, then a corrective change is required, as shown 
in Listing  7-16 . 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

178

 UNDERSTANDING TEST-DRIVEN DEVELOPMENT

    I have followed the most commonly used unit testing style in this chapter, in which an application 
feature is written and then tested to make sure it works as required. This is popular because most 
developers think about application code first and testing comes second (this is certainly the category 
that I fall into). 

 The problem with this approach is that it tends to produce unit tests that focus only on the parts of 
the application code that were difficult to write or that needed some serious debugging, leaving some 
aspects of a feature only partially tested or untested altogether. 

 An alternative approach is  Test-Driven Development  (TDD). There are lots of variations on TDD, but the 
core idea is that you write the tests for a feature before implementing the feature itself. Writing the tests 
first makes you think more carefully about the specification you are implementing and how you will 
know that a feature has been implemented correctly. Rather than diving into the implementation detail, 
TDD makes you consider what the measures of success or failure will be in advance. 

 The tests that you write will all fail initially because your new feature will not be implemented. But as 
you add code to the application, your tests will gradually move from red to green and all of your tests 
will pass by the time that the feature is complete. TDD requires discipline, but it does produce a more 
comprehensive set of tests and can lead to more robust and reliable code.  

     Listing 7-16.    Removing the LINQ Filter in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using WorkingWithVisualStudio.Models; 
 using System.Linq; 

   namespace WorkingWithVisualStudio.Controllers { 
     public class HomeController : Controller { 
         public IRepository Repository = SimpleRepository.SharedRepository; 

            public IActionResult Index() => View(Repository.Products);  

           [HttpGet] 
         public IActionResult AddProduct() => View(new Product()); 

           [HttpPost] 
         public IActionResult AddProduct(Product p) { 
             Repository.AddProduct(p); 
             return RedirectToAction("Index"); 
         } 
     } 
 } 

    If you run the tests again, you will see that they all pass, as shown in Figure  7-6 .  



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

179

 This may seem like a lot of work to go to for such a simple problem, but the ability to test a specific 
component is essential in a real application. Reaching the point where you have identified the problem and 
have written tests to validate the fix is only possible when you can effectively isolate components.    

     Improving Unit Tests 
 The previous section introduced the basic approach to writing unit tests and running tests in Visual 
Studio and emphasized the importance of isolating the component that is being tested. In this section, I 
will introduce some more advanced tools and features that you can use to write tests more concisely and 
expressively. If you get immersed in the culture of unit testing, then you can end up with a lot of test code 
and the clarity of that code becomes important, especially as you will need to revise tests to reflect changes 
in the application they apply to during development and into maintenance. 

     Parameterizing a Unit Test 
 The tests I wrote for the  HomeController  class revealed a problem that was present only for some data 
values. To test for this condition, I ended up creating two similar tests, each of which had its own fake 
repository. This is a duplicative approach, especially since the only difference between these tests is the set 
of  decimal  values used for the  Price  properties of the  Product  objects in the fake repositories. 

 xUnit.net provides supports for  parameterized tests , where the data used in a test is removed from the 
test so that a single method can be used for multiple tests. In Listing  7-17 , I have used the parameterized test 
feature to remove duplication in tests for the  HomeController  class. 

  Figure 7-6.    Passing all tests       

 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

180

     Listing 7-17.    Parameterizing a Unit Test in the HomeControllerTests.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using WorkingWithVisualStudio.Controllers; 
 using WorkingWithVisualStudio.Models; 
 using Xunit; 

   namespace WorkingWithVisualStudio.Tests { 
     public class HomeControllerTests { 

           class ModelCompleteFakeRepository : IRepository { 

                public IEnumerable<Product> Products { get; set; }  

               public void AddProduct(Product p) { 
                 // do nothing - not required for test 
             } 
         } 

            [Theory]  
          [InlineData(275, 48.95, 19.50, 24.95)]  
          [InlineData(5, 48.95, 19.50, 24.95)]  
          public void IndexActionModelIsComplete(decimal price1, decimal price2,  
                  decimal price3, decimal price4) {  

               // Arrange 
             var controller = new HomeController(); 
              controller.Repository = new ModelCompleteFakeRepository {  
                  Products = new Product[] {  
                      new Product {Name = "P1", Price = price1 },  
                      new Product {Name = "P2", Price = price2 },  
                      new Product {Name = "P3", Price = price3 },  
                      new Product {Name = "P4", Price = price4 },  
                  }  
              };  

               // Act 
             var model = (controller.Index() as ViewResult)?.ViewData.Model 
                 as IEnumerable<Product>; 

               // Assert 
             Assert.Equal(controller.Repository.Products, model, 
                 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name 
                     && p1.Price == p2.Price)); 
         } 
     } 
 } 

    Parameterized unit tests are denoted with the  Theory  attribute rather than the  Fact  attribute that is 
used for standard tests. I have also used the  InlineData  attribute, which allows me to specify values for 
arguments defined by the unit test method. C# restricts the way that data values are expressed in attributes, 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

181

so I have defined four  decimal  arguments on the test method and used the  InlineData  attribute to provide 
values for them. I use the  decimal  values within the test method to generate an array of  Product  objects, 
which I use to set the  Products  property of the fake repository object. 

 Each  Inline  attribute defines a separate unit test that is shown as a distinct item in the Visual Studio 
Test Explorer, as Figure  7-7  illustrates. The Test Explorer entry reveals the values that will be used for the unit 
test method arguments.  

  Figure 7-7.    Parameterized tests in the Visual Studio Test Explorer       

   Getting Test Data from a Method or Property 
 The limitations imposed on expressing data in attributes restrict the usefulness of the  InlineData  attribute, 
but an alternative approach is to create a static method or property that returns the object required for 
testing. In this situation, there are no restrictions on the way that data is defined, and you can create a wider 
range of test values. To demonstrate how this works, I added a class file called  ProductTestData.cs  to the 
unit test project and used it to define the class shown in Listing  7-18 . 

     Listing 7-18.    The Contents of the ProductTestData.cs File in the WorkingWithVisualStudio.Tests Project   

  using System.Collections; 
 using System.Collections.Generic; 
 using WorkingWithVisualStudio.Models; 

   namespace WorkingWithVisualStudio.Tests { 

       public class ProductTestData : IEnumerable<object[]> { 

           public IEnumerator<object[]> GetEnumerator() { 
             yield return new object[] { GetPricesUnder50() }; 
             yield return new object[] { GetPricesOver50 }; 
         } 

           IEnumerator IEnumerable.GetEnumerator() { 
             return this.GetEnumerator(); 
         } 

           private IEnumerable<Product> GetPricesUnder50() { 

 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

182

             decimal[] prices = new decimal[] { 275, 49.95M, 19.50M, 24.95M }; 
             for (int i = 0; i < prices.Length; i++) { 
                 yield return new Product { Name = $"P{i + 1}", Price = prices[i] }; 
             } 
         } 

           private Product[] GetPricesOver50 => new Product[] { 
             new Product { Name = "P1", Price = 5 }, 
             new Product { Name = "P2", Price = 48.95M }, 
             new Product { Name = "P3", Price = 19.50M }, 
             new Product { Name = "P4", Price = 24.95M }}; 
     } 
 } 

    Test data is provided through a class that implemented the  IEnumerable<object[]  ➤ interface, which 
returns a sequence of object arrays. Each object array in the sequence contains one set of arguments that 
will be passed to a test method. I am going to redefine my test method so that it accepts an array of  Product  
objects, which adds another layer to the test data. The layer is an enumeration of object arrays, each of which 
contains a single array of  Product  objects. This depth of structure in the test data can be confusing, but it is 
important to get right because otherwise your tests won’t work when the number of arguments that Xunit.
net tries to pass to the test method doesn’t match the method signature. 

 I like to structure my test data classes so that  private  methods or properties define individual sets 
of test data, which is then combined into sequences of object arrays by the  GetEnumerator  method. To 
demonstrate different techniques, I have created arrays of  Product  objects using both a method and a 
property, but I tend to use one approach in my own projects (the choice of which is driven by the kind of 
data that I am testing with). Listing  7-19  shows how I can use the test data class with the  Theory  attribute to 
set up my tests. 

 ■   Tip    If you want to include the test data in the same class as the unit tests, then you can use the 
 MemberData  attribute instead of  ClassData . The  MemberData  attribute is configured using a string that specifies 
the name of a static method that will provide an  IEnumerable<object[]> , where each object array in the 
sequence is a set of arguments for the test method.  

     Listing 7-19.    Using a Test Data Class in the HomeControllerTests.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using WorkingWithVisualStudio.Controllers; 
 using WorkingWithVisualStudio.Models; 
 using Xunit; 

   namespace WorkingWithVisualStudio.Tests { 
     public class HomeControllerTests { 

           class ModelCompleteFakeRepository : IRepository { 

               public IEnumerable<Product> Products { get; set; } 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

183

               public void AddProduct(Product p) { 
                 // do nothing - not required for test 
             } 
         } 

           [Theory] 
          [ClassData(typeof(ProductTestData))]  
          public void IndexActionModelIsComplete(Product[] products ) {  
             // Arrange 
             var controller = new HomeController(); 
             controller.Repository = new ModelCompleteFakeRepository { 
                  Products = products  
             }; 

               // Act 
             var model = (controller.Index() as ViewResult)?.ViewData.Model 
                 as IEnumerable<Product>; 

               // Assert 
             Assert.Equal(controller.Repository.Products, model, 
                 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name 
                     && p1.Price == p2.Price)); 
         } 
     } 
 } 

    The  ClassData  attribute is configured with the type of the test data class, which is  ProductTestData  in 
this case. When the tests are run, Xunit.net will create a new instance of the  ProductTestData  class and use 
it to get the sequence of test data for the test. 

 ■   Note    If you look at the list of tests in the Test Explorer, you will see that there is a single entry for the 
 IndexActionModelIsComplete  tests, even though the  ProductTestData  class provides two sets of test 
data. This happens when the test data objects cannot be serialized and can be resolved by applying the 
 Serializable  attribute to the test objects.    

     Improving Fake Implementations 
 Isolating components effectively requires fake implementations of classes to provide test data or to check 
that a component behaves the way that it should. In previous examples, I created a class that implemented 
the  IRepository  interface. This can be an effective approach, but it does lead to creating implementation 
classes for every kind of test that you want to run. As an example, Listing  7-20  shows the addition of a test 
that checks that the  Index  action method calls the  Products  method in the repository only once. (This kind 
of test is common when there is concern that a component is making duplicate queries to the repository, 
leading to multiple database queries.) 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

184

     Listing 7-20.    Adding a Unit Test to the HomeControllerTests.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using WorkingWithVisualStudio.Controllers; 
 using WorkingWithVisualStudio.Models; 
 using Xunit; 
 using System; 

   namespace WorkingWithVisualStudio.Tests { 
     public class HomeControllerTests { 

           class ModelCompleteFakeRepository : IRepository { 

               public IEnumerable<Product> Products { get; set; } 

               public void AddProduct(Product p) { 
                 // do nothing - not required for test 
             } 
         } 

           [Theory] 
         [ClassData(typeof(ProductTestData))] 
         public void IndexActionModelIsComplete(Product[] products ) { 
             // Arrange 
             var controller = new HomeController(); 
             controller.Repository = new ModelCompleteFakeRepository { 
                 Products = products 
             }; 

               // Act 
             var model = (controller.Index() as ViewResult)?.ViewData.Model 
                 as IEnumerable<Product>; 

               // Assert 
             Assert.Equal(controller.Repository.Products, model, 
                 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name 
                     && p1.Price == p2.Price)); 
         } 

            class PropertyOnceFakeRepository : IRepository {  
              public int PropertyCounter { get; set; } = 0;  

                public IEnumerable<Product> Products {  
                  get {  
                      PropertyCounter++;  
                      return new[] { new Product { Name = "P1", Price = 100 } };  
                  }  
              }  

                public void AddProduct(Product p) {  
                  // do nothing - not required for test  



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

185

              }  
          }  

            [Fact]  
          public void RepositoryPropertyCalledOnce() {  
              // Arrange  
              var repo = new PropertyOnceFakeRepository();  
              var controller = new HomeController { Repository = repo };  

                // Act  
              var result = controller.Index();  

                // Assert  
              Assert.Equal(1, repo.PropertyCounter);  
          }  
     } 
 } 

    Fake implementations are not always simple sources of data; they can also be used to assess the way 
that components perform their work. In this case, I added a simple counter property that is incremented 
each time that the  Products  property of the fake repository is read, and I used the  Assert.Equal  method to 
make sure that the property is called only once. 

   Adding a Mocking Framework 
 Creating fake objects like this gets out of hand, and the best way to get things back under control is to 
use a  fakes framework , also known as a  mocking framework . (There is a technical difference between 
fake and mock objects, but modern test tools blur them together for ease of use, so I will use these terms 
interchangeably.) The framework I use in this chapter is called Moq and is described by Table  7-4 .         

   Table 7-4.    Putting Moq in Context   

 Question  Answer 

 What is it?  Moq is a software package for creating fake implementations of components in 
an application. 

 Why is it useful?  A mocking framework makes it easier to create fake components to isolate 
parts of the application for unit testing. 

 How is it used?  Moq uses lambda expressions to define functionality for the fake component 
and only requires the features that are used for testing to be defined. 

 Are there any pitfalls or 
limitations? 

 Getting used to the syntax can take some effort. See    https://github.com/Moq/
moq4      for documentation and examples. 

 Are there any 
alternatives? 

 There are several alternatives frameworks available including NSubstitute 
(   http://nsubstitute.github.io     ) and FakeItEasy (   http://fakeiteasy.
github.io     ). All of these frameworks offer similar features, and choosing 
between them is a matter of selecting the syntax that you prefer. 

 Has it changed since 
MVC 5? 

 The use of a mocking framework is specific to unit testing and is not a 
requirement of ASP.NET Core MVC. 

https://github.com/Moq/moq4
https://github.com/Moq/moq4
http://nsubstitute.github.io/
http://fakeiteasy.github.io/
http://fakeiteasy.github.io/


CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

186

 As I write this chapter, it is in the early days of .NET Core, and the main mocking packages do not yet 
support it. Microsoft created a special fork of the Moq project and ported it to work with .NET Core, so that is 
the package that I am going to use in this book. However, since this is not the mainstream release of Moq, an 
additional step is required to configure NuGet to download the Microsoft package. 

 I selected Options from the Visual Studio Tools menu and navigated to the NuGet Package 
Manager ➤ Package Sources section, as shown in Figure  7-8 . This allows sources of packages to be 
configured.  

   Table 7-5.    The Settings Required for the NuGet Source   

 Field  Value 

 Name   ASP.NET Contrib  

 Source   https://www.myget.org/F/aspnet-contrib/api/v3/index.json  

  Figure 7-8.    Configuring NuGet package sources       

 I clicked the green plus button and entered the details shown in Table  7-5  into the Name and Source fields.  

 I clicked the Update button to use the field values and clicked the OK button to close the settings window. 

 



CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

187

 ■   Tip    Using the Microsoft version of Moq is a short-term measure that you won’t have to use once the main 
development effort adds support for .NET Core. When that happens, you will be able to follow the instructions at 
   http://github.com/moq/moq4      for installing Moq.  

 In Listing  7-21 , I added the Microsoft version of the Moq package (known as  moq.netcore ) to the 
 project.json  file of the unit test project, along with the  System.Diagnostics.TraceSource  package, which 
 moq.netcore  depends on. 

     Listing 7-21.    Adding Moq to the project.json File in the WorkingWithVisualStudio.Tests Project   

 { 
   "version": "1.0.0-*", 
   "testRunner": "xunit", 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "type": "platform", 
       "version": "1.0.0" 
     }, 
     "xunit": "2.1.0", 
     "dotnet-test-xunit": "2.2.0-preview2-build1029", 
     "WorkingWithVisualStudio": "1.0.0", 
      "moq.netcore": "4.4.0-beta8",  
      "System.Diagnostics.TraceSource": "4.0.0"  
   }, 
   "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6", "portable-net45+win8"] 
     } 
   } 
 } 

      Creating a Mock Object 
 Creating a mock object means telling Moq what kind of object you want, configuring its behavior, and 
applying the object to the subject of the test. In Listing  7-22 , I have used Moq to replace the two fake 
repositories in the tests for the  HomeController . 

     Listing 7-22.    Using Mock Objects in the HomeControllerTests.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Collections.Generic; 
 using WorkingWithVisualStudio.Controllers; 
 using WorkingWithVisualStudio.Models; 
 using Xunit; 
 using System; 
  using Moq;  

   namespace WorkingWithVisualStudio.Tests { 
     public class HomeControllerTests { 

http://github.com/moq/moq4


CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

188

           [Theory] 
         [ClassData(typeof(ProductTestData))] 
         public void IndexActionModelIsComplete(Product[] products ) { 

               // Arrange 
              var mock = new Mock<IRepository>();  
              mock.SetupGet(m => m.Products).Returns(products);  
              var controller = new HomeController { Repository = mock.Object };  

               // Act 
             var model = (controller.Index() as ViewResult)?.ViewData.Model 
                 as IEnumerable<Product>; 

               // Assert 
             Assert.Equal(controller.Repository.Products, model, 
                 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name 
                     && p1.Price == p2.Price)); 
         } 

           [Fact] 
         public void RepositoryPropertyCalledOnce() { 

               // Arrange 
              var mock = new Mock<IRepository>();  
              mock.SetupGet(m => m.Products)  
                  .Returns(new[] { new Product { Name = "P1", Price = 100 } });  
              var controller = new HomeController { Repository = mock.Object };  

               // Act 
             var result = controller.Index(); 

               // Assert 
              mock.VerifyGet(m => m.Products, Times.Once);  
         } 
     } 
 } 

    The use of Moq has allowed me to remove the fake implementations of the  IRepository  interface and 
replace them with just a few lines of code. I am not going to go into detail about the different features that 
Moq supports, but I will explain the way that I used Moq in the examples. (See    https://github.com/Moq/
moq4      for examples and documentation for Moq. There are also examples throughout the rest of the book as I 
explain how to unit test different types of MVC component.) 

 The first step is to create a new instance of the  Mock  object, specifying the interface that should be 
implemented, like this: 

   ... 
 var mock = new Mock<IRepository>(); 
 ... 

https://github.com/Moq/moq4
https://github.com/Moq/moq4


CHAPTER 7 ■ UNIT TESTING MVC APPLICATIONS

189

   The  Mock  object I created will fake the  IRepository  interface. The next step is to define the functionality 
that is required for the test. Unlike a regular class implementation of an interface, a mock object is only 
configured with the behavior required for the test. For the first mock repository, I need to implement the 
 Product  property so that it returns the set of  Product  objects that are passed to the test method through the 
 ClassData  attribute, as follows: 

   ... 
 mock.SetupGet(m => m.Products).Returns(products); 
 ... 

   The  SetupGet  method is used to implement the getter for a property. The argument to this method is 
a lambda expression that specifies the property to be implemented, which is  Products  in this example. The 
 Returns  method is called on the result of the  SetupGet  method to specify the result that will be returned 
when the property value is read. I used the same approach for the second mock repository but specified a 
fixed value, like this: 

   ... 
 mock.SetupGet(m => m.Products) 
                  .Returns(new[] { new Product { Name = "P1", Price = 100 } });  
 ... 

   The  Mock  class defines an  Object  property, which returns the object that implements the specified 
interface and with the behaviors that have been defined. In both unit tests, I use the  Object  property to get 
the repository to configure the controller, like this: 

   ... 
 var controller = new HomeController {  Repository = mock.Object  }; 
 ... 

   The final Moq feature I used was to check that the  Products  property was called once, like this: 

   ... 
 mock.VerifyGet(m => m.Products, Times.Once); 
 ... 

   The  VerifyGet  method is one of the methods defined by the  Mock  class to inspect the state of the mock 
object when the test has completed. In this case, the  VerifyGet  method allows me to check the number of 
times that the  Products  property method has been read. The  Times.Once  value specifies that the  VerifyGet  
method should throw an exception if the property has not been read exactly once, which will cause the test 
to fail. (The  Assert  methods usually used in tests work by throwing an exception when a test fails, which is 
why the  VerifyGet  method can be used to replace an  Assert  method when working with mock objects.)    

     Summary 
 Most of this chapter focused on unit testing, which can be a powerful tool for improving the quality of 
code. Unit testing doesn’t suit every developer, but it is worth experimenting with and can be useful even 
if used only for complex features or problem diagnosis. I described the use of the xUnit.net test framework, 
explained the importance of isolating components for testing, and demonstrated some tools and techniques 
for simplifying unit test code. In the next chapter, I start the development of a more realistic MVC application 
to show you how different functional components work together before digging into the individual details in 
Part 2 of this book.     



191© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_8

    CHAPTER 8   

 SportsStore: A Real Application                          

 In the previous chapters, I built quick and simple MVC applications. I described the MVC pattern, the 
essential C# features, and the kinds of tools that good MVC developers require. Now it is time to put 
everything together and build a simple but realistic e-commerce application. 

 My application, called SportsStore, will follow the classic approach taken by online stores everywhere. 
I will create an online product catalog that customers can browse by category and page, a shopping cart 
where users can add and remove products, and a checkout where customers can enter their shipping details. 
I will also create an administration area that includes create, read, update, and delete (CRUD) facilities for 
managing the catalog, and I will protect it so that only logged-in administrators can make changes. 

 My goal in this chapter and those that follow is to give you a sense of what real MVC development is like 
by creating as realistic an example as possible. I want to focus on the ASP.NET Core MVC, of course, so I have 
simplified the integration with external systems, such as the database, and omitted others entirely, such as 
payment processing. 

 You might find the going a little slow as I build up the levels of infrastructure I need, but the initial 
investment in an MVC application pays dividends, resulting in maintainable, extensible, well-structured 
code with excellent support for unit testing. 

 UNIT TESTING

 I have made quite a big deal about the ease of unit testing in MVC and about how unit testing can be an 
important and useful part of the development process. You will see this demonstrated throughout this 
part of the book because I have included details of unit tests and techniques as they relate to key MVC 
features. 

 I know this is not a universal opinion. If you do not want to unit test, that is fine with me. To that end, 
when I have something to say that is purely about testing, I put it in a sidebar like this one. If you are 
not interested in unit testing, you can skip right over these sections, and the SportsStore application will 
work just fine. You do not need to do any kind of unit testing to get the technology benefits of ASP.NET 
Core MVC, although, of course, support for testing is a key reason for adopting ASP.NET Core MVC.  

 Most of the MVC features I use for the SportsStore application have their own chapters later in the book. 
Rather than duplicate everything here, I tell you just enough to make sense for the example application and 
point you to the other chapter for in-depth information. 

 I will call out each step needed to build the application so that you can see how the MVC features fit 
together. You should pay particular attention when I create views. You will get some odd results if you do not 
follow the examples closely. 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

192

 ■   Note    Microsoft has announced that the tooling used to create ASP.NET Core MVC applications will change in 
the next version of Visual Studio. See this book’s page on Apress.com for updates when the new tools are released.  

     Getting Started 
 You will need to install Visual Studio if you are planning to code the SportsStore application on your own 
computer as you read through this part of the book and make sure that you install the LocalDB option, 
which is required to store data persistently. 

 ■   Note    If you just want to follow the project without having to re-create it, then you can download the 
SportsStore project as part of the free source code download that accompanies this book available at Apress.
com. You do not need to follow along, of course. I have tried to make the screenshots and code listings as easy 
to follow as possible, just in case you are reading this book on a train, in a coffee shop, or the like.  

     Creating the MVC Project 
    I am going to follow the same basic approach that I used in earlier chapters, which is to start with an empty 
project and add all of the configuration files and components that I require. I started by selecting New ➤ Project 
from the Visual Studio File menu and selecting the ASP.NET Core Web Application (.NET Core) project 
template, as shown in Figure  8-1 . I set the name of the project to be SportsStore and clicked the OK button.  

  Figure 8-1.    Selecting the project type       

 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

193

 I selected the Empty template, as shown in Figure  8-2 , and clicked the OK button to create the 
SportsStore project.  

  Figure 8-2.    Selecting the project template       

   Adding the NuGet Packages 
 The Empty project template installs the basic ASP.NET Core features but requires additional packages to 
provide functionality required for MVC applications. Listing  8-1  shows the additions I made to the  project.
json  file to add the packages that I need to get started with the SportsStore application. 

      Listing 8-1.    Adding NuGet Packages in the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
      "Microsoft.AspNetCore.Razor.Tools": {  
        "version": "1.0.0-preview2-final",  
        "type": "build"  
      },  

 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

194

      "Microsoft.AspNetCore.StaticFiles": "1.0.0",  
      "Microsoft.AspNetCore.Mvc": "1.0.0"  
   }, 

     "tools": { 
      "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final",  
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": 
         "1.0.0-preview2-final" 
   }, 

     "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6", "portable-net45+win8"] 
     } 
   }, 

     "buildOptions": { 
     "emitEntryPoint": true, 
     "preserveCompilationContext": true 
   }, 

     "runtimeOptions": { 
     "configProperties": { 
       "System.GC.Server": true 
     } 
   }, 

     "publishOptions": { 
     "include": ["wwwroot","web.config"] 
   }, 

     "scripts": { 
     "postpublish": [ "dotnet publish-iis --publish-folder %publish:OutputPath% --framework 
%publish:FullTargetFramework%" ] 
   } 
 } 

    The packages that I added to the  dependencies  section of the  project.json  file provide the most basic 
functionality required to get started with MVC development. I’ll add other packages as the SportsStore 
application developers, but these packages are a good starting point, as described in Table  8-1 .  

 In addition to the packages in the  dependencies  section, Listing  8-1  includes an addition to the  tools  
section of the  project.json  file that configures the  Microsoft.AspNetCore.Razor.Tools  package for use in 
Visual Studio and enables IntelliSense for the built-in tag helpers, which are used to create HTML content 
that is tailored to the configuration of the MVC application.  



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

195

   Creating the Folder Structure 
 The next step is to add the folders that will contain the application components required for an MVC 
application: models, controllers, and views. For each of the folders described in Table  8-2 , right-click the 
SportsStore project item in the Solution Explorer (the item inside the  src  folder), select Add ➤ New Folder 
from the pop-up menu, and set the folder name. Additional folders will be required later, but these reflect 
the main parts of the MVC application and are enough to get started with.   

   Table 8-1.    The Additional NuGet Packages in the project.json File   

 Name  Description 

  Microsoft.AspNetCore.Mvc   This package contains ASP.NET Core MVC and provides access to 
essential features such as controllers and Razor views. 

  Microsoft.AspNetCore.StaticFiles   This package provides support for serving static files, such as 
images, JavaScript, and CSS, from the  wwwroot  folder. 

  Microsoft.AspNetCore.Razor.Tools   This package provides tooling support for Razor views, including 
IntelliSense for the built-in tag helpers, which I use in the views 
for the SportsStore application. 

   Table 8-2.    The Folders Required for the SportsStore Project   

 Name  Description 

  Models   This folder will contain the model classes. 

  Controllers   This folder will contain the controller classes. 

  Views   This folder holds everything related to views, including individual Razor files, the view 
start file, and the view imports file. 

   Configuring the Application 
 An ASP.NET Core MVC application relies on several configuration files. First, having installed the NuGet 
packages, I need to edit the  Startup  class to tell ASP.NET to use them, as shown in Listing  8-2 . 

     Listing 8-2.    Enabling Features in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 

   namespace SportsStore { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddMvc();  
         } 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

196

           public void Configure(IApplicationBuilder app, 
                 IHostingEnvironment env, ILoggerFactory loggerFactory) { 
              app.UseDeveloperExceptionPage();  
              app.UseStatusCodePages();  
              app.UseStaticFiles();  
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

    The  ConfigureServices  method is used to set up shared objects that can be used throughout the 
application through the dependency injection feature, which I describe in Chapter   18    . The  AddMvc  method 
that I call in the  ConfigureServices  method is an extension method that sets up the shared objects used in 
MVC applications. 

 The  Configure  method is used to set up the features that receive and process HTTP requests. Each 
method that I call in the  Configure  method is an extension method that sets up an HTTP request processor, 
as described in Table  8-3 .  

   Table 8-3.    The Initial Feature Methods Called in the Start Class   

 Method  Description 

  UseDeveloperExceptionPage()   This extension method displays details of exceptions that occur in the 
application, which is useful during the development process. It should 
not be enabled in deployed applications, and I disable this feature in 
Chapter   12    . 

  UseStatusCodePages()   This extension method adds a simple message to HTTP responses that 
would not otherwise have a body, such as  404 - Not Found  responses. 

  UseStaticFiles()   This extension method enables support for serving static content from 
the  wwwroot  folder. 

  UseMvcWithDefaultRoute()   This extension method enables ASP.NET Core MVC with a default 
configuration (which I will change later in the development process). 

 ■   Note    The  Startup  class is an important ASP.NET Core feature. I describe it in detail in Chapter   14    .  

 Next, I need to prepare the application for Razor views. Right-click the Views folder, select Add ➤ New 
Item from the pop-up menu, and select the MVC View Imports Page item from the ASP.NET category, as 
shown in Figure  8-3 .  

http://dx.doi.org/10.1007/978-1-4842-0397-2_18
http://dx.doi.org/10.1007/978-1-4842-0397-2_12
http://dx.doi.org/10.1007/978-1-4842-0397-2_14


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

197

 Click the Add button to create the  _ViewImports.cshtml  file and set the contents of the new file to 
match Listing  8-3 . 

     Listing 8-3.    The Contents of the _ViewImports.cshtml File in the Views Folder   

 @using SportsStore.Models 
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

   The  @using  statement will allow me to use the types in the  SportsStore.Models  namespace in views 
without needing to refer to the namespace. The  @addTagHelper  statement enables the built-in tag helpers, 
which I use later to create HTML elements that reflect the configuration of the SportsStore application.   

     Creating the Unit Test Project 
       Creating the unit test project requires the same process as described Chapter   7    . First, use the Windows File 
Explorer to create a new folder called  test  alongside the existing  src  folder in the  SportsStore  solution 
folder. 

 Next, returning to Visual Studio, right-click the SportsStore solution item (the top-level item in the 
Solution Explorer), and create a new Solution Folder called  test . Right-click the new  test  folder in the 
Solution Explorer and select Add ➤ New Project from the pop-up menu. 

 Select the Class Library (.NET Core) project template from the Installed ➤ Visual C# ➤ Windows ➤ .NET 
Core category, as shown in Figure  8-4 , and set the name of the project to SportsStore.Tests.  

  Figure 8-3.    Creating the view imports file       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_7


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

198

 Click the Browse button and navigate to the  test  folder. Click OK to select the folder and then click OK 
to create the unit test project. 

 Once the unit test project has been created, edit the  project.json  file it contains to match Listing  8-4  
and add the packages required for testing and creating mock objects. 

 ■   Note    The  moq.netcore  package that I use in Listing  8-4  requires a configuration change to Visual Studio, 
as described in the “Adding a Mocking Framework” section of Chapter   7    . If you did not follow the examples in 
that chapter, you will need to make the configuration change described in that section now.  

      Listing 8-4.    The Contents of the project.json File in the Unit Test Project   

 { 
   "version": "1.0.0-*", 
   "testRunner": "xunit", 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "type": "platform", 
       "version": "1.0.0" 
     }, 
     "xunit": "2.1.0", 

  Figure 8-4.    Creating the unit test project       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_7


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

199

     "dotnet-test-xunit": "2.2.0-preview2-build1029", 
     "moq.netcore": "4.4.0-beta8", 
     "System.Diagnostics.TraceSource": "4.0.0", 
     "SportsStore": "1.0.0" 
   }, 
   "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6", "portable-net45+win8"] 
     } 
   } 
 } 

        Checking and Running the Application 
 The application and unit test projects are created and configured and ready for development. The Solution 
Explorer should contain the items shown in Figure  8-5 . You will have problems if you see different items or 
items are not in the same locations, so take a moment to check that everything is present and in the right place.  

  Figure 8-5.    The Solution Explorer for the SportsStore application and unit test projects       

 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

200

 If you select Start Debugging from the Debug menu (or Start Without Debugging if you prefer the 
iterative development style I described in Chapter   6    ), you will see an error page, as shown in Figure  8-6 . 
The error message is shown because there are no controllers in the application to handle requests at the 
moment, which is something that I will address shortly.    

  Figure 8-6.    Running the SportsStore application       

     Starting the Domain Model 
    All projects start with the domain model, which is the heart of an MVC application. Since this is an 
e-commerce application, the most obvious model I need is for a product. I added a class file called  Product.cs  
to the  Models  folder and used it to define the class shown in Listing  8-5 . 

     Listing 8-5.    The Contents of the Product.cs File in the Models Folder   

  namespace SportsStore.Models { 

       public class Product { 
         public int ProductID { get; set; } 
         public string Name { get; set; } 
         public string Description { get; set; } 
         public decimal Price { get; set; } 
         public string Category { get; set; } 
     } 
 } 

        Creating a Repository 
 I need some way of getting  Product  objects from a database. As I explained in Chapter   3    , the model includes 
the logic for storing and retrieving the data from the persistent data store. I won’t worry about how I am 
going to implement data persistence for the moment, but I will start the process of defining an interface for 
it. I added a new C# interface file called  IProductRepository.cs  to the  Models  folder and used it to define 
the interface shown in Listing  8-6 . 

     Listing 8-6.    The Contents of the IProductRepository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace SportsStore.Models { 

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_6
http://dx.doi.org/10.1007/978-1-4842-0397-2_3


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

201

       public interface IProductRepository { 
         IEnumerable<Product> Products { get; } 
     } 
 } 

    This interface uses  IEnumerable<T  > to allow a caller to obtain a sequence of  Product  objects, without 
saying how or where the data is stored or retrieved. A class that depends on the  IProductRepository  
interface can obtain  Product  objects without needing to know anything about where they are coming 
from or how the implementation class will deliver them. I will revisit the  IProductRepository  interface 
throughout the development process to add features.  

     Creating a Fake Repository 
 Now that I have defined an interface, I could implement the persistence mechanism and hook it up to a 
database, but I want to add some of the other parts of the application first. To do this, I am going to create a 
fake implementation of the  IProductRepository  interface that will stand in until I return to the topic of data 
storage. To create the fake repository, I added a class file called  FakeProductRepository.cs  to the  Models  
folder and used it to define the class shown in Listing  8-7 . 

     Listing 8-7.    The Contents of FakeProductRepository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace SportsStore.Models { 

       public class FakeProductRepository : IProductRepository { 

           public IEnumerable<Product> Products => new List<Product> { 
             new Product { Name = "Football", Price = 25 }, 
             new Product { Name = "Surf board", Price = 179 }, 
             new Product { Name = "Running shoes", Price = 95 } 
         }; 
     } 
 } 

    The  FakeProductRepository  class implements the  IProductRepository  interface by returning a fixed 
collection of  Product  objects as the value of the  Products  property.  

     Registering the Repository Service 
    MVC emphasizes the use of  loosely coupled components , which means that you can make a change in one part 
of the application without having to make corresponding changes elsewhere. This approach categorizes parts of 
the application as  services , which provide features that other parts of the application use. The class that provides a 
service can then be altered or replaced without requiring changes in the classes that use it. I explain this in depth 
in Chapter   18     but for the SportsStore application, I want to create a repository service, which allows controllers 
to get objects that implement the  IProductRepository  interface without knowing which class is being used. 
This will allow me to start developing the application using the simple  FakeProductRepository  class I created 
in the previous section and then replace it with a real repository later without having to make changes in all of 
the classes that need access to the repository. Services are registered in the  ConfigureServices  method of the 
 Startup  class, and in Listing  8-8 , I have defined a new service for the repository. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_18


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

202

     Listing 8-8.    Creating the Repository Service in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
  using SportsStore.Models;  

   namespace SportsStore { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddTransient<IProductRepository,  
                  FakeProductRepository>();  
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app, 
                 IHostingEnvironment env, ILoggerFactory loggerFactory) { 
             app.UseDeveloperExceptionPage(); 
             app.UseStatusCodePages(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    The statement I added to the  ConfigureServices  method tells ASP.NET that when a component, 
such as a controller, needs an implementation of the  IProductRepository  interface, it should receive 
an instance of the  FakeProductRepository  class. The  AddTransient  method specifies that a new 
 FakeProductRepository  object should be created each time the  IProductRepository  interface is needed. 
Don’t worry if this doesn’t make sense at the moment; you will see how it fits into the application shortly, 
and I explain what is happening in detail in Chapter   18    .   

     Displaying a List of Products 
 I could spend the rest of this chapter building out the domain model and the repository and not touch 
the rest of the application at all. I think you would find that boring, though, so I am going to switch 
tracks and start using MVC in earnest and come back to add model and repository features as I 
need them. 

 In this section, I am going to create a controller and an action method that can display details of the 
products in the repository. For the moment, this will be for only the data in the fake repository, but I will sort 
that out later. I will also set up an initial  routing configuration  so that MVC knows how to map requests for 
the application to the controller I create. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_18


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

203

 USING THE VISUAL STUDIO MVC SCAFFOLDING

    Throughout this book, I create MVC controllers and views by right-clicking a folder in the Solution 
Explorer, selecting Add ➤ New Item from the pop-up menu, and then choosing an item template from 
the Add New Item window. There is an alternative, known as  scaffolding , in which Visual Studio provides 
items in the Add menu specifically for creating controllers and views. When you select these menu 
items, you are promoted to choose a scenario for the component that you want to create, such as 
controller with read/write actions or a view that contains a form that will be used to create a specific 
model object. 

 I don’t use the scaffolding in this book. The code and markup that the scaffolding generates is so 
generic as to be all but useless, while the set of scenarios that are supported are narrow and don’t 
address common development problems. My goal in this book is not only to make sure you know how 
to create MVC applications but also to explain how everything works behind the scenes, and that is 
harder to do when responsibility for creating components is handed to the scaffolding. 

 That said, this is another situation where your development style may be different from mine, and 
you may find that you prefer working with the scaffolding. If that’s the case, then you can enable 
it by making some additions to the  project.json  file. First, two new packages are required in the 
 dependencies  section, like this: 

      ... 
    "dependencies": { 
      "Microsoft.NETCore.App": { 
        "version": "1.0.0", 
        "type": "platform" 
      }, 
      "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
      "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
      "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
      "Microsoft.Extensions.Logging.Console": "1.0.0", 
      "Microsoft.AspNetCore.Razor.Tools": { 
        "version": "1.0.0-preview2-final", 
        "type": "build" 
      }, 
      "Microsoft.AspNetCore.StaticFiles": "1.0.0", 
      "Microsoft.AspNetCore.Mvc": "1.0.0", 
       "Microsoft.VisualStudio.Web.CodeGeneration.Tools": {  
         "version": "1.0.0-preview2-final",  
         "type": "build"  
       },  
       "Microsoft.VisualStudio.Web.CodeGenerators.Mvc": {  
         "version": "1.0.0-preview2-final",  
         "type": "build"  
       }  
    }, 
    ... 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

204

   Second, the packages must be registered in the  tools  section, like this: 

      ... 
    "tools": { 
      "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final", 
      "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final", 
       "Microsoft.VisualStudio.Web.CodeGeneration.Tools": {  
         "version": "1.0.0-preview2-final",  
         "imports": [  
           "portable-net45+win8+dnxcore50",  
           "portable-net45+win8"  
         ]  
       }  
    }, 
    ... 

   Once you save the changes and Visual Studio has installed the packages, you will see new menu items 
when you right-click folders in the Solution Explorer. Selecting these menu items will present dialog 
boxes that let you select the scenario that should be used to create a controller or view.  

     Adding a Controller 
    To create the first controller in the application, I added a class file called  ProductController.cs  to the 
 Controllers  folder and defined the class shown in Listing  8-9 . 

     Listing 8-9.    The Contents of the ProductController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 

   namespace SportsStore.Controllers { 

       public class ProductController : Controller { 
         private IProductRepository repository; 

           public ProductController(IProductRepository repo) { 
             repository = repo; 
         } 
     } 
 } 

    When MVC needs to create a new instance of the  ProductController  class to handle an HTTP request, 
it will inspect the constructor and see that it requires an object that implements the  IProductRepository  
interface. To determine what implementation class should be used, MVC consults the configuration in 
the  Startup  class, which tells it that  FakeRepository  should be used and that a new instance should be 
created every time. MVC creates a new  FakeRepository  object and uses it to invoke the  ProductController  
constructor in order to create the controller object that will process the HTTP request. 

 This is known as  dependency injection , and its approach allows the  ProductController  to access the 
application’s repository through the  IProductRepository  interface without having any need to know which 
implementation class has been configured. Later, I’ll replace the fake repository with the real one, and 
dependency injection means that the controller will continue to work without changes. 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

205

 ■   Note    Some developers don’t like dependency injection and believe it makes applications more 
complicated. That’s not my view, but if you are new to dependency injection, then I recommend you wait until 
you have read Chapter   18     before you make up your mind.  

 Next, I have added an action method, called  List , which will render a view showing the complete list of 
the products in the repository, as shown in Listing  8-10 . 

     Listing 8-10.    Adding an Action Method in the ProductController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 

   namespace SportsStore.Controllers { 

       public class ProductController : Controller { 
         private IProductRepository repository; 

           public ProductController(IProductRepository repo) { 
             repository = repo; 
         } 

            public ViewResult List() => View(repository.Products);  
     } 
 } 

    Calling the  View  method like this (without specifying a view name) tells MVC to render the default view 
for the action method. Passing a  List<Product  > (a list of  Product  objects) to the  View  method provides the 
framework with the data with which to populate the  Model  object in a strongly typed view.  

     Adding and Configuring the View 
    I need to create a view to present the content to the user, but there are some preparatory steps required that 
will make writing the view simpler. The first is to create a shared layout that will define common content that 
will be included in all HTML responses sent to clients. Shared layouts are a useful way of ensuring that views 
are consistent and contain important JavaScript files and CSS stylesheets, and I explained how they worked 
in Chapter   5    . 

 I created the  Views/Shared  folder and added to it a new MVC view layout page called  _Layout.cshtml , 
which is the default name that Visual Studio assigns to this item type. Listing  8-11  shows the  _Layout.
cshtml  file. I made one change to the default content, which is to set the contents of the  title  element to 
 SportsStore . 

      Listing 8-11.    The Contents of the _Layout.cshtml File in the Views/Shared Folder   

  <!DOCTYPE html> 

   <html> 
 <head> 

http://dx.doi.org/10.1007/978-1-4842-0397-2_18
http://dx.doi.org/10.1007/978-1-4842-0397-2_5


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

206

     <meta name="viewport" content="width=device-width" /> 
      <title>SportsStore</title>  
 </head> 
 <body> 
     <div> 
         @RenderBody() 
     </div> 
 </body> 
 </html> 

    Next, I need to configure the application so that the  _Layout.cshtml  file is applied by default. This 
is done by adding an MVC View Start Page file called  _ViewStart.cshtml  to the  Views  folder. The default 
content added by Visual Studio, shown in Listing  8-12 , selects a layout called  _Layout.cshtml , which 
corresponds to the file shown in Listing  8-11 . 

     Listing 8-12.    The Contents of the _ViewStart.cshtml File in the Views Folder   

 @{ 
     Layout = "_Layout"; 
 } 

   Now I need to add the view that will be displayed when the  List  action method is used to handle a 
request. I created the  Views/Product  folder and added to it a Razor view file called  List.cshtml . I then 
added the markup shown in Listing  8-13 . 

     Listing 8-13.    The Contents of the List.cshtml File in the Views/Product Folder   

  @model IEnumerable<Product> 

   @foreach (var p in Model) { 
     <div> 
         <h3>@p.Name</h3> 
         @p.Description 
         <h4>@p.Price.ToString("c")</h4> 
     </div> 
 } 

    The  @model  expression at the top of the file specifies that the view will receive a sequence of  Product  
objects from the action method as its model data. I use a  @foreach  expression to work through the sequence 
and generate a simple set of HTML elements for each  Product  object that is received. 

 The view doesn’t know where the  Product  objects came from, how they were obtained, or whether or 
not they represent all of the products known to the application. Instead, the view deals only with how details 
of each  Product  is displayed using HTML elements, which is consistent with the separation of concerns that 
I described in Chapter   3    . 

 ■   Tip    I converted the  Price  property to a string using the  ToString("c")  method, which renders numerical 
values as currency according to the culture settings that are in effect on your server. For example, if the server 
is set up as  en-US , then  (1002.3).ToString("c")  will return  $1,002.30 , but if the server is set to  en-GB , then 
the same method will return  £1,002.30 .   

http://dx.doi.org/10.1007/978-1-4842-0397-2_3


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

207

     Setting the Default Route 
       I need to tell MVC that it should send requests that arrive for the root URL of my application ( http://
mysite/ ) to the  List  action method in the  ProductController  class. I do this by editing the statement in the 
 Startup  class that sets up the MVC classes that handle HTTP requests, as shown in Listing  8-14 . 

       Listing 8-14.    Changing the Default Route in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using SportsStore.Models; 

   namespace SportsStore { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddTransient<IProductRepository, 
                 FakeProductRepository>(); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app, 
                 IHostingEnvironment env, ILoggerFactory loggerFactory) { 
             app.UseDeveloperExceptionPage(); 
             app.UseStatusCodePages(); 
             app.UseStaticFiles(); 
              app.UseMvc(routes => {  
                  routes.MapRoute(  
                      name: "default",  
                      template: "{controller=Product}/{action=List}/{id?}");  
              });  
         } 
     } 
 } 

    The  Configure  method of the  Startup  class is used to set up the request pipeline, which consists of 
classes (known as  middleware ) that will inspect HTTP requests and generate responses. The  UseMvc  method 
sets up the MVC middleware, and one of the configuration options is the scheme that will be used to map 
URLs to controllers and action methods. I describe the routing system in detail in Chapters   15     and   16    , but 
the change in Listing  8-14  tells MVC to send requests to the  List  action method of the  Product  controller 
unless the request URL specifies otherwise. 

 ■   Tip    Notice that I have set the name of the controller in Listing  8-14  to be  Product  and not 
 ProductController , which is the name of the class. This is part of the MVC naming convention, in which 
controller class names generally end in  Controller , but you omit this part of the name when referring to the 
class. I explain the naming convention and its effect in Chapter   31    .   

http://dx.doi.org/10.1007/978-1-4842-0397-2_15
http://dx.doi.org/10.1007/978-1-4842-0397-2_16
http://dx.doi.org/10.1007/978-1-4842-0397-2_31


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

208

     Running the Application 
 All the basics are in place. I have a controller with an action method that MVC will use when the default URL for 
the application is requested. MVC will create an instance of the  FakeRepository  class and use it to create a new 
controller object to handle the request. The fake repository will provide the controller with some simple test data, 
which its action method passed to the Razor view so that the HTML response to the browser includes details for 
each product. When generating the HTML response, MVC will combine the data from the view selected by the 
action method with the content from the shared layout, producing a complete HTML document that the browser 
can parse and display. You can see the result by starting the application, as shown in Figure  8-7 .  

  Figure 8-7.    Viewing the basic application functionality       

 This is the typical pattern of development for ASP.NET Core MVC. An initial investment of time setting 
everything up is necessary, and then the basic features of the application snap together quickly.   

     Preparing a Database 
    I can display a simple view that contains details of the products, but it uses the test data that the fake 
repository contains. Before I can implement a real repository with real data, I need to set up a database and 
populate it with some data. 

 I am going to use SQL Server as the database, and I will access the database using the Entity Framework 
Core (EF Core), which is the Microsoft .NET object-relational mapping (ORM) framework. An ORM 
framework presents the tables, columns, and rows of a relational database through regular C# objects. 

 ■   Note    This is an area where you can choose from a wide range of tools and technologies. Not only are 
there different relational databases available, but you can also work with object repositories, document stores, 
and some esoteric alternatives. There are other .NET ORM frameworks as well, each of which takes a slightly 
different approach; these variations may give you a better fit for your projects.  

 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

209

 I am using Entity Framework Core for a several reasons: it is simple to get working, the integration with 
LINQ is first-rate (and I like using LINQ), and it works nicely with ASP.NET Core MVC. The earlier releases 
were a bit hit-and-miss, but the current versions are elegant and feature-rich.     

 A nice feature of Visual Studio and SQL Server is  LocalDB , which is an administration-free 
implementation of the basic SQL Server features specifically designed for developers. Using this feature, I 
can skip the process of setting up a database while I build my project and then deploy to a full SQL Server 
instance later. Most MVC applications are deployed to hosted environments that are run by professional 
administrators, so the LocalDB feature means that database configuration can be left in the hands of DBAs 
and developers can get on with coding. 

 ■   Tip    If you didn’t select the LocalDB when you installed Visual Studio, then you need to do so now. It is part 
of the data tools option or can be installed as part of SQL Server.  

     Installing Entity Framework Core 
 Entity Framework Core is installed using NuGet, and Listing  8-15  shows the additions that are required to 
the  dependencies  section of the  project.json  file in the SportsStore application project. 

     Listing 8-15.    Adding Entity Framework in the project.json File in the SportsStore Project   

 ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
   "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
   "Microsoft.AspNetCore.Razor.Tools": { 
     "version": "1.0.0-preview2-final", 
     "type": "build" 
   }, 
   "Microsoft.AspNetCore.StaticFiles": "1.0.0", 
   "Microsoft.AspNetCore.Mvc": "1.0.0", 
    "Microsoft.EntityFrameworkCore.SqlServer": "1.0.0",  
    "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final"  
 }, 
 ... 

   Databases are managed using command-line tools, which are set up in the  tools  section of the 
 project.json  file, as shown in Listing  8-16 . 

     Listing 8-16.    Registering the EF Core Tools in the project.json File in the SportsStore Project   

 ... 
 "tools": { 
   "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final", 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

210

   "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final", 
    "Microsoft.EntityFrameworkCore.Tools": {  
      "version": "1.0.0-preview2-final",  
      "imports": [ "portable-net45+win8+dnxcore50", "portable-net45+win8" ]  
    }  
 }, 
 ... 

   When you save the  project.json  file, Visual Studio will download and install EF Core and add it to the 
project.  

     Creating the Database Classes 
    The  database context class  is the bridge between the application and the EF Core and provides access to the 
application’s data using model objects. To create the database context class for the SportsStore application, 
I added a class file called  ApplicationDbContext.cs  to the  Models  folder and defined the class shown in 
Listing  8-17 . 

      Listing 8-17.    The Contents of the ApplicationDbContext.cs File in the Models Folder   

  using Microsoft.EntityFrameworkCore; 

   namespace SportsStore.Models { 

       public class ApplicationDbContext : DbContext { 

           public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options) 
             : base(options) {} 

           public DbSet<Product> Products { get; set; } 
     } 
 } 

    The  DbContext  base class provides access to the Entity Framework Core’s underlying functionality, and 
the  Products  property will provide access to the  Product  objects in the database. To populate the database 
and provide some sample data, I added a class file called  SeedData.cs  to the  Models  folder and defined the 
class shown in Listing  8-18 . 

     Listing 8-18.    The Contents of the SeedData.cs File in the Models Folder   

  using System.Linq; 
 using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace SportsStore.Models { 

       public static class SeedData { 

           public static void EnsurePopulated(IApplicationBuilder app) { 
             ApplicationDbContext context = app.ApplicationServices 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

211

                 .GetRequiredService<ApplicationDbContext>(); 
             if (!context.Products.Any()) { 
                 context.Products.AddRange( 
                     new Product { 
                         Name = "Kayak", Description = "A boat for one person", 
                         Category = "Watersports", Price = 275 }, 
                     new Product { 
                         Name = "Lifejacket", 
                         Description = "Protective and fashionable", 
                         Category = "Watersports", Price = 48.95m }, 
                     new Product { 
                         Name = "Soccer Ball", 
                         Description = "FIFA-approved size and weight", 
                         Category = "Soccer", Price = 19.50m }, 
                     new Product { 
                         Name = "Corner Flags", 
                         Description = "Give your playing field a professional touch", 
                         Category = "Soccer", Price = 34.95m }, 
                     new Product { 
                         Name = "Stadium", 
                         Description = "Flat-packed 35,000-seat stadium", 
                         Category = "Soccer", Price = 79500 }, 
                     new Product { 
                         Name = "Thinking Cap", 
                         Description = "Improve brain efficiency by 75%", 
                         Category = "Chess", Price = 16 }, 
                     new Product { 
                         Name = "Unsteady Chair", 
                         Description = "Secretly give your opponent a disadvantage", 
                         Category = "Chess", Price = 29.95m }, 
                     new Product { 
                         Name = "Human Chess Board", 
                         Description = "A fun game for the family", 
                         Category = "Chess", Price = 75 }, 
                     new Product { 
                         Name = "Bling-Bling King", 
                         Description = "Gold-plated, diamond-studded King", 
                         Category = "Chess", Price = 1200 
                     } 
                 ); 
                 context.SaveChanges(); 
             } 
         } 
     } 
 } 

    The static  EnsurePopulated  method receives an  IApplicationBuilder  argument, which is the class 
used in the  Configure  method of the  Startup  class to register middleware classes to handle HTTP requests, 
which is where I will ensure that the database has content. 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

212

 The  EnsurePopulated  method obtains an  ApplicationDbContext  object through the 
 IApplicationBuilder  interface and uses it to check whether there are any  Product  objects in the database. 
If there are no objects, then the database is populated using a collection of  Product  objects using the 
 AddRange  method and then written to the database using the  SaveChanges  method.  

     Creating the Repository Class 
 It may not seem like it at the moment, but most of the work required to set up the database is complete. The 
next step is to create a class that implements the  IProductRepository  interface and gets its data using Entity 
Framework Core. I added a class file called  EFProductRepository.cs  to the  Models  folder and used it to 
define the repository class shown in Listing  8-19 . 

     Listing 8-19.    The Contents of the EFProductRepository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace SportsStore.Models { 

       public class EFProductRepository : IProductRepository { 
         private ApplicationDbContext context; 

           public EFProductRepository(ApplicationDbContext ctx) { 
             context = ctx; 
         } 

           public IEnumerable<Product> Products => context.Products; 
     } 
 } 

    I’ll add additional functionality as I add features to the application, but for the moment, the repository 
implementation just maps the  Products  property defined by the  IProductRepository  interface onto the 
 Products  property defined by the  ApplicationDbContext  class.  

     Defining the Connection String 
 A  connection string  specifies the location and name of the database and provides configuration settings 
for how the application should connect to the database server. Connection strings are stored in a JSON file 
called  appsettings.json , which I created in the SportsStore project using the ASP.NET Configuration File 
item template in the ASP.NET section of the Add New Item window.           

 Visual Studio adds a placeholder connection string to the  appsettings.json  file when it creates the file, 
which I have edited in Listing  8-20 . 

      Listing 8-20.    Editing the Connection String in the appsettings.json File   

 { 
   "Data": { 
     "SportStoreProducts": { 
       "ConnectionString": "Server=(localdb)\\MSSQLLocalDB;Database=SportsStore;Trusted_Connec
tion=True;MultipleActiveResultSets=true" 
     } 
   } 
 } 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

213

   Within the  Data  section of the configuration file, I have set the name of the connection string to 
 SportsStoreProducts . The value of the  ConnectionString  item specifies that the LocalDB feature should be 
used for a database called  SportsStore . 

 ■   Tip    Connection strings must be expressed as a single unbroken line, which is fine in the Visual Studio editor 
but doesn’t fit on the printed page and explains the awkward formatting in Listing  8-20 . When you define the 
connection string in your own project, make sure that the value of the  ConnectionString  item is on a single line.   

     Configuring the Application 
 The next steps are to read the connection string and to configure the application to use it to connect to the 
database. Another NuGet package is required to read the connection string from the  appsettings.json  file. 
Listing  8-21  shows the change to the  dependencies  section of the  project.json  file.        

     Listing 8-21.    Adding a Package in the project.json File of the SportsStore Project   

 ... 
 { 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
   "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
   "Microsoft.AspNetCore.Razor.Tools": { 
     "version": "1.0.0-preview2-final", 
     "type": "build" 
   }, 
   "Microsoft.AspNetCore.StaticFiles": "1.0.0", 
   "Microsoft.AspNetCore.Mvc": "1.0.0", 
   "Microsoft.EntityFrameworkCore.SqlServer": "1.0.0", 
   "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final", 
    "Microsoft.Extensions.Configuration.Json": "1.0.0"  
 }, 
 ... 

   This package allows configuration data to be read from JSON files, such as  appsettings.json . A 
corresponding change is required in the  Startup  class to use the functionality provided by the new package 
to read the connection string from the configuration file and to set up EF Core, as shown in Listing  8-22 . 

     Listing 8-22.    Configuring the Application in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

214

 using Microsoft.Extensions.Logging; 
 using SportsStore.Models; 
  using Microsoft.Extensions.Configuration;  
  using Microsoft.EntityFrameworkCore;  

   namespace SportsStore { 

       public class Startup { 
          IConfigurationRoot Configuration;  

            public Startup(IHostingEnvironment env) {  
              Configuration = new ConfigurationBuilder()  
                  .SetBasePath(env.ContentRootPath)  
                  .AddJsonFile("appsettings.json").Build();  
          }  

           public void ConfigureServices(IServiceCollection services) { 
              services.AddDbContext<ApplicationDbContext>(options =>  
                  options.UseSqlServer(  
                      Configuration["Data:SportStoreProducts:ConnectionString"]));  
              services.AddTransient<IProductRepository, EFProductRepository>();  
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app, 
                 IHostingEnvironment env, ILoggerFactory loggerFactory) { 
             app.UseDeveloperExceptionPage(); 
             app.UseStatusCodePages(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Product}/{action=List}/{id?}"); 
             }); 
              SeedData.EnsurePopulated(app);  
         } 
     } 
 } 

    The constructor that has been added to the  Startup  class loads the configuration settings in the 
 appsettings.json  file and makes them available through a property called  Configuration . I explain how to 
read and access configuration data in Chapter   14    . 

 Within the  ConfigureServices  method, I have added a sequence of method calls that sets up Entity 
Framework Core. 

   ... 
  services.AddDbContext<ApplicationDbContext>(options =>  
      options.UseSqlServer(Configuration["Data:SportStoreProducts:ConnectionString"]));  
 ... 

http://dx.doi.org/10.1007/978-1-4842-0397-2_14


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

215

   The  AddDbContext  extension method sets up the services provided by Entity Framework Core for the 
database context class I created in Listing  8-17 . As I explain in Chapter   14    , many of the methods that are 
used in the  Startup  class allow services and middleware features to be configured using options arguments. 
The argument to the  AddDbContext  method is a lambda expression that receives an options object that 
configures the database for the context class. In this case, I configured the database with the  UseSqlServer  
method and specified the connection string, which is obtained from the  Configuration  property. 

 The next change I made in the  Startup  class was to replace the fake repository with the real one, like 
this: 

   ... 
 services.AddTransient<IProductRepository,  EFProductRepository >(); 
 ... 

   The components in the application that use the  IProductRepository  interface, which is just the 
 Product  controller at the moment, will receive an  EFProductRepository  object when they are created, 
which will provide them with access to the data in the database. I explain how this works in detail in Chapter 
  18    , but the effect is that the fake data will be seamlessly replaced by the real data in the database without 
having to change the  ProductController  class. 

 The final change in the  Startup  class is a call to the  SeedData.EnsurePopulated  method, which ensures 
that there is some sample data in the database and which I call from the  Configure  method in the  Startup  
class. When the application starts, the  Startup.ConfigureServices  method is called before the  Startup.
Configure  method, which means that by the time the  SeedData.EnsurePopulated  method class is invoked, I 
can be sure that the Entity Framework Core services have been set up and configured.  

     Creating and Applying the Database Migration 
    Entity Framework Core is able to generate the schema for the database using the model classes through 
a feature called  migrations . When you prepare a migration, EF Core creates a C# class that contains the 
SQL commands required to prepare the database. If you need to modify your model classes, then you can 
create a new migration that contains the SQL commands required to reflect the changes. In this way, you 
don’t have to worry about manually writing and testing SQL commands and can just focus on the C# model 
classes in the application. 

 EF Core commands are performed using the Package Manager Console, which you can open through 
the Visual Studio Tools ➤ NuGet Package Manager menu.     

 Run the following command in the Package Manager Console to create the migration class that will 
prepare the database for its first use: 

   Add-Migration Initial 

   When this command has finished, you will see a  Migrations  folder in the Visual Studio Solution 
Explorer window. This is where Entity Framework Core stores its migration classes. One of the file names 
will be a long number followed by  _Initial.cs , and this is the class that will be used to create the initial 
schema for the database. If you examine the contents of this file, you can see how the  Product  model class 
has been used to create the schema. 

 Run the following command to create the database and run the migration commands: 

   Update-Database 

http://dx.doi.org/10.1007/978-1-4842-0397-2_14
http://dx.doi.org/10.1007/978-1-4842-0397-2_18


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

216

      It can take a moment for the database to be created, but once the command has completed, you can 
see the effect of creating and using the database by starting the application. When the browser requests the 
default URL for the application, the application configuration tells MVC that it needs to create a  Product  
controller to handle the request. Creating a new  Product  controller means invoking the  ProductController  
constructor, which requires an object that implements the  IProductRepository  interface, and the new 
configuration tells MVC that an  EFProductRepository  object should be created and used for this. The 
 EFProductRepository  taps into the EF Core functionality that loads relational data from SQL Server and 
converts it into  Product  objects. All of this is hidden from the  ProductController  class, which just receives 
an object that implements the  IProductRepository  interface and works with the data it provides. The result 
is that the browser window shows the sample data in the database, as illustrated by Figure  8-8 .  

  Figure 8-8.    Using the database repository       

 This approach to getting Entity Framework Core to present a SQL Server database as a series of model 
objects is simple and easy to work with, and it allows me to keep my focus on ASP.NET Core MVC. I am 
skipping over a lot of the detail in how EF Core operates and the huge number of configuration options 
that are available. I like Entity Framework Core a lot, and I recommend that you spend some time 
getting to know it in detail. A good place to start is the Microsoft site for Entity Framework Core: 
 http:// ef.readthedocs.io .   

     Adding Pagination 
    You can see from Figure  8-8  that the  List.cshtml  view displays the products in the database on a single 
page. In this section, I will add support for pagination so that the view displays a smaller number of products 
on a page, and the user can move from page to page to view the overall catalog. To do this, I am going to add 
a parameter to the  List  method in the  Product  controller, as shown in Listing  8-23 . 

 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

217

     Listing 8-23.    Adding Pagination Support to the List Action Method in the ProductController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 
  using System.Linq;  

   namespace SportsStore.Controllers { 

       public class ProductController : Controller { 
         private IProductRepository repository; 
          public int PageSize = 4;  

           public ProductController(IProductRepository repo) { 
             repository = repo; 
         } 

            public ViewResult List(int page = 1)  
              => View(repository.Products  
                  .OrderBy(p => p.ProductID)  
                  .Skip((page - 1) * PageSize)  
                  .Take(PageSize));  
     } 
 } 

    The  PageSize  field specifies that I want four products per page. I will replace this with a better 
mechanism later. I have added an optional parameter to the  List  method. This means that if I call the 
method without a parameter ( List() ), my call is treated as though I had supplied the value specified in the 
parameter definition ( List(1) ). The effect is that the action method displays the first page of products when 
MVC invokes it without an argument. Within the body of the action method, I get the  Product  objects, order 
them by the primary key, skip over the products that occur before the start of the current page, and take the 
number of products specified by the  PageSize  field. 

 UNIT TEST: PAGINATION

 I can unit test the pagination feature by creating a mock repository, injecting it into the constructor 
of the  ProductController  class, and then calling the  List  method to request a specific page. I can 
then compare the  Product  objects I get with what I would expect from the test data in the mock 
implementation. See Chapter   7     for details of how to set up unit tests. Here is the unit test I created for 
this purpose, in a class file called  ProductControllerTests.cs  that I added to the  SportsStore.
Tests  project: 

       using System.Collections.Generic; 
    using System.Linq; 
    using Moq; 
    using SportsStore.Controllers; 
    using SportsStore.Models; 
    using Xunit; 

      namespace SportsStore.Tests { 

http://dx.doi.org/10.1007/978-1-4842-0397-2_7


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

218

          public class ProductControllerTests { 

              [Fact] 
            public void Can_Paginate() { 
                // Arrange 
                Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
                mock.Setup(m => m.Products).Returns(new Product[] { 
                    new Product {ProductID = 1, Name = "P1"}, 
                    new Product {ProductID = 2, Name = "P2"}, 
                    new Product {ProductID = 3, Name = "P3"}, 
                    new Product {ProductID = 4, Name = "P4"}, 
                    new Product {ProductID = 5, Name = "P5"} 
                }); 

                  ProductController controller = new ProductController(mock.Object); 
             controller.PageSize = 3; 

                  // Act 
                IEnumerable<Product> result = 
                    controller.List(2).ViewData.Model as IEnumerable<Product>; 

                  // Assert 
                Product[] prodArray = result.ToArray(); 
                Assert.True(prodArray.Length == 2); 
                Assert.Equal("P4", prodArray[0].Name); 
                Assert.Equal("P5", prodArray[1].Name); 
            } 
        } 
    } 

    It is a little awkward to get the data returned from the action method. The result is a  ViewResult  
object, and I have to cast the value of its  ViewData.Model  property to the expected data type. I 
explain the different result types that can be returned by action methods and how to work with 
them in Chapter   17    .  

     Displaying Page Links 
 If you run the application, you will see that there are now four items shown on the page. If you want to view 
another page, you can append query string parameters to the end of the URL, like this: 

  http://localhost:60000/  ?page=2  

 You will need to change the port part of the URL to match whatever port has been assigned to your 
project. Using these query strings, you can navigate through the catalog of products. 

 There is no way for customers to figure out that these query string parameters exist, and even if there 
were, they are not going to want to navigate this way. Instead, I need to render some page links at the bottom 
of each list of products so that customers can navigate between pages. To do this, I am going to implement a 
 tag helper , which generates the HTML markup for the links I require. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_17


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

219

   Adding the View Model 
 To support the tag helper, I am going to pass information to the view about the number of pages available, 
the current page, and the total number of products in the repository. The easiest way to do this is to create a 
view model class, which is used specifically to pass data between a controller and a view. I created a  Models/
ViewModels  folder in the  SportsStore  project and added to it a class file called  PagingInfo.cs  defined in 
Listing  8-24 . 

     Listing 8-24.    The Contents of the PagingInfo.cs File in the Models/ViewModels Folder   

  using System; 

   namespace SportsStore.Models.ViewModels { 

       public class PagingInfo { 
         public int TotalItems { get; set; } 
         public int ItemsPerPage { get; set; } 
         public int CurrentPage { get; set; } 

           public int TotalPages => 
             (int)Math.Ceiling((decimal)TotalItems / ItemsPerPage); 
     } 
 } 

       Adding the Tag Helper Class 
       Now that I have a view model, I can create a tag helper class. I created the  Infrastructure  folder in the 
 SportsStore  project and added to it a class file called  PageLinkTagHelper.cs , which I used to define the 
class shown in Listing  8-25 . Tag helpers are a big part of ASP.NET Core MVC, and I explain how they work 
and how to create them in Chapters   23    –  25    . 

 ■   Tip    The  Infrastructure  folder is where I put classes that deliver the plumbing for an application but that 
are not related to the application’s domain.  

     Listing 8-25.    The Contents of the PageLinkTagHelper.cs File in the Infrastructure Folder   

  using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.Rendering; 
 using Microsoft.AspNetCore.Mvc.Routing; 
 using Microsoft.AspNetCore.Mvc.ViewFeatures; 
 using Microsoft.AspNetCore.Razor.TagHelpers; 
 using SportsStore.Models.ViewModels; 

   namespace SportsStore.Infrastructure { 

http://dx.doi.org/10.1007/978-1-4842-0397-2_23
http://dx.doi.org/10.1007/978-1-4842-0397-2_25


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

220

       [HtmlTargetElement("div", Attributes = "page-model")] 
     public class PageLinkTagHelper : TagHelper { 
         private IUrlHelperFactory urlHelperFactory; 

           public PageLinkTagHelper(IUrlHelperFactory helperFactory) { 
             urlHelperFactory = helperFactory; 
         } 

           [ViewContext] 
         [HtmlAttributeNotBound] 
         public ViewContext ViewContext { get; set; } 

           public PagingInfo PageModel { get; set; } 

           public string PageAction { get; set; } 

           public override void Process(TagHelperContext context, 
                 TagHelperOutput output) { 
             IUrlHelper urlHelper = urlHelperFactory.GetUrlHelper(ViewContext); 
             TagBuilder result = new TagBuilder("div"); 
             for (int i = 1; i <= PageModel.TotalPages; i++) { 
                 TagBuilder tag = new TagBuilder("a"); 
                 tag.Attributes["href"] = urlHelper.Action(PageAction, 
                    new { page = i }); 
                 tag.InnerHtml.Append(i.ToString()); 
                 result.InnerHtml.AppendHtml(tag); 
             } 
             output.Content.AppendHtml(result.InnerHtml); 
         } 
     } 
 } 

    This tag helper populates a  div  element with  a  elements that correspond to pages of products. I am not 
going to go into detail about tag helpers now; it is enough to know that they are one of the most useful ways 
that you can introduce C# logic into your views. The code for a tag helper can look tortured because C# and 
HTML don’t mix easily. But using tag helpers is preferable to including blocks of C# code in a view because a 
tag helper can be easily unit tested. 

 Most MVC components, such as controllers and views, are discovered automatically, but tag helpers 
have to be registered. In Listing  8-26 , I have added a statement to the  _ViewImports.cshtml  file in the  Views  
folder that tells MVC to look for tag helper classes in the  SportsStore.Infrastructure  namespace. I also 
added an  @using  expression so that I can refer to the view model classes in views without having to qualify 
their names with the namespace. 

     Listing 8-26.    Registering a Tag Helper in the _ViewImports.cshtml File   

 @using SportsStore.Models 
  @using SportsStore.Models.ViewModels  
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 
  @addTagHelper SportsStore.Infrastructure.*, SportsStore  



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

221

   UNIT TEST: CREATING PAGE LINKS

 To test the  PageLinkTagHelper  tag helper class, I call the  Process  method with test data and provide a 
 TagHelperOutput  object that I inspect to see the HTML that is generated, as follows, which I defined in 
a new  PageLinkTagHelperTests.cs  file in the  SportsStore.Tests  project: 

       using System.Collections.Generic; 
    using System.Threading.Tasks; 
    using Microsoft.AspNetCore.Mvc; 
    using Microsoft.AspNetCore.Mvc.Routing; 
    using Microsoft.AspNetCore.Razor.TagHelpers; 
    using Moq; 
    using SportsStore.Infrastructure; 
    using SportsStore.Models.ViewModels; 
    using Xunit; 

      namespace SportsStore.Tests { 

          public class PageLinkTagHelperTests { 

              [Fact] 
            public void Can_Generate_Page_Links() { 
                // Arrange 
                var urlHelper = new Mock<IUrlHelper>(); 
                urlHelper.SetupSequence(x => x.Action(It.IsAny<UrlActionContext>())) 
                    .Returns("Test/Page1") 
                    .Returns("Test/Page2") 
                    .Returns("Test/Page3"); 

                  var urlHelperFactory = new Mock<IUrlHelperFactory>(); 
                urlHelperFactory.Setup(f => 
                        f.GetUrlHelper(It.IsAny<ActionContext>())) 
                            .Returns(urlHelper.Object); 

                  PageLinkTagHelper helper = 
                        new PageLinkTagHelper(urlHelperFactory.Object) { 
                    PageModel = new PagingInfo { 
                        CurrentPage = 2, 
                        TotalItems = 28, 
                        ItemsPerPage = 10 
                    }, 
                    PageAction = "Test" 
                }; 

                  TagHelperContext ctx = new TagHelperContext( 
                    new TagHelperAttributeList(), 
                    new Dictionary<object, object>(), ""); 

                  var content = new Mock<TagHelperContent>(); 
                TagHelperOutput output = new TagHelperOutput("div", 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

222

                    new TagHelperAttributeList(), 
                    (cache, encoder) => Task.FromResult(content.Object)); 

                  // Act 
                helper.Process(ctx, output); 

                  // Assert 
                Assert.Equal(@"<a href=""Test/Page1"">1</a>" 
                    + @"<a href=""Test/Page2"">2</a>" 
                    + @"<a href=""Test/Page3"">3</a>", 
                     output.Content.GetContent()); 
            } 
        } 
    } 

    The complexity in this test is in creating the objects that are required to create and use a tag helper. Tag 
helpers use  IUrlHelperFactory  objects to generate URLs that target different parts of the application, 
and I have used Moq to create an implementation of this interface and the related  IUrlHelper  interface 
that provides test data. 

 The core part of the test verifies the tag helper output by using a literal string value that contains double 
quotes. C# is perfectly capable of working with such strings, as long as the string is prefixed with  @  
and uses two sets of double quotes ( "" ) in place of one set of double quotes. You must remember not 
to break the literal string into separate lines, unless the string you are comparing to is similarly broken. 
For example, the literal I use in the test method has wrapped onto several lines because the width of a 
printed page is narrow. I have not added a newline character; if I did, the test would fail.   

   Adding the View Model Data 
 I am not quite ready to use the tag helper because I have yet to provide an instance of the  PagingInfo  view 
model class to the view. I could do this using the view bag feature, but I would rather wrap all of the data I 
am going to send from the controller to the view in a single view model class. To do this, I added a class file 
called  ProductsListViewModel.cs  to the  Models/ViewModels  folder of the  SportsStore  project. Listing  8-27  
shows the contents of the new file. 

     Listing 8-27.    The Contents of the ProductsListViewModel.cs File in the Models/ViewModels Folder   

  using System.Collections.Generic; 
 using SportsStore.Models; 

   namespace SportsStore.Models.ViewModels { 

       public class ProductsListViewModel { 
         public IEnumerable<Product> Products { get; set; } 
         public PagingInfo PagingInfo { get; set; } 
     } 
 } 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

223

    I can update the  List  action method in the  ProductController  class to use the 
 ProductsListViewModel  class to provide the view with details of the products to display on the page and 
details of the pagination, as shown in Listing  8-28 . 

     Listing 8-28.    Updating the List Method in the ProductController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 
 using System.Linq; 
  using SportsStore.Models.ViewModels;  

   namespace SportsStore.Controllers { 

       public class ProductController : Controller { 
         private IProductRepository repository; 
         public int PageSize = 4; 

           public ProductController(IProductRepository repo) { 
             repository = repo; 
         } 

           public ViewResult List(int page = 1) 
              => View(new ProductsListViewModel {  
                  Products = repository.Products  
                      .OrderBy(p => p.ProductID)  
                      .Skip((page - 1) * PageSize)  
                      .Take(PageSize),  
                  PagingInfo = new PagingInfo {  
                      CurrentPage = page,  
                      ItemsPerPage = PageSize,  
                      TotalItems = repository.Products.Count()  
                  }  
              });  
     } 
 } 

    These changes pass a  ProductsListViewModel  object as the model data to the view. 

 UNIT TEST: PAGE MODEL VIEW DATA

 I need to ensure that the controller sends the correct pagination data to the view. Here is the unit test I 
added to the  ProductControllerTests  class in the test project to make sure: 

       ... 
    [Fact] 
    public void Can_Send_Pagination_View_Model() { 

          // Arrange 
        Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
        mock.Setup(m => m.Products).Returns(new Product[] { 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

224

            new Product {ProductID = 1, Name = "P1"}, 
            new Product {ProductID = 2, Name = "P2"}, 
            new Product {ProductID = 3, Name = "P3"}, 
            new Product {ProductID = 4, Name = "P4"}, 
            new Product {ProductID = 5, Name = "P5"} 
        }); 

          // Arrange 
        ProductController controller = 
            new ProductController(mock.Object) { PageSize = 3 }; 

          // Act 
        ProductsListViewModel result = 
            controller.List(2).ViewData.Model as ProductsListViewModel; 

          // Assert 
        PagingInfo pageInfo = result.PagingInfo; 
        Assert.Equal(2, pageInfo.CurrentPage); 
        Assert.Equal(3, pageInfo.ItemsPerPage); 
        Assert.Equal(5, pageInfo.TotalItems); 
        Assert.Equal(2, pageInfo.TotalPages); 
    } 
    ... 

    I also need to modify the earlier pagination unit test, contained in the  Can_Paginate  method. It relies 
on the  List  action method returning a  ViewResult  whose  Model  property is a sequence of  Product  
objects, but I have wrapped that data inside another view model type. Here is the revised test: 

       ... 
    [Fact] 
    public void Can_Paginate() { 
        // Arrange 
        Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
        mock.Setup(m => m.Products).Returns(new Product[] { 
            new Product {ProductID = 1, Name = "P1"}, 
            new Product {ProductID = 2, Name = "P2"}, 
            new Product {ProductID = 3, Name = "P3"}, 
            new Product {ProductID = 4, Name = "P4"}, 
            new Product {ProductID = 5, Name = "P5"} 
        }); 

          ProductController controller = new ProductController(mock.Object); 
        controller.PageSize = 3; 

          // Act 
         ProductsListViewModel result =  
             controller.List(2).ViewData.Model as ProductsListViewModel;  

          // Assert 
         Product[] prodArray = result.Products.ToArray();  
        Assert.True(prodArray.Length == 2); 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

225

        Assert.Equal("P4", prodArray[0].Name); 
        Assert.Equal("P5", prodArray[1].Name); 
    } 
    ... 

    I would usually create a common setup method, given the degree of duplication between these two test 
methods. However, since I am delivering the unit tests in individual sidebars like this one, I am going to 
keep everything separate so you can see each test on its own.  

 The view is currently expecting a sequence of  Product  objects, so I need to update the  List.cshtml  file, 
as shown in Listing  8-29 , to deal with the new view model type. 

     Listing 8-29.    Updating the List.cshtml File   

   @model ProductsListViewModel  

    @foreach (var p in Model.Products) {  
     <div> 
         <h3>@p.Name</h3> 
         @p.Description 
         <h4>@p.Price.ToString("c")</h4> 
     </div> 
 } 

    I have changed the  @model  directive to tell Razor that I am now working with a different data type. I 
updated the  foreach  loop so that the data source is the  Products  property of the model data.  

   Displaying the Page Links 
 I have everything in place to add the page links to the  List  view. I created the view model that contains the 
paging information, updated the controller so that it passes this information to the view, and changed the  @
model  directive to match the new model view type. All that remains is to add an HTML element that the tag 
help will process to create the page links, as shown in Listing  8-30 . 

     Listing 8-30.    Adding the Pagination Links in the List.cshtml File   

  @model ProductsListViewModel 

   @foreach (var p in Model.Products) { 
     <div> 
         <h3>@p.Name</h3> 
         @p.Description 
         <h4>@p.Price.ToString("c")</h4> 
     </div> 
 } 

    <div page-model="@Model.PagingInfo" page-action="List"></div>  



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

226

    If you run the application, you will see the new page links, as illustrated in Figure  8-9 . The style is still 
basic, which I will fix later in the chapter. What is important for the moment is that the links take the user 
from page to page in the catalog and allow for exploration of the products for sale. When Razor finds the 
 page-model  attribute on the  div  element, it asks the  PageLinkTagHelper  class to transform the element, 
which produces the set of links shown in the figure.  

  Figure 8-9.    Displaying page navigation links       

 ■   Note    If you start the application using the Start Debugging menu, then you might see an error warning you that 
a collection has been modified. This is a bug in EF Core that I hope will be fixed by the time you read this chapter, 
but, if it has not, simply reloading the browser window will solve the problem and show the content in the figure.  

 WHY NOT JUST USE A GRIDVIEW?

 If you have worked with ASP.NET before, you might think that was a lot of work for an unimpressive 
result. It has taken me pages and pages just to get a simple paginated product list. If I were using Web 
Forms, I could have done the same thing using the ASP.NET Web Forms  GridView  or  ListView  controls, 
right out of the box, by hooking it up directly to the  Products  database table. 

 What I have accomplished in this chapter may not look like much, but it is profoundly different 
from dragging a control onto a design surface. First, I am building an application with a sound and 
maintainable architecture that involves proper separation of concerns. Unlike the simplest use of the 

 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

227

 ListView  control, I have not directly coupled the UI and the database, which is an approach that gives 
quick results but that causes pain and misery over time. Second, I have been creating unit tests as I go, 
and these allow me to validate the behavior of the application in a natural way that is nearly impossible 
with a complex Web Forms control. Finally, bear in mind that I have given over a lot of this chapter 
to creating the underlying infrastructure on which I am building the application. I need to define and 
implement the repository only once, for example, and now that I have, I will be able to build and test 
new features quickly and easily, as the following chapters will demonstrate. 

 None of this detracts from the immediate results that Web Forms can deliver, of course, but as I 
explained in Chapter   3    , that immediacy comes with a cost that can be expensive and painful in large 
and complex projects.    

     Improving the URLs 
 I have the page links working, but they still use the query string to pass page information to the server, like this: 

  http://localhost/?page=2  

 I create URLs that are more appealing by creating a scheme that follows the pattern of  composable 
URLs . A composable URL is one that makes sense to the user, like this one: 

  http://localhost/Page2  

 MVC makes it easy to change the URL scheme in an application because it uses the ASP.NET  routing  
feature, which is responsible for processing URLs to figure out what part of the application they target. All 
I need to do is add a new route when registering the MVC middleware in the  Configure  method of the 
 Startup  class, as shown in Listing  8-31 . 

     Listing 8-31.    Adding a New Route in the Startup.cs File   

  ... 
 public void Configure(IApplicationBuilder app, 
         IHostingEnvironment env, ILoggerFactory loggerFactory) { 
     app.UseDeveloperExceptionPage(); 
     app.UseStatusCodePages(); 
     app.UseStaticFiles(); 
     app.UseMvc(routes => { 

            routes.MapRoute(  
              name: "pagination",  
              template: "Products/Page{page}",  
              defaults: new { Controller = "Product", action = "List" });  

           routes.MapRoute( 
             name: "default", 
             template: "{controller=Product}/{action=List}/{id?}"); 
     }); 
     SeedData.EnsurePopulated(app); 
 } 
 ... 

http://dx.doi.org/10.1007/978-1-4842-0397-2_3


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

228

    It is important that you add this route before the  Default  one that is already in the method. As you will 
see in Chapter   15    , the routing system processes routes in the order they are listed, and I need the new route 
to take precedence over the existing one. 

 This is the only alteration required to change the URL scheme for product pagination. MVC and the routing 
function are tightly integrated, so the application automatically reflects a change like this in the URLs used by the 
application, including those generated by tag helpers like the one I use to generate the page navigation links. Do 
not worry if routing does not make sense to you now. I explain it in detail in Chapters   15     and   16    . 

 If you run the application and click a pagination link, you will see the new URL scheme in action, as 
illustrated in Figure  8-10 .    

     Styling the Content 
 I have built a great deal of infrastructure and the basic features of the application are starting to come 
together, but I have not paid any attention to appearance. Even though this book is not about design or CSS, 
the SportsStore application design is so miserably plain that it undermines its technical strengths. In this 
section, I will put some of that right. I am going to implement a classic two-column layout with a header, as 
shown in Figure  8-11 .  

  Figure 8-10.    The new URL scheme displayed in the browser       

  Figure 8-11.    The design goal for the SportsStore application       

 

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_15
http://dx.doi.org/10.1007/978-1-4842-0397-2_15
http://dx.doi.org/10.1007/978-1-4842-0397-2_16


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

229

     Installing the Bootstrap Package 
    I am going to use the Bootstrap package to provide the CSS styles I will apply to the application. I will rely 
on the Visual Studio support for Bower to install the Bootstrap package for me, so I selected the Bower 
Configuration File item template from the Client-Side category of the Add New Item dialog to create a file 
called  bower.json  in the SportsStore project, as demonstrated in Chapter   6    . I then added the Bootstrap 
package to the  dependencies  section of the file that was created, as shown in Listing  8-32 . 

     Listing 8-32.    Adding Bootstrap to the bower.json File in the SportsStore Project   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6"  
   } 
 } 

   When the changes to the  bower.json  file are saved, Visual Studio uses Bower to download the Bootstrap 
package into the  wwwroot/lib/bootstrap  folder. Bootstrap depends on the jQuery package, and this will be 
automatically added to the project as well.  

     Applying Bootstrap Styles to the Layout 
 In Chapter   5    , I explained how Razor layouts work, how they are used, and how they incorporate layouts. The 
view start file that I added at the start of the chapter specified that a file called  _Layout.cshtml  should be used 
as the default layout, and that is where the initial Bootstrap styling will be applied, as shown in Listing  8-33 . 

     Listing 8-33.    Applying Bootstrap CSS to the _Layout.cshtml File in the Views/Shared Folder   

  <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
      <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />  
     <title>SportsStore</title> 
 </head> 
 <body> 
      <div class="navbar navbar-inverse" role="navigation">  
          <a class="navbar-brand" href="#">SPORTS STORE</a>  
      </div>  
      <div class="row panel">  
          <div id="categories" class="col-xs-3">  
              Put something useful here later  
          </div>  
          <div class="col-xs-8">  
             @RenderBody() 
         </div> 
     </div> 
 </body> 
 </html> 

http://dx.doi.org/10.1007/978-1-4842-0397-2_6
http://dx.doi.org/10.1007/978-1-4842-0397-2_5


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

230

    The  link  element in this listing has an  asp-href-include  attribute, which represents an example 
of a built-in tag helper class. In this case, the tag helper looks at the value of the attribute and generates 
 link  elements for all the files that match the specified path, which can include wildcards. This is a useful 
feature to ensure that you can add and remove files from the  wwwroot  folder structure without breaking the 
application, but, as I explain in Chapter   25    , caution is required to make sure that the wildcards you specify 
match the files you expect. 

 Adding the Bootstrap CSS stylesheet to the layout means that I can use the styles it defines in any of the 
views that rely on the layout. In Listing  8-34 , you can see the styling I applied to the  List.cshtml  file. 

     Listing 8-34.    Styling Content in the List.cshtml File   

  @model ProductsListViewModel 

   @foreach (var p in Model.Products) { 
      <div class="well">  
          <h3>  
              <strong>@p.Name</strong>  
              <span class="pull-right label label-primary">  
                  @p.Price.ToString("c")  
              </span>  
          </h3>  
          <span class="lead">@p.Description</span>  
      </div>  
 } 

    <div page-model="@Model.PagingInfo" page-action="List" page-classes-enabled="true"  
      page-class="btn" page-class-normal="btn-default"  
      page-class-selected="btn-primary"class="btn-group pull-right">  
  </div>  

    I need to style the buttons that are generated by the  PageLinkTagHelper  class, but I don’t want to 
hardwire the Bootstrap classes into the C# code because it makes it harder to reuse the tag helper elsewhere 
in the application or change the appearance of the buttons. Instead, I have defined custom attributes on 
the  div  element that specify the classes that I require, and these correspond to properties I added to the tag 
helper class, which are then used to style the  a  elements that are produced, as shown in Listing  8-35 . 

     Listing 8-35.    Adding Classes to Generated Elements in the PageLinkTagHelper.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.Rendering; 
 using Microsoft.AspNetCore.Mvc.Routing; 
 using Microsoft.AspNetCore.Mvc.ViewFeatures; 
 using Microsoft.AspNetCore.Razor.TagHelpers; 
 using SportsStore.Models.ViewModels; 

   namespace SportsStore.Infrastructure { 

       [HtmlTargetElement("div", Attributes = "page-model")] 
     public class PageLinkTagHelper : TagHelper { 
         private IUrlHelperFactory urlHelperFactory; 

http://dx.doi.org/10.1007/978-1-4842-0397-2_25


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

231

           public PageLinkTagHelper(IUrlHelperFactory helperFactory) { 
             urlHelperFactory = helperFactory; 
         } 

           [ViewContext] 
         [HtmlAttributeNotBound] 
         public ViewContext ViewContext { get; set; } 

           public PagingInfo PageModel { get; set; } 

           public string PageAction { get; set; } 

            public bool PageClassesEnabled { get; set; } = false;  
          public string PageClass { get; set; }  
          public string PageClassNormal { get; set; }  
          public string PageClassSelected { get; set; }  

           public override void Process(TagHelperContext context, 
                 TagHelperOutput output) { 
             IUrlHelper urlHelper = urlHelperFactory.GetUrlHelper(ViewContext); 
             TagBuilder result = new TagBuilder("div"); 
             for (int i = 1; i <= PageModel.TotalPages; i++) { 
                 TagBuilder tag = new TagBuilder("a"); 
                 tag.Attributes["href"] = urlHelper.Action(PageAction, 
                    new { page = i }); 
                  if (PageClassesEnabled) {  
                      tag.AddCssClass(PageClass);  
                      tag.AddCssClass(i == PageModel.CurrentPage  
                          ? PageClassSelected : PageClassNormal);  
                  }  
                 tag.InnerHtml.Append(i.ToString()); 
                 result.InnerHtml.AppendHtml(tag); 
             } 
             output.Content.AppendHtml(result.InnerHtml); 
         } 
     } 
 } 

    The values of the attributes are automatically used to set the tag helper property values, with the 
mapping between the HTML attribute name format ( page-class-normal ) and the C# property name format 
( PageClassNormal ) taken into account. This allows tag helpers to respond differently based on the attributes 
of an HTML element, creating a more flexible way to generate content in an MVC application. 

 If you run the application, you will see that the appearance of the application has been improved—at 
least a little, anyway—as illustrated by Figure  8-12 .   



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

232

     Creating a Partial View 
       As a finishing flourish for this chapter, I am going to refactor the application to simplify the  List.cshtml  
view. I am going to create a  partial view , which is a fragment of content that you can embed into another 
view, rather like a template. I describe partial views in detail in Chapter   21    , and they help reduce duplication 
when you need the same content to appear in different places in an application. Rather than copy and paste 
the same Razor markup into multiple views, you can define it once in a partial view. To create the partial 
view, I added a Razor view file called  ProductSummary.cshtml  to the  Views/Shared  folder and added the 
markup shown in Listing  8-36 . 

     Listing 8-36.    The Contents of the ProductSummary.cshtml File in the Views/Shared Folder   

  @model Product 

   <div class="well"> 
     <h3> 
         <strong>@Model.Name</strong> 
         <span class="pull-right label label-primary"> 
             @Model.Price.ToString("c") 
         </span> 
     </h3> 
     <span class="lead">@Model.Description</span> 
 </div> 

    Now I need to update the  List.cshtml  file in the  Views/Products  folder so that it uses the partial view, 
as shown in Listing  8-37 . 

  Figure 8-12.    The design-enhanced SportsStore application       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_21


CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

233

     Listing 8-37.    Using a Partial View in the List.cshtml File   

  @model ProductsListViewModel 

   @foreach (var p in Model.Products) { 
      @Html.Partial("ProductSummary", p)  
 } 

   <div page-model="@Model.PagingInfo" page-action="List" page-classes-enabled="true" 
     page-class="btn" page-class-normal="btn-default" 
     page-class-selected="btn-primary"class="btn-group pull-right"> 
 </div> 

    I have taken the markup that was previously in the  foreach  loop in the  List.cshtml  view and moved 
it to the new partial view. I call the partial view using the  Html.Partial  helper method, with arguments for 
the name of the view and the view model object. Switching to a partial view like this is good practice because 
it allows the same markup to be inserted into any view that needs to display a summary of a product. As 
Figure  8-13  shows, adding the partial view doesn’t change the appearance of the application; it just changes 
where Razor finds the content that is used to generate the response sent to the browser.    

  Figure 8-13.    Applying a partial view       

 



CHAPTER 8 ■ SPORTSSTORE: A REAL APPLICATION

234

     Summary 
 In this chapter, I built the core infrastructure for the SportsStore application. It does not have many features 
that you could demonstrate to a client at this point, but behind the scenes, there are the beginnings of a 
domain model with a product repository backed by SQL Server and the Entity Framework Core. There is a 
single controller,  ProductController , that can produce paginated lists of products, and I have set up a clean 
and friendly URL scheme. 

 If this chapter felt like a lot of setup for little benefit, then the next chapter will balance the equation. 
Now that the fundamental structure is in place, we can forge ahead and add all the customer-facing features: 
navigation by category, a shopping cart, and the start of a checkout process.     



235© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_9

    CHAPTER 9   

 SportsStore: Navigation                          

 In this chapter, I continue to build out the SportsStore example app. In the previous chapter, I add support 
for navigating around the application and start building a shopping cart. 

     Adding Navigation Controls 
    The SportsStore application will be more usable if customers can navigate products by category. I will do this 
in three phases.

•    Enhance the  List  action model in the  ProductController  class so that it is able to 
filter the  Product  objects in the repository.  

•   Revisit and enhance the URL scheme.  

•   Create a category list that will go into the sidebar of the site, highlighting the current 
category and linking to others.    

     Filtering the Product List 
 I am going to start by enhancing the view model class,  ProductsListViewModel , which I added to the 
 SportsStore  project in the previous chapter. I need to communicate the current category to the view in 
order to render the sidebar, and this is as good a place to start as any. Listing  9-1  shows the changes I made 
to the  ProductsListViewModel.cs  file in the  Models/ViewModels  folder. 

     Listing 9-1.    Adding a Property in the ProductsListViewModel .cs File   

  using System.Collections.Generic; 
 using SportsStore.Models; 

   namespace SportsStore.Models.ViewModels { 

       public class ProductsListViewModel { 
         public IEnumerable<Product> Products { get; set; } 
         public PagingInfo PagingInfo { get; set; } 
          public string CurrentCategory { get; set; }  
     } 
 } 

    I added a property called  CurrentCategory . The next step is to update the  Product  controller so that 
the  List  action method will filter  Product  objects by category and use the new property I added to the view 
model to indicate which category has been selected. Listing  9-2  shows the changes. 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

236

     Listing 9-2.    Adding Category Support to the List Action Method in the ProductController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 
 using System.Linq; 
 using SportsStore.Models.ViewModels; 

   namespace SportsStore.Controllers { 

       public class ProductController : Controller { 
         private IProductRepository repository; 
         public int PageSize = 4; 

           public ProductController(IProductRepository repo) { 
             repository = repo; 
         } 

            public ViewResult List(string category, int page = 1)  
             => View(new ProductsListViewModel { 
                 Products = repository.Products 
                      .Where(p => category == null || p.Category == category)  
                     .OrderBy(p => p.ProductID) 
                     .Skip((page - 1) * PageSize) 
                     .Take(PageSize), 
                 PagingInfo = new PagingInfo { 
                     CurrentPage = page, 
                     ItemsPerPage = PageSize, 
                     TotalItems = repository.Products.Count() 
                 }, 
                  CurrentCategory = category  
             }); 
     } 
 } 

    I made three changes to the action method. First, I added a parameter called  category . This  category  
parameter is used by the second change in the listing, which is an enhancement to the LINQ query: if 
 category  is not  null , only those  Product  objects with a matching  Category  property are selected. The last 
change is to set the value of the  CurrentCategory  property I added to the  ProductsListViewModel  class. 
However, these changes mean that the value of  PagingInfo.TotalItems  is incorrectly calculated because it 
doesn’t take the category filter into account. I will fix this in a while. 

 UNIT TEST: UPDATING EXISTING UNIT TESTS

 I changed the signature of the  List  action method, which will prevent some of the existing unit test 
methods from compiling. To address this, I need to pass  null  as the first parameter to the  List  
method in those unit tests that work with the controller. For example, in the  Can_Paginate  test in the 
 ProductControllerTests.cs  file, the action section of the unit test becomes as follows: 

    ... 
 [Fact] 
 public void Can_Paginate() { 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

237

     // Arrange 
     Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
     mock.Setup(m => m.Products).Returns(new Product[] { 
         new Product {ProductID = 1, Name = "P1"}, 
         new Product {ProductID = 2, Name = "P2"}, 
         new Product {ProductID = 3, Name = "P3"}, 
         new Product {ProductID = 4, Name = "P4"}, 
         new Product {ProductID = 5, Name = "P5"} 
     }); 

       ProductController controller = new ProductController(mock.Object); 
     controller.PageSize = 3; 

       // Act 
     ProductsListViewModel result = 
          controller.List(null, 2).ViewData.Model as ProductsListViewModel;  

       // Assert 
     Product[] prodArray = result.Products.ToArray(); 
     Assert.True(prodArray.Length == 2); 
     Assert.Equal("P4", prodArray[0].Name); 
     Assert.Equal("P5", prodArray[1].Name); 
 } 
 ... 

    By using  null  for the  category  argument, I receive all the  Product  objects that the controller gets from 
the repository, which is the same situation I had before adding the new parameter. I need to make the 
same change to the  Can_Send_Pagination_View_Model  test as well. 

    ... 
 [Fact] 
 public void Can_Send_Pagination_View_Model() { 

       // Arrange 
     Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
     mock.Setup(m => m.Products).Returns(new Product[] { 
         new Product {ProductID = 1, Name = "P1"}, 
         new Product {ProductID = 2, Name = "P2"}, 
         new Product {ProductID = 3, Name = "P3"}, 
         new Product {ProductID = 4, Name = "P4"}, 
         new Product {ProductID = 5, Name = "P5"} 
     }); 

       // Arrange 
     ProductController controller = 
         new ProductController(mock.Object) { PageSize = 3 }; 

       // Act 
     ProductsListViewModel result = 
          controller.List(null, 2).ViewData.Model as ProductsListViewModel;  



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

238

       // Assert 
     PagingInfo pageInfo = result.PagingInfo; 
     Assert.Equal(2, pageInfo.CurrentPage); 
     Assert.Equal(3, pageInfo.ItemsPerPage); 
     Assert.Equal(5, pageInfo.TotalItems); 
     Assert.Equal(2, pageInfo.TotalPages); 
 } 
 ... 

    Keeping your unit tests synchronized with your code changes quickly becomes second nature when you 
get into the testing mind-set.  

 To see the effect of the category filtering, start the application and select a category using the following 
query string, changing the port to match the one that Visual Studio assigned for your project (and taking care 
to use an uppercase  S  for  Soccer ): 

  http://localhost:60000/?category=Soccer  

 You will see only the products in the  Soccer  category, as shown in Figure  9-1 .  

  Figure 9-1.    Using the query string to filter by category       

 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

239

 Obviously, users won’t want to navigate to categories using URLs, but you can see how small changes 
can have a big impact in an MVC application once the basic structure is in place. 

 UNIT TEST: CATEGORY FILTERING

 I need a unit test to properly test the category filtering function to ensure that the filter can 
correctly generate products in a specified category. Here is the test method I added to the 
 ProductControllerTests  class: 

    ... 
 [Fact] 
 public void Can_Filter_Products() { 

       // Arrange 
     // - create the mock repository 
     Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
     mock.Setup(m => m.Products).Returns(new Product[] { 
         new Product {ProductID = 1, Name = "P1", Category = "Cat1"}, 
         new Product {ProductID = 2, Name = "P2", Category = "Cat2"}, 
         new Product {ProductID = 3, Name = "P3", Category = "Cat1"}, 
         new Product {ProductID = 4, Name = "P4", Category = "Cat2"}, 
         new Product {ProductID = 5, Name = "P5", Category = "Cat3"} 
     }); 

       // Arrange - create a controller and make the page size 3 items 
     ProductController controller = new ProductController(mock.Object); 
     controller.PageSize = 3; 

       // Action 
     Product[] result = 
         (controller.List("Cat2", 1).ViewData.Model as ProductsListViewModel) 
             .Products.ToArray(); 

       // Assert 
     Assert.Equal(2, result.Length); 
     Assert.True(result[0].Name == "P2" && result[0].Category == "Cat2"); 
     Assert.True(result[1].Name == "P4" && result[1].Category == "Cat2"); 
 } 
 ... 

    This test creates a mock repository containing  Product  objects that belong to a range of categories. 
One specific category is requested using the action method, and the results are checked to ensure that 
the results are the right objects in the right order.   

     Refining the URL Scheme 
 No one wants to see or use ugly URLs such as  /?category=Soccer . To address this, I am going to change the 
routing configuration in the  Configure  method of the  Startup  class to create a more useful set of URLs, as 
shown in Listing  9-3 . 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

240

 ■   Caution    It is important to add the new routes in Listing  9-3  in the order they are shown. Routes are 
applied in the order in which they are defined, and you will get some odd effects if you change the order.  

      Listing 9-3.    Changing the Routing Schema in the Startup.cs File   

  ... 
 public void Configure(IApplicationBuilder app, 
         IHostingEnvironment env, ILoggerFactory loggerFactory) { 
     app.UseDeveloperExceptionPage(); 
     app.UseStatusCodePages(); 
     app.UseStaticFiles(); 
     app.UseMvc(routes => { 
          routes.MapRoute(  
              name: null,  
              template: "{category}/Page{page:int}",  
              defaults: new { controller = "Product", action = "List" }  
          );  

            routes.MapRoute(  
              name: null,  
              template: "Page{page:int}",  
              defaults: new { controller = "Product", action = "List", page = 1 }  
          );  

            routes.MapRoute(  
              name: null,  
              template: "{category}",  
              defaults: new { controller = "Product", action = "List", page = 1 }  
          );  

            routes.MapRoute(  
              name: null,  
              template: "",  
              defaults: new { controller = "Product", action = "List", page = 1 });  

            routes.MapRoute(name: null, template: "{controller}/{action}/{id?}");  
     }); 
     SeedData.EnsurePopulated(app); 
 } 
 ... 

    Table  9-1  describes the URL scheme that these routes represent. I explain the routing system in detail in 
Chapters   15     and   16    .  

http://dx.doi.org/10.1007/978-1-4842-0397-2_15
http://dx.doi.org/10.1007/978-1-4842-0397-2_16


CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

241

 The ASP.NET Core routing system is used by MVC to handle  incoming  requests from clients, but it also 
generates  outgoing  URLs that conform to the URL scheme and that can be embedded in web pages. By using 
the routing system both to handle incoming requests and to generate outgoing URLs, I can ensure that all 
the URLs in the application are consistent. 

 The  IUrlHelper  interface provides access to the URL-generating functionality. I used this interface 
and the  Action  method it defines in the tag helper I created in the previous chapter. Now that I want to 
start generating more complex URLs, I need a way to receive additional information from the view without 
having to add extra properties to the tag helper class. Fortunately, tag helpers have a nice feature that allows 
properties with a common prefix to be received all together in a single collection, as shown in Listing  9-4 . 

     Listing 9-4.    Receiving Prefixed Attribute Values in the PageLinkTagHelper.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.Rendering; 
 using Microsoft.AspNetCore.Mvc.Routing; 
 using Microsoft.AspNetCore.Mvc.ViewFeatures; 
 using Microsoft.AspNetCore.Razor.TagHelpers; 
 using SportsStore.Models.ViewModels; 
  using System.Collections.Generic;  

   namespace SportsStore.Infrastructure { 

       [HtmlTargetElement("div", Attributes = "page-model")] 
     public class PageLinkTagHelper : TagHelper { 
         private IUrlHelperFactory urlHelperFactory; 

           public PageLinkTagHelper(IUrlHelperFactory helperFactory) { 
             urlHelperFactory = helperFactory; 
         } 

           [ViewContext] 
         [HtmlAttributeNotBound] 
         public ViewContext ViewContext { get; set; } 

           public PagingInfo PageModel { get; set; } 

           public string PageAction { get; set; } 

            [HtmlAttributeName(DictionaryAttributePrefix = "page-url-")]  
          public Dictionary<string, object> PageUrlValues { get; set; }  
              = new Dictionary<string, object>();  

   Table 9-1.    Route Summary   

 URL  Leads To 

  /   Lists the first page of products from all categories 

  /Page2   Lists the specified page (in this case, page  2 ), showing items from all categories 

  /Soccer   Shows the first page of items from a specific category (in this case, the  Soccer  category) 

  /Soccer/Page2   Shows the specified page (in this case, page  2 ) of items from the specified category 
(in this case,  Soccer ) 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

242

           public bool PageClassesEnabled { get; set; } = false; 
         public string PageClass { get; set; } 
         public string PageClassNormal { get; set; } 
         public string PageClassSelected { get; set; } 

           public override void Process(TagHelperContext context, 
                 TagHelperOutput output) { 
             IUrlHelper urlHelper = urlHelperFactory.GetUrlHelper(ViewContext); 
             TagBuilder result = new TagBuilder("div"); 
             for (int i = 1; i <= PageModel.TotalPages; i++) { 
                 TagBuilder tag = new TagBuilder("a"); 
                  PageUrlValues["page"] = i;  
                  tag.Attributes["href"] = urlHelper.Action(PageAction, PageUrlValues);  
                 if (PageClassesEnabled) { 
                     tag.AddCssClass(PageClass); 
                     tag.AddCssClass(i == PageModel.CurrentPage 
                         ? PageClassSelected : PageClassNormal); 
                 } 
                 tag.InnerHtml.Append(i.ToString()); 
                 result.InnerHtml.AppendHtml(tag); 
             } 
             output.Content.AppendHtml(result.InnerHtml); 
         } 
     } 
 } 

    Decorating a tag helper property with the  HtmlAttributeName  attribute allows me to specify a prefix 
for attribute names on the element, which is this case will be  page-url- . The value of any attribute whose 
name begins with this prefix will be added to the dictionary that is assigned to the  PageUrlValues  property, 
which is then passed to the  IUrlHelper.Action  method to generate the URL for the  href  attribute of the  a  
elements that the tag helper produces. 

 In Listing  9-5 , I have added a new attribute to the  div  element that is processed by the tag helper, 
specifying the category that will be used to generate the URL. I have added only one new attribute to the 
view, but any attribute with the same prefix would be added to the dictionary. 

     Listing 9-5.    Adding a New Attribute in the List.cshtml File   

  @model ProductsListViewModel 

   @foreach (var p in Model.Products) { 
     @Html.Partial("ProductSummary", p) 
 } 

   <div page-model="@Model.PagingInfo" page-action="List" page-classes-enabled="true" 
      page-class="btn" page-class-normal="btn-default" 
       page-class-selected="btn-primary" page-url-category="@Model.CurrentCategory"  
      class="btn-group pull-right"> 
 </div> 

    Prior to this change, the links generated for the pagination links were like this: 

   http://<myserver>:<port>/Page1 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

243

   If the user clicked a page link like this, the category filter would be lost, and the application would 
present a page containing products from all categories. By adding the current category, taken from the view 
model, I generate URLs like this instead: 

   http:// <myserver> : <port> /Chess/Page1 

   When the user clicks this kind of link, the current category will be passed to the  List  action method, 
and the filtering will be preserved. After you have made this change, you can visit a URL such as  /Chess  or  /
Soccer , and you will see that the page link at the bottom of the page correctly includes the category.  

     Building a Category Navigation Menu 
 I need to provide customers with a way to select a category that does not involve typing in URLs. This means 
presenting them with a list of the categories available and indicating which, if any, is currently selected. As 
I build out the application, I will use this list of categories in more than one controller, so I need something 
that is self-contained and reusable. 

 ASP.NET Core MVC has the concept of  view components , which are perfect for creating items such 
as a reusable navigation control. A view component is a C# class that provides a small amount of reusable 
application logic with the ability to select and display Razor partial views. I describe view components in 
detail in Chapter   22    . 

 In this case, I will create a view component that renders the navigation menu and integrates it into the 
application by invoking the component from the shared layout. This approach gives me a regular C# class 
that can contain whatever application logic I need and that can be unit tested like any other class. It is a nice 
way of creating smaller segments of an application while preserving the overall MVC approach. 

   Creating the Navigation View Component 
    I created a folder called  Components , which is the conventional home of view components, and added to it a 
class called  NavigationMenuViewComponent.cs , which I used to define the class shown in Listing  9-6 . 

     Listing 9-6.    The Contents of the NavigationMenuViewComponent.cs File in the Components Folder   

  using Microsoft.AspNetCore.Mvc; 

   namespace SportsStore.Components { 

       public class NavigationMenuViewComponent : ViewComponent { 

           public string Invoke() { 
             return "Hello from the Nav View Component"; 
         } 
     } 
 } 

    The view component’s  Invoke  method is called when the component is used in a Razor view, and the 
result of the  Invoke  method is inserted into the HTML sent to the browser. I have started with a simple view 
component that returns a string, but I’ll replace this with dynamic HTML content shortly. 

 I want the category list to appear on all pages, so I am going to use the view component in the shared 
layout, rather than in a specific view. Within a view, view components are used through the  @await 
Component.InvokeAsync  expression, as shown in Listing  9-7 . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_22


CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

244

     Listing 9-7.    Using View Component in the _Layout.cshtml File   

  <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
     <title>SportsStore</title> 
 </head> 
 <body> 
     <div class="navbar navbar-inverse" role="navigation"> 
         <a class="navbar-brand" href="#">SPORTS STORE</a> 
     </div> 
     <div class="row panel"> 
         <div id="categories" class="col-xs-3"> 
              @await Component.InvokeAsync("NavigationMenu")  
         </div> 
         <div class="col-xs-8"> 
             @RenderBody() 
         </div> 
     </div> 
 </body> 
 </html> 

    I removed the placeholder text and replaced it with a call to the  Component.InvokeAsync  method. 
The argument to this method is the name of the component class, omitting the  ViewComponent  part of 
the class name, such that  NavigationMenu  specifies the  NavigationMenuViewComponent  class. If you run 
the application, you will see that the output from the  Invoke  method is included in the HTML sent to the 
browser, as shown in Figure  9-2 .   

  Figure 9-2.    Using a view component       

 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

245

   Generating Category Lists 
 I can now return to the navigation view controller and generate a real set of categories. I could build the 
HTML for the categories programmatically, as I did for the page tag helper, but one of the benefits of working 
with view components is they can render Razor partial views. That means I can use the view component to 
generate the list of components and then use the more expressive Razor syntax to render the HTML that will 
display them. The first step is to update the view component, as shown in Listing  9-8 . 

      Listing 9-8.    Adding the Categories List in the NavigationMenuViewComponent.cs File   

  using Microsoft.AspNetCore.Mvc; 
  using System.Linq;  
  using SportsStore.Models;  

   namespace SportsStore.Components { 

       public class NavigationMenuViewComponent : ViewComponent { 
          private IProductRepository repository;  

            public NavigationMenuViewComponent(IProductRepository repo) {  
              repository = repo;  
          }  

            public IViewComponentResult Invoke() {  
              return View(repository.Products  
                  .Select(x => x.Category)  
                  .Distinct()  
                  .OrderBy(x => x));  
          }  
     } 
 } 

    The constructor defined in Listing  9-8  defines an  IProductRepository  argument. When MVC needs to 
create an instance of the view component class, it will note the need to provide this argument and inspect 
the configuration in the  Startup  class to determine which implementation object should be used. This is 
the same dependency injection feature that I used in the controller in Chapter   8    , and it has the same effect, 
which is to allow the view component to access data without knowing which repository implementation will 
be used, as described in Chapter   18    . 

 In the  Invoke  method, I use LINQ to select and order the set of categories in the repository and pass 
them as the argument to the  View  method, which renders the default Razor partial view, details of which 
are returned from the method using an  IViewComponentResult  object, a process I describe in more detail in 
Chapter   22    . 

 UNIT TEST: GENERATING THE CATEGORY LIST

 The unit test for my ability to produce a category list is relatively simple. The goal is to create a list that 
is sorted in alphabetical order and contains no duplicates, and the simplest way to do this is to supply 
some test data that  does  have duplicate categories and that is  not  in order, pass this to the tag helper 
class, and assert that the data has been properly cleaned up. Here is the unit test, which I defined in a 
new class file called  NavigationMenuViewComponentTests.cs  in the  SportsStore.Tests  project: 

http://dx.doi.org/10.1007/978-1-4842-0397-2_8
http://dx.doi.org/10.1007/978-1-4842-0397-2_18
http://dx.doi.org/10.1007/978-1-4842-0397-2_22


CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

246

    using System.Collections.Generic; 
 using System.Linq; 
 using Microsoft.AspNetCore.Mvc.ViewComponents; 
 using Moq; 
 using SportsStore.Components; 
 using SportsStore.Models; 
 using Xunit; 

   namespace SportsStore.Tests { 

       public class NavigationMenuViewComponentTests { 

           [Fact] 
         public void Can_Select_Categories() { 
             // Arrange 
             Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
             mock.Setup(m => m.Products).Returns(new Product[] { 
                 new Product {ProductID = 1, Name = "P1", Category = "Apples"}, 
                 new Product {ProductID = 2, Name = "P2", Category = "Apples"}, 
                 new Product {ProductID = 3, Name = "P3", Category = "Plums"}, 
                 new Product {ProductID = 4, Name = "P4", Category = "Oranges"}, 
             }); 

               NavigationMenuViewComponent target = 
                 new NavigationMenuViewComponent(mock.Object); 

               // Act = get the set of categories 
             string[] results = ((IEnumerable<string>)(target.Invoke() 
                 as ViewViewComponentResult).ViewData.Model).ToArray(); 

               // Assert 
             Assert.True(Enumerable.SequenceEqual(new string[] { "Apples", 
                 "Oranges", "Plums" }, results)); 
         } 
     } 
 } 

    I created a mock repository implementation that contains repeating categories and categories that are 
not in order. I assert that the duplicates are removed and that alphabetical ordering is imposed.   

   Creating the View 
 As I explain in Chapter   22    , Razor uses different conventions for dealing with views that are selected by view 
components. Both the default name of the view and the locations that are searched for the view are different 
from those used for controllers. To that end, I created the  Views/Shared/Components/NavigationMenu  folder 
and added to it a view file called  Default.cshtml , to which I added the content shown in Listing  9-9 . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_22


CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

247

     Listing 9-9.    Contents of the Default.cshtml File in the Views/Shared/Components/NavigationMenu Folder   

  @model IEnumerable<string> 

   <a class="btn btn-block btn-default" 
    asp-action="List" 
    asp-controller="Product" 
    asp-route-category=""> 
     Home 
 </a> 

   @foreach (string category in Model) { 
     <a class="btn btn-block btn-default" 
        asp-action="List" 
        asp-controller="Product" 
        asp-route-category="@category" 
        asp-route-page="1"> 
         @category 
     </a> 
 } 

    This view uses one of the built-in tag helpers, which I describe in Chapters   24     and   25    , to create  a  
elements whose  href  attribute contains a URL that selects a different product category. 

 You can see the category links if you run the application, as shown in Figure  9-3 . If you click a category, 
the list of items is updated to show only items from the selected category.   

  Figure 9-3.    Generating category links with a view component       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_24
http://dx.doi.org/10.1007/978-1-4842-0397-2_25


CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

248

   Highlighting the Current Category 
 There is no feedback to the user to indicate which category has been selected. It might be possible to infer 
the category from the items in the list, but some solid visual feedback seems like a good idea. ASP.NET Core 
MVC components such as controllers and view components can receive information about the current 
request by asking for a context object. Most of the time, you can rely on the base classes that you use to 
create components to take care of getting the context object for you, such as when you use the  Controller  
base class to create controllers. 

 The  ViewComponent  base class is no exception and provides access to context objects through a set of 
properties. One of the properties is called  RouteData , which provides information about how the request 
URL was handled by the routing system. 

 In Listing  9-10 , I use the  RouteData  property to access the request data in order to get the value for the 
currently selected category. I could pass the category to the view by creating another view model class (and 
that’s what I would do in a real project), but for variety, I am going to use the view bag feature I introduced in 
Chapter   2    . 

     Listing 9-10.    Passing the Selected Category in the NavigationMenuViewComponent.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Linq; 
 using SportsStore.Models; 

   namespace SportsStore.Components { 

       public class NavigationMenuViewComponent : ViewComponent { 
         private IProductRepository repository; 

           public NavigationMenuViewComponent(IProductRepository repo) { 
             repository = repo; 
         } 

           public IViewComponentResult Invoke() { 
              ViewBag.SelectedCategory = RouteData?.Values["category"];  
             return View(repository.Products 
                 .Select(x => x.Category) 
                 .Distinct() 
                 .OrderBy(x => x)); 
         } 
     } 
 } 

    Inside the  Invoke  method, I have dynamically assigned a  SelectedCategory  property to the  ViewBag  
object and set its value to be the current category, which is obtained through the context object returned 
by the  RouteData  property. As I explained in Chapter   2    , the  ViewBag  is a dynamic object that allows me to 
define new properties simply by assigning values to them. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_2
http://dx.doi.org/10.1007/978-1-4842-0397-2_2


CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

249

 UNIT TEST: REPORTING THE SELECTED CATEGORY

 I can test that the view component correctly adds details of the selected category by 
reading the value of the  ViewBag  property in a unit test, which is available through the 
 ViewViewComponentResult  class, described in Chapter   22    . Here is the test, which I added to the 
 NavigatioMenuViewComponentTests  class: 

    ... 
 [Fact] 
 public void Indicates_Selected_Category() { 

       // Arrange 
     string categoryToSelect = "Apples"; 
     Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
     mock.Setup(m => m.Products).Returns(new Product[] { 
         new Product {ProductID = 1, Name = "P1", Category = "Apples"}, 
         new Product {ProductID = 4, Name = "P2", Category = "Oranges"}, 
     }); 
     NavigationMenuViewComponent target = 
         new NavigationMenuViewComponent(mock.Object); 
     target.ViewComponentContext = new ViewComponentContext { 
         ViewContext = new ViewContext { 
             RouteData = new RouteData() 
         } 
     }; 
     target.RouteData.Values["category"] = categoryToSelect; 

       // Action 
     string result = (string)(target.Invoke() as 
         ViewViewComponentResult).ViewData["SelectedCategory"]; 

       // Assert 
     Assert.Equal(categoryToSelect, result); 
 } 
 ... 

    This unit test provides the view component with routing data through the  ViewComponentContext  
property, which is how view components receive all of their context data. The  ViewComponentContext  
property provides access to view-specific context data through its  ViewContext  property, which in turns 
provides access to the routing information through its  RouteData  property. Most of the code in the unit 
test goes into creating the context objects that will provide the selected category in the same way that 
it would be presented when the application is running and the context data is provided by ASP.NET Core 
MVC.  

 Now that I am providing information about which category is selected, I can update the view selected 
by the view component to take advantage of this and vary the CSS classes used to style the links to make the 
one representing the current category distinct from the others. Listing  9-11  shows the change I made to the 
 Default.cshtml  file. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_22


CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

250

     Listing 9-11.    Highlighting the Current Category in the Default.cshtml File   

  @model IEnumerable<string> 

   <a class="btn btn-block btn-default" 
    asp-action="List" 
    asp-controller="Product" 
    asp-route-category=""> 
     Home 
 </a> 

   @foreach (string category in Model) { 
      <a class="btn btn-block  
          @(category == ViewBag.SelectedCategory ? "btn-primary": "btn-default")"  
        asp-action="List" 
        asp-controller="Product" 
        asp-route-category="@category" 
        asp-route-page="1"> 
         @category 
     </a> 
 } 

    I have used a Razor expression within the  class  attribute to apply the  btn-primary  class to the element 
that represents the selected category and the  btn-default  class otherwise. These classes apply different 
Bootstrap styles and make the active button obvious, as shown in Figure  9-4 .    

  Figure 9-4.    Highlighting the selected category       

 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

251

     Correcting the Page Count 
 I need to correct the page links so that they work correctly when a category is selected. Currently, the 
number of page links is determined by the total number of products in the repository and not the number 
of products in the selected category. This means that the customer can click the link for page 2 of the  Chess  
category and end up with an empty page because there are not enough chess products to fill two pages. You 
can see the problem in Figure  9-5 .  

  Figure 9-5.    Displaying the wrong page links when a category is selected       

 I can fix this by updating the  List  action method in the  Product  controller so that the pagination 
information takes the categories into account, as shown in Listing  9-12 . 

     Listing 9-12.    Creating Category-Aware Pagination Data in the ProductController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 
 using System.Linq; 
 using SportsStore.Models.ViewModels; 

   namespace SportsStore.Controllers { 

       public class ProductController : Controller { 
         private IProductRepository repository; 
         public int PageSize = 4; 

           public ProductController(IProductRepository repo) { 
             repository = repo; 
         } 

           public ViewResult List(string category, int page = 1) 
             => View(new ProductsListViewModel { 
                 Products = repository.Products 

 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

252

                     .Where(p => category == null || p.Category == category) 
                     .OrderBy(p => p.ProductID) 
                     .Skip((page - 1) * PageSize) 
                     .Take(PageSize), 
                 PagingInfo = new PagingInfo { 
                     CurrentPage = page, 
                     ItemsPerPage = PageSize, 
                      TotalItems = category == null ?  
                          repository.Products.Count() :  
                          repository.Products.Where(e =>  
                              e.Category == category).Count()  
                 }, 
                 CurrentCategory = category 
             }); 
     } 
 } 

    If a category has been selected, I return the number of items in that category; if not, I return the total 
number of products. Now when I view a category, the links at the bottom of the page correctly reflect the 
number of products in the category, as shown in Figure  9-6 .  

  Figure 9-6.    Displaying category-specific page counts       

 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

253

 UNIT TEST: CATEGORY-SPECIFIC PRODUCT COUNTS

 Testing that I am able to generate the current product count for different categories is simple. I 
create a mock repository that contains known data in a range of categories and then call the  List  
action method requesting each category in turn. Here is the unit test method that I added to the 
 ProductControllerTests  class: 

    ... 
 [Fact] 
 public void Generate_Category_Specific_Product_Count() { 
     // Arrange 
     Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
     mock.Setup(m => m.Products).Returns(new Product[] { 
         new Product {ProductID = 1, Name = "P1", Category = "Cat1"}, 
         new Product {ProductID = 2, Name = "P2", Category = "Cat2"}, 
         new Product {ProductID = 3, Name = "P3", Category = "Cat1"}, 
         new Product {ProductID = 4, Name = "P4", Category = "Cat2"}, 
         new Product {ProductID = 5, Name = "P5", Category = "Cat3"} 
     }); 

       ProductController target = new ProductController(mock.Object); 
     target.PageSize = 3; 

       Func<ViewResult, ProductsListViewModel> GetModel = result => 
         result?.ViewData?.Model as ProductsListViewModel; 

       // Action 
     int? res1 = GetModel(target.List("Cat1"))?.PagingInfo.TotalItems; 
     int? res2 = GetModel(target.List("Cat2"))?.PagingInfo.TotalItems; 
     int? res3 = GetModel(target.List("Cat3"))?.PagingInfo.TotalItems; 
     int? resAll = GetModel(target.List(null))?.PagingInfo.TotalItems; 

       // Assert 
     Assert.Equal(2, res1); 
     Assert.Equal(2, res2); 
     Assert.Equal(1, res3); 
     Assert.Equal(5, resAll); 
 } 
 ... 

    Notice that I also call the  List  method, specifying no category, to make sure I get the correct total count 
as well.    

     Building the Shopping Cart 
    The application is progressing nicely, but I cannot sell any products until I implement a shopping cart. In 
this section, I will create the shopping cart experience shown in Figure  9-7 . This will be familiar to anyone 
who has ever made a purchase online.  



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

254

 An Add to Cart button will be displayed alongside each of the products in the catalog. Clicking this 
button will show a summary of the products the customer has selected so far, including the total cost. At this 
point, the user can click the Continue Shopping button to return to the product catalog or click the Checkout 
Now button to complete the order and finish the shopping session. 

     Defining the Cart Model 
 I started by adding a class file called  Cart.cs  to the  Models  folder in and used it to define the classes shown 
in Listing  9-13 . 

     Listing 9-13.    The Contents of the Cart.cs File in the Models Folder   

  using System.Collections.Generic; 
 using System.Linq; 

   namespace SportsStore.Models { 

       public class Cart { 
         private List<CartLine> lineCollection = new List<CartLine>(); 

           public virtual void AddItem(Product product, int quantity) { 
             CartLine line = lineCollection 
                 .Where(p => p.Product.ProductID == product.ProductID) 
                 .FirstOrDefault(); 

               if (line == null) { 
                 lineCollection.Add(new CartLine { 
                     Product = product, 
                     Quantity = quantity 
                 }); 
             } else { 
                 line.Quantity += quantity; 
             } 
         } 

           public virtual void RemoveLine(Product product) => 
             lineCollection.RemoveAll(l => l.Product.ProductID == product.ProductID); 

           public virtual decimal ComputeTotalValue() => 

  Figure 9-7.    The basic shopping cart flow       

 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

255

             lineCollection.Sum(e => e.Product.Price * e.Quantity); 

           public virtual void Clear() => lineCollection.Clear(); 

           public virtual IEnumerable<CartLine> Lines => lineCollection; 
     } 

       public class CartLine { 
         public int CartLineID { get; set; } 
         public Product Product { get; set; } 
         public int Quantity { get; set; } 
     } 
 } 

    The  Cart  class uses the  CartLine  class, defined in the same file, to represent a product selected by 
the customer and the quantity the user wants to buy. I defined methods to add an item to the cart, remove 
a previously added item from the cart, calculate the total cost of the items in the cart, and reset the cart 
by removing all the items. I also provided a property that gives access to the contents of the cart using an 
 IEnumerable<CartLine> . This is all straightforward stuff, easily implemented in C# with the help of a little 
LINQ. 

 UNIT TEST: TESTING THE CART

 The  Cart  class is relatively simple, but it has a range of important behaviors that must work properly. 
A poorly functioning cart would undermine the entire SportsStore application. I have broken down 
the features and tested them individually. I created a new unit test file called  CartTests.cs  in the 
 SportsStore.Tests  project called to contain these tests. 

 The first behavior relates to when I add an item to the cart. If this is the first time that a given  Product  
has been added to the cart, I want a new  CartLine  to be added. Here is the test, including the unit test 
class definition: 

    using System.Linq; 
 using SportsStore.Models; 
 using Xunit; 

   namespace SportsStore.Tests { 

       public class CartTests { 

           [Fact] 
         public void Can_Add_New_Lines() { 

               // Arrange - create some test products 
             Product p1 = new Product { ProductID = 1, Name = "P1" }; 
             Product p2 = new Product { ProductID = 2, Name = "P2" }; 

               // Arrange - create a new cart 
             Cart target = new Cart(); 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

256

               // Act 
             target.AddItem(p1, 1); 
             target.AddItem(p2, 1); 
             CartLine[] results = target.Lines.ToArray(); 

               // Assert 
             Assert.Equal(2, results.Length); 
             Assert.Equal(p1, results[0].Product); 
             Assert.Equal(p2, results[1].Product); 
         } 
     } 
 } 

    However, if the customer has already added a  Product  to the cart, I want to increment the quantity of 
the corresponding  CartLine  and not create a new one. Here is the test: 

    ... 
 [Fact] 
 public void Can_Add_Quantity_For_Existing_Lines() { 
     // Arrange - create some test products 
     Product p1 = new Product { ProductID = 1, Name = "P1" }; 
     Product p2 = new Product { ProductID = 2, Name = "P2" }; 

       // Arrange - create a new cart 
     Cart target = new Cart(); 

       // Act 
     target.AddItem(p1, 1); 
     target.AddItem(p2, 1); 
     target.AddItem(p1, 10); 
     CartLine[] results = target.Lines 
         .OrderBy(c => c.Product.ProductID).ToArray(); 

       // Assert 
     Assert.Equal(2, results.Length); 
     Assert.Equal(11, results[0].Quantity); 
     Assert.Equal(1, results[1].Quantity); 
 } 
 ... 

    I also need to check that users can change their mind and remove products from the cart. This feature 
is implemented by the  RemoveLine  method. Here is the test: 

    ... 
 [Fact] 
 public void Can_Remove_Line() { 
     // Arrange - create some test products 
     Product p1 = new Product { ProductID = 1, Name = "P1" }; 
     Product p2 = new Product { ProductID = 2, Name = "P2" }; 
     Product p3 = new Product { ProductID = 3, Name = "P3" }; 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

257

       // Arrange - create a new cart 
     Cart target = new Cart(); 
     // Arrange - add some products to the cart 
     target.AddItem(p1, 1); 
     target.AddItem(p2, 3); 
     target.AddItem(p3, 5); 
     target.AddItem(p2, 1); 

       // Act 
     target.RemoveLine(p2); 

       // Assert 
     Assert.Equal(0, target.Lines.Where(c => c.Product == p2).Count()); 
     Assert.Equal(2, target.Lines.Count()); 
 } 
 ... 

    The next behavior I want to test is the ability to calculate the total cost of the items in the cart. Here’s 
the test for this behavior: 

    ... 
 [Fact] 
 public void Calculate_Cart_Total() { 
     // Arrange - create some test products 
     Product p1 = new Product { ProductID = 1, Name = "P1", Price = 100M }; 
     Product p2 = new Product { ProductID = 2, Name = "P2", Price = 50M }; 

       // Arrange - create a new cart 
     Cart target = new Cart(); 

       // Act 
     target.AddItem(p1, 1); 
     target.AddItem(p2, 1); 
     target.AddItem(p1, 3); 
     decimal result = target.ComputeTotalValue(); 

       // Assert 
     Assert.Equal(450M, result); 
 } 
 ... 

    The final test is simple. I want to ensure that the contents of the cart are properly removed when reset. 
Here is the test: 

    ... 
 [Fact] 
 public void Can_Clear_Contents() { 
     // Arrange - create some test products 
     Product p1 = new Product { ProductID = 1, Name = "P1", Price = 100M }; 
     Product p2 = new Product { ProductID = 2, Name = "P2", Price = 50M }; 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

258

       // Arrange - create a new cart 
     Cart target = new Cart(); 

       // Arrange - add some items 
     target.AddItem(p1, 1); 
     target.AddItem(p2, 1); 

       // Act - reset the cart 
     target.Clear(); 

       // Assert 
     Assert.Equal(0, target.Lines.Count()); 
 } 
 ... 

    Sometimes, as in this case, the code required to test the functionality of a class is longer and more complex 
than the class itself. Do not let that put you off writing the unit tests. Defects in simple classes can have huge 
impacts, especially ones that play such an important role as  Cart  does in the example application.   

     Adding the Add to Cart Buttons 
 I need to edit the  Views/Shared/ProductSummary.cshtml  partial view to add the buttons to the product 
listings. To prepare for this, I added a class file called  UrlExtensions.cs  to the  Infrastructure  folder and 
defines the extension method shown in Listing  9-14 . 

     Listing 9-14.    The Contents of the UrlExtensions.cs File in the Infrastructure Folder   

  using Microsoft.AspNetCore.Http; 

   namespace SportsStore.Infrastructure { 

       public static class UrlExtensions { 

           public static string PathAndQuery(this HttpRequest request) => 
             request.QueryString.HasValue 
                 ? $"{request.Path}{request.QueryString}" 
                 : request.Path.ToString(); 
     } 
 } 

    The  PathAndQuery  extension method operates on the  HttpRequest  class, which ASP.NET uses to describe 
an HTTP request. The extension method generates a URL that the browser will be returned to after the cart has 
been updated, taking into account the query string if there is one. In Listing  9-15 , I have added the namespace 
that contains the extension method to the view imports file so that I can use it in the partial view. 

     Listing 9-15.    Adding a Namespace in the _ViewImports.cshtml File   

 @using SportsStore.Models 
 @using SportsStore.Models.ViewModels 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

259

  @using SportsStore.Infrastructure  
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 
 @addTagHelper SportsStore.Infrastructure.*, SportsStore 

   In Listing  9-16 , I have updated the partial view that describes each product to contain an Add To Cart 
button. 

     Listing 9-16.    Adding the Buttons to the ProductSummary.cshtml File View   

  @model Product 

   <div class="well"> 
     <h3> 
         <strong>@Model.Name</strong> 
         <span class="pull-right label label-primary"> 
             @Model.Price.ToString("c") 
         </span> 
     </h3> 
      <form id="@Model.ProductID" asp-action="AddToCart"  
              asp-controller="Cart" method="post">  
          <input type="hidden" asp-for="ProductID" />  
          <input type="hidden" name="returnUrl"  
                  value="@ViewContext.HttpContext.Request.PathAndQuery()" />  
          <span class="lead">  
              @Model.Description  
              <button type="submit" class="btn btn-success btn-sm pull-right">  
                  Add To Cart  
              </button>  
          </span>  
      </form>  
 </div> 

    I have added a  form  element that contains hidden  input  elements specifying the  ProductID  value from 
the view model and the URL that the browser should be returned to after the cart has been updated. The 
 form  element and one of the  input  elements are configured using built-in tag helpers, which are a useful way 
of generating forms that contain model values and that target controllers and actions in the application, as 
described in Chapter   24    . The other  input  element uses the extension method I created to set the return URL. 
I also added a  button  element that will submit the form to the application. 

 ■   Note    Notice that I have set the  method  attribute on the form element to  post , which instructs the browser 
to submit the form data using an HTTP  POST  request. You can change this so that forms use the  GET  method, 
but you should think carefully about doing so. The HTTP specification requires that  GET  requests must be 
 idempotent , meaning that they must not cause changes, and adding a product to a cart is definitely a change. 
I have more to say on this topic in Chapter   16    , including an explanation of what can happen if you ignore the 
need for idempotent  GET  requests.   

http://dx.doi.org/10.1007/978-1-4842-0397-2_24
http://dx.doi.org/10.1007/978-1-4842-0397-2_16


CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

260

     Enabling Sessions 
       I am going to store details of a user’s cart using session state, which is data that is stored at the server 
and associated with a series of requests made by a user. ASP.NET provides a range of different ways to 
store session state, including storing it in memory, which is the approach that I am going to use. This has 
the advantage of simplicity, but it means that the session data is lost when the application is stopped or 
restarted. 

 The first step is to add some new NuGet packages to the SportsStore application. Listing  9-17  shows the 
additions I made to the  project.json  file. 

     Listing 9-17.    Adding Packages to the project.json File in the SportsStore Project   

 ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
   "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
   "Microsoft.AspNetCore.Razor.Tools": { 
     "version": "1.0.0-preview2-final", 
     "type": "build" 
   }, 
   "Microsoft.AspNetCore.StaticFiles": "1.0.0", 
   "Microsoft.AspNetCore.Mvc": "1.0.0", 
   "Microsoft.EntityFrameworkCore.SqlServer": "1.0.0", 
   "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final", 
   "Microsoft.Extensions.Configuration.Json": "1.0.0", 
    "Microsoft.AspNetCore.Session": "1.0.0",  
    "Microsoft.Extensions.Caching.Memory": "1.0.0",  
    "Microsoft.AspNetCore.Http.Extensions": "1.0.0"  
 }, 
 ... 

   Enabling sessions requires adding services and middleware in the  Startup  class, as shown in 
Listing  9-18 . 

     Listing 9-18.    Enabling Sessions in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using SportsStore.Models; 
 using Microsoft.Extensions.Configuration; 
 using Microsoft.EntityFrameworkCore; 

   namespace SportsStore { 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

261

       public class Startup { 
         IConfigurationRoot Configuration; 

           public Startup(IHostingEnvironment env) { 
             Configuration = new ConfigurationBuilder() 
                 .SetBasePath(env.ContentRootPath) 
                 .AddJsonFile("appsettings.json").Build(); 
         } 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddDbContext<ApplicationDbContext>(options => 
                 options.UseSqlServer( 
                     Configuration["Data:SportStoreProducts:ConnectionString"])); 
             services.AddTransient<IProductRepository, EFProductRepository>(); 
             services.AddMvc(); 
              services.AddMemoryCache();  
              services.AddSession();  
         } 

           public void Configure(IApplicationBuilder app, 
                 IHostingEnvironment env, ILoggerFactory loggerFactory) { 

               app.UseDeveloperExceptionPage(); 
             app.UseStatusCodePages(); 
             app.UseStaticFiles(); 
              app.UseSession();  
             app.UseMvc(routes => { 

                   //  ...routing configuration omitted for brevity...  

               }); 
             SeedData.EnsurePopulated(app); 
         } 
     } 
 } 

    The  AddMemoryCache  method call sets up the in-memory data store. The  AddSession  method 
registers the services used to access session data, and the  UseSession  method allows the session system to 
automatically associate requests with sessions when they arrive from the client.  

     Implementing the Cart Controller 
 I need a controller to handle the Add to Cart button presses. I added a new class file called  CartController.
cs  to the  Controllers  folder and used it to define the class shown in Listing  9-19 . 

     Listing 9-19.    The Contents of the CartController.cs File in the Controllers Folder   

  using System.Linq; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Infrastructure; 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

262

 using SportsStore.Models; 

   namespace SportsStore.Controllers { 

       public class CartController : Controller { 
         private IProductRepository repository; 

           public CartController(IProductRepository repo) { 
             repository = repo; 
         } 

           public RedirectToActionResult AddToCart(int productId, string returnUrl) { 
             Product product = repository.Products 
                 .FirstOrDefault(p => p.ProductID == productId); 

               if (product != null) { 
                 Cart cart = GetCart(); 
                 cart.AddItem(product, 1); 
                 SaveCart(cart); 
             } 
             return RedirectToAction("Index", new { returnUrl }); 
         } 

           public RedirectToActionResult RemoveFromCart(int productId, 
                 string returnUrl) { 
             Product product = repository.Products 
                 .FirstOrDefault(p => p.ProductID == productId); 

               if (product != null) { 
                 Cart cart = GetCart(); 
                 cart.RemoveLine(product); 
                 SaveCart(cart); 
             } 
             return RedirectToAction("Index", new { returnUrl }); 
         } 

           private Cart GetCart() { 
             Cart cart = HttpContext.Session.GetJson<Cart>("Cart") ?? new Cart(); 
             return cart; 
         } 

           private void SaveCart(Cart cart) { 
             HttpContext.Session.SetJson("Cart", cart); 
         } 
     } 
 } 

    There are a few points to note about this controller. The first is that I use the ASP.NET session state 
feature to store and retrieve  Cart  objects, which is the purpose of the  GetCart  method. The middleware that 
I registered in the previous section uses cookies or URL rewriting to associate multiple requests from a user 
together to form a single browsing session. A related feature is session state, which associates data with a 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

263

session. This is an ideal fit for the  Cart  class: I want each user to have their own cart, and I want the cart to 
be persistent between requests. Data associated with a session is deleted when a session expires (typically 
because a user has not made a request for a while), which means that I do not need to manage the storage or 
life cycle of the  Cart  objects. 

 For the  AddToCart  and  RemoveFromCart  action methods, I have used parameter names that match 
the  input  elements in the HTML forms created in the  ProductSummary.cshtml  view. This allows MVC to 
associate incoming form  POST  variables with those parameters, meaning I do not need to process the form 
myself. This is known as  model binding  and is a powerful tool for simplifying controller classes, as I explain 
in Chapter   26    . 

   Defining Session State Extension Methods 
 The session state feature in ASP.NET Core stores only  int ,  string , and  byte[]  values. Since I want to 
store a  Cart  object, I need to define extension methods to the  ISession  interface, which provides access 
to the session state data to serialize  Cart  objects into JSON and convert them back. I added a class file 
called  SessionExtensions.cs  to the  Infrastructure  folder and defined the extension methods shown 
in Listing  9-20 . 

     Listing 9-20.    The Contents of the SessionExtensions.cs File in the Infrastructure Folder   

  using Microsoft.AspNetCore.Http; 
 using Microsoft.AspNetCore.Http.Features; 
 using Newtonsoft.Json; 

   namespace SportsStore.Infrastructure { 

       public static class SessionExtensions { 

           public static void SetJson(this ISession session, string key, object value) { 
             session.SetString(key, JsonConvert.SerializeObject(value)); 
         } 

           public static T GetJson<T>(this ISession session, string key) { 
             var sessionData = session.GetString(key); 
             return sessionData == null 
                 ? default(T) : JsonConvert.DeserializeObject<T>(sessionData); 
         } 
     } 
 } 

    These methods rely on the Json.Net package to serialize objects into the JavaScript Object Notation 
format, which you will encounter again in Chapter   20    . The Json.Net package doesn’t have to be added to the 
 package.json  file because it is already used behind the scenes by MVC to provide the JSON helper feature, 
as described in Chapter   21    . (See    www.newtonsoft.com/json      for information on working directly with Json.
Net). 

 The extension methods make it easy to store and retrieve  Cart  objects. To add a  Cart  to the session state 
in the controller, I make an assignment like this: 

   ... 
 HttpContext.Session. SetJson ("Cart", cart); 
 ... 

http://dx.doi.org/10.1007/978-1-4842-0397-2_26
http://dx.doi.org/10.1007/978-1-4842-0397-2_20
http://dx.doi.org/10.1007/978-1-4842-0397-2_21
http://www.newtonsoft.com/json


CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

264

   The  HttpContext  property is provided the  Controller  base class from which controllers are usually 
derived and returns an  HttpContext  object that provides context data about the request that has been 
received and the response that is being prepared. The  HttpContext.Session  property returns an object 
that implements the  ISession  interface, which is the type on which I defined the  SetJson  method, which 
accepts arguments that specify a key and an object that will be added to the session state. The extension 
method serializes the object and adds it to the session state using the underlying functionality provided by 
the  ISession  interface. 

 To retrieve the  Cart  again, I use the other extension method, specifying the same key, like this: 

   ... 
 Cart cart = HttpContext.Session. GetJson<Cart> ("Cart"); 
 ... 

   The type parameter lets me specify the type that I expecting to be retrieved, which is used in the 
deserialization process.   

     Displaying the Contents of the Cart 
 The final point to note about the  Cart  controller is that both the  AddToCart  and  RemoveFromCart  methods 
call the  RedirectToAction  method. This has the effect of sending an HTTP redirect instruction to the client 
browser, asking the browser to request a new URL. In this case, I have asked the browser to request a URL 
that will call the  Index  action method of the  Cart  controller. 

 I am going to implement the  Index  method and use it to display the contents of the  Cart . If you refer 
back to Figure  9-7 , you will see that this is the workflow when the user clicks the Add to Cart button. 

 I need to pass two pieces of information to the view that will display the contents of the cart: the  Cart  
object and the URL to display if the user clicks the Continue Shopping button. I created a new class file 
called  CartIndexViewModel.cs  in the  Models/ViewModels  folder of the  SportsStore  project and used it to 
define the class shown in Listing  9-21 . 

     Listing 9-21.    The Contents of the CartIndexViewModel.cs File in the Models/ViewModels Folder   

  using SportsStore.Models; 

   namespace SportsStore.Models.ViewModels { 

       public class CartIndexViewModel { 
         public Cart Cart { get; set; } 
         public string ReturnUrl { get; set; } 
     } 
 } 

    Now that I have the view model, I can implement the  Index  action method in the  Cart  controller class, 
as shown in Listing  9-22 . 

     Listing 9-22.    Implementing the Index Action Method in the CartController.cs File   

  using System.Linq; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Infrastructure; 
 using SportsStore.Models; 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

265

  using SportsStore.Models.ViewModels;  

   namespace SportsStore.Controllers { 

       public class CartController : Controller { 
         private IProductRepository repository; 

           public CartController(IProductRepository repo) { 
             repository = repo; 
         } 

            public ViewResult Index(string returnUrl) {  
              return View(new CartIndexViewModel {  
                  Cart = GetCart(),  
                  ReturnUrl = returnUrl  
              });  
          }  

           //  ...other methods omitted for brevity...  
     } 
 } 

    The  Index  action retrieves the  Cart  object from the session state and uses it to create a 
 CartIndexViewModel  object, which is then passed to the  View  method to be used as the view model. 

 The last step to display the contents of the cart is to create the view that the  Index  action will render. I 
created the  Views/Cart  folder and added to it a Razor view file called  Index.cshtml  with the markup shown 
in Listing  9-23 . 

     Listing 9-23.    The Contents of the Index.cshtml File in the Views/Cart Folder   

  @model CartIndexViewModel 

   <h2>Your cart</h2> 
 <table class="table table-bordered table-striped"> 
     <thead> 
         <tr> 
             <th>Quantity</th> 
             <th>Item</th> 
             <th class="text-right">Price</th> 
             <th class="text-right">Subtotal</th> 
         </tr> 
     </thead> 
     <tbody> 
         @foreach (var line in Model.Cart.Lines) { 
             <tr> 
                 <td class="text-center">@line.Quantity</td> 
                 <td class="text-left">@line.Product.Name</td> 
                 <td class="text-right">@line.Product.Price.ToString("c")</td> 
                 <td class="text-right"> 
                     @((line.Quantity * line.Product.Price).ToString("c")) 
                 </td> 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

266

             </tr> 
         } 
     </tbody> 
     <tfoot> 
         <tr> 
             <td colspan="3" class="text-right">Total:</td> 
             <td class="text-right"> 
                 @Model.Cart.ComputeTotalValue().ToString("c") 
             </td> 
         </tr> 
     </tfoot> 
 </table> 

   <div class="text-center"> 
     <a class="btn btn-primary" href="@Model.ReturnUrl">Continue shopping</a> 
 </div> 

    The view enumerates the lines in the cart and adds rows for each of them to an HTML table, along with 
the total cost per line and the total cost for the cart. The classes I have assigned the elements to correspond 
to Bootstrap styles for tables and text alignment. 

 The result is the basic functions of the shopping cart are in place. First, products are listed along with a 
button to add them to the cart, as shown in Figure  9-8 .  

  Figure 9-8.    The Add to Cart button       

 



CHAPTER 9 ■ SPORTSSTORE: NAVIGATION

267

 And second, when the user clicks the Add to Cart button, the appropriate product is added to their 
cart, and a summary of the cart is displayed, as shown in Figure  9-9 . Clicking the Continue Shopping button 
returns the user to the product page they came from.    

  Figure 9-9.    Displaying the contents of the shopping cart       

     Summary 
 In this chapter, I started to flesh out the customer-facing parts of the SportsStore app. I provided the means 
by which the user can navigate by category and put the basic building blocks in place for adding items to 
a shopping cart. I have more work to do, and I continue the development of the application in the next 
chapter.     

 



269© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_10

    CHAPTER 10   

 SportsStore: Completing the Cart                          

 In this chapter, I continue to build the SportsStore example app. In the previous chapter, I added the basic 
support for a shopping cart, and now I am going to improve on and complete that functionality. 

     Refining the Cart Model with a Service 
       I defined a  Cart  model class in the previous chapter and demonstrated how it can be stored using the 
session feature, allowing the user to build up a set of products for purchase. The responsibility for managing 
the persistence of the  Cart  class fell to the  Cart  controller, which explicitly defines methods for getting and 
storing  Cart  objects. 

 The problem with this approach is that I will have to duplicate the code that obtains and stores  Cart  
objects in any component that uses them. In this section, I am going to use the services feature that sits at 
the heart of ASP.NET Core to simplify the way that  Cart  objects are managed, freeing individual components 
such as the  Cart  controller from needing to deal with the details directly. 

 Services are most commonly used to hide details of how interfaces are implemented from the 
components that depend on them. You have seen an example of this when I created a service for the 
 IProductRepository  interface, which allowed me to seamlessly replace the fake repository class with the 
Entity Framework Core repository. But services can be used to solve lots of other problems as well and can 
be used to shape and reshape an application, even when you are working with concrete classes such as  Cart . 

     Creating a Storage-Aware Cart Class 
 The first step in tidying up the way that the  Cart  class is used will be to create a subclass that is aware of how 
to store itself using session state. I added a class file called  SessionCart.cs  to the  Models  folder and used it 
to define the class shown in Listing  10-1 . 

      Listing 10-1.    The Contents of the SessionCart.cs File in the Models Folder   

  using System; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Newtonsoft.Json; 
 using SportsStore.Infrastructure; 

   namespace SportsStore.Models { 

       public class SessionCart : Cart { 



CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

270

           public static Cart GetCart(IServiceProvider services) { 
             ISession session = services.GetRequiredService<IHttpContextAccessor>()? 
                 .HttpContext.Session; 
             SessionCart cart = session?.GetJson<SessionCart>("Cart") 
                 ?? new SessionCart(); 
             cart.Session = session; 
             return cart; 
         } 

           [JsonIgnore] 
         public ISession Session { get; set; } 

           public override void AddItem(Product product, int quantity) { 
             base.AddItem(product, quantity); 
             Session.SetJson("Cart", this); 
         } 

           public override void RemoveLine(Product product) { 
             base.RemoveLine(product); 
             Session.SetJson("Cart", this); 
         } 

           public override void Clear() { 
             base.Clear(); 
             Session.Remove("Cart"); 
         } 
     } 
 } 

    The  SessionCart  class subclasses the  Cart  class and overrides the  AddItem ,  RemoveLine , and  Clear  
methods so they call the base implementations and then store the updated state in the session using the 
extension methods on the  ISession  interface I defined in Chapter   9    . The static  GetCart  method is a factory 
for creating  SessionCart  objects and providing them with an  ISession  object so they can store themselves. 

 Getting hold of the  ISession  object is a little complicated. I have to obtain an instance of the 
 IHttpContextAccessor  service, which provides me with access to an  HttpContext  object that, in turn, 
provides me with the  ISession . This around-about approach is required because the session isn’t provided 
as a regular service.  

     Registering the Service 
 The next step is to create a service for the  Cart  class. My goal is to satisfy requests for  Cart  objects with 
 SessionCart  objects that will seamlessly store themselves. You can see how I created the service in 
Listing  10-2 . 

     Listing 10-2.    Creating the Cart Service in the Startup.cs File   

 ... 
 public void ConfigureServices(IServiceCollection services) { 
     services.AddDbContext<ApplicationDbContext>(options => 
         options.UseSqlServer( 
             Configuration["Data:SportStoreProducts:ConnectionString"])); 

http://dx.doi.org/10.1007/978-1-4842-0397-2_9


CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

271

     services.AddTransient<IProductRepository, EFProductRepository>(); 
      services.AddScoped<Cart>(sp => SessionCart.GetCart(sp));  
      services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>();  
     services.AddMvc(); 
     services.AddMemoryCache(); 
     services.AddSession(); 
 } 
 ... 

   The  AddScoped  method specifies that the same object should be used to satisfy related requests for  Cart  
instances. How requests are related can be configured, but by default it means that any  Cart  required by 
components handling the same HTTP request will receive the same object. 

 Rather than provide the  AddScoped  method with a type mapping, as I did for the repository, I have 
specified a lambda expression that will be invoked to satisfy  Cart  requests. The expression receives the 
collection of services that have been registered and passes the collection to the  GetCart  method of the 
 SessionCart  class. The result is that requests for the  Cart  service will be handled by creating  SessionCart  
objects, which will serialize themselves as session data when they are modified. 

 I also added a service using the  AddSingleton  method, which specifies that the same object 
should always be used. The service I created tells MVC to use the  HttpContextAccessor  class when 
implementations of the  IHttpContextAccessor  interface are required. This service is required so I can 
access the current session in the  SessionCart  class in Listing  10-1 .  

     Simplifying the Cart Controller 
 The benefit of creating this kind of service is that it allows me to simplify the controllers where  Cart  objects 
are used. In Listing  10-3 , I have reworked the  CartController  class to take advantage of the new service. 

     Listing 10-3.    Using the Cart Service in the CartController.cs File   

  using System.Linq; 
 using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 
 using SportsStore.Models.ViewModels; 

   namespace SportsStore.Controllers { 

       public class CartController : Controller { 
         private IProductRepository repository; 
         private Cart cart; 

           public CartController(IProductRepository repo, Cart cartService) { 
             repository = repo; 
             cart = cartService; 
         } 

           public ViewResult Index(string returnUrl) { 
             return View(new CartIndexViewModel { 
                 Cart = cart, 
                 ReturnUrl = returnUrl 
             }); 
         } 



CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

272

           public RedirectToActionResult AddToCart(int productId, string returnUrl) { 
             Product product = repository.Products 
                 .FirstOrDefault(p => p.ProductID == productId); 
             if (product != null) { 
                 cart.AddItem(product, 1); 
             } 
             return RedirectToAction("Index", new { returnUrl }); 
         } 

           public RedirectToActionResult RemoveFromCart(int productId, 
                 string returnUrl) { 
             Product product = repository.Products 
                 .FirstOrDefault(p => p.ProductID == productId); 

               if (product != null) { 
                 cart.RemoveLine(product); 
             } 
             return RedirectToAction("Index", new { returnUrl }); 
         } 
     } 
 } 

    The  CartController  class indicates that it needs a  Cart  object by declaring a constructor argument, 
which has allowed me to remove the methods that read and write data from the session and the steps 
required to write updates. The result is a controller that is simpler and remains focused on its role in the 
application without having to worry about how  Cart  objects are created or persisted. And, since services 
are available throughout the application, any component can get hold of the user’s cart using the same 
technique.   

     Completing the Cart Functionality 
 Now that I have introduced the  Cart  service, it is time to complete the cart functionality by adding two new 
features. The first will allow the customer to remove an item from the cart. The second feature will display a 
summary of the cart at the top of the page. 

     Removing Items from the Cart 
 I already defined and tested the  RemoveFromCart  action method in the controller, so letting the customer 
remove items is just a matter of exposing this method in a view, which I are going to do by adding a  Remove  
button in each row of the cart summary. Listing  10-4  shows the changes to  Views/Cart/Index.cshtml . 

     Listing 10-4.    Introducing a Remove Button to the Index.cshtml File in the Views/Cart Folder   

  @model CartIndexViewModel 

   <h2>Your cart</h2> 
 <table class="table table-bordered table-striped"> 
     <thead> 



CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

273

         <tr> 
             <th>Quantity</th> 
             <th>Item</th> 
             <th class="text-right">Price</th> 
             <th class="text-right">Subtotal</th> 
         </tr> 
     </thead> 
     <tbody> 
         @foreach (var line in Model.Cart.Lines) { 
             <tr> 
                 <td class="text-center">@line.Quantity</td> 
                 <td class="text-left">@line.Product.Name</td> 
                 <td class="text-right">@line.Product.Price.ToString("c")</td> 
                 <td class="text-right"> 
                     @((line.Quantity * line.Product.Price).ToString("c")) 
                 </td> 
                  <td>  
                      <form asp-action="RemoveFromCart" method="post">  
                          <input type="hidden" name="ProductID"  
                              value="@line.Product.ProductID" />  
                          <input type="hidden" name="returnUrl"  
                              value="@Model.ReturnUrl" />  
                          <button type="submit" class="btn btn-sm btn-danger ">  
                              Remove  
                          </button>  
                      </form>  
                  </td>  
             </tr> 
         } 
     </tbody> 
     <tfoot> 
         <tr> 
             <td colspan="3" class="text-right">Total:</td> 
             <td class="text-right"> 
                 @Model.Cart.ComputeTotalValue().ToString("c") 
             </td> 
         </tr> 
     </tfoot> 
 </table> 

   <div class="text-center"> 
     <a class="btn btn-primary" href="@Model.ReturnUrl">Continue shopping</a> 
 </div> 

    I added a new column to each row of the table that contains a  form  with hidden  input  elements that 
specify the product to be removed and the return URL, along with a button that submits the form. 

 You can see the  Remove  buttons at work by running the application and adding items to the shopping 
cart. Remember that the cart already contains the functionality to remove it, which you can test by clicking 
one of the new buttons, as shown in Figure  10-1 .   



CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

274

     Adding the Cart Summary Widget 
 I may have a functioning cart, but there is an issue with the way it is integrated into the interface. Customers 
can tell what is in their cart only by viewing the cart summary screen. And they can view the cart summary 
screen only by adding a new a new item to the cart. 

 To solve this problem, I am going to add a widget that summarizes the contents of the cart and that 
can be clicked to display the cart contents throughout the application. I will do this in much the same 
way that I added the navigation widget—as a view component whose output I can include in the Razor 
shared layout. 

   Adding the Font Awesome Package 
    As part of the cart summary, I am going to display a button that allows the user to check out. Rather than 
display the word  checkout  in the button, I want to use a cart symbol. Since I have no artistic skills, I am going 
to use the Font Awesome package, which is an excellent set of open source icons that are integrated into 
applications as fonts, where each character in the font is a different image. You can learn more about Font 
Awesome, including inspecting the icons it contains, at    http://fortawesome.github.io/Font-Awesome     . 

 I selected the SportsStore project and clicked the Show All Items button at the top of the Solution 
Explorer to reveal the  bower.json  file. I then added the Font Awesome package to the  dependencies  section, 
as shown in Listing  10-5 . 

     Listing 10-5.    Adding the Font Awesome Package in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 

  Figure 10-1.    Removing an item from the shopping cart       

 

http://fortawesome.github.io/Font-Awesome


CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

275

     "bootstrap": "3.3.6", 
      "fontawesome": "4.6.3"  
   } 
 } 

   When the  bower.json  file is saved, Visual Studio uses Bower to download and install the Font Awesome 
package in the  www/lib/fontawesome  folder.  

   Creating the View Component Class and View 
 I added a class file called  CartSummaryViewComponent.cs  in the  Components  folder and used it to define the 
view component shown in Listing  10-6 . 

     Listing 10-6.    The Contents of the CartSummaryViewComponent.cs File in the Components Folder   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 

   namespace SportsStore.Components { 

       public class CartSummaryViewComponent : ViewComponent { 
         private Cart cart; 

           public CartSummaryViewComponent(Cart cartService) { 
             cart = cartService; 
         } 

           public IViewComponentResult Invoke() { 
             return View(cart); 
         } 
     } 
 } 

    This view component is able to take advantage of the service that I created earlier in the chapter in 
order to receive a  Cart  object as a constructor argument. The result is a simple view component class that 
passes on the  Cart  to the  View  method in order to generate the fragment of HTML that will be included in 
the layout. To create the layout, I created the  Views/Shared/Components/CartSummary  folder, added to it a 
Razor view file called  Default.cshtml , and added the markup shown in Listing  10-7 . 

     Listing 10-7.    The Default.cshtml File in the Views/Shared/Components/CartSummary Folder   

  @model Cart 

   <div class=""> 
     @if (Model.Lines.Count() > 0) { 
         <small class="navbar-text"> 
             <b>Your cart:</b> 
             @Model.Lines.Sum(x => x.Quantity) item(s) 
             @Model.ComputeTotalValue().ToString("c") 
         </small> 
     } 



CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

276

     <a class="btn btn-sm btn-default navbar-btn" 
        asp-controller="Cart" asp-action="Index" 
        asp-route-returnurl="@ViewContext.HttpContext.Request.PathAndQuery()"> 
         <i class="fa fa-shopping-cart"></i> 
     </a> 
 </div> 

    The view displays a button with the Font Awesome cart icon and, if there are items in the cart, provides 
a snapshot that details the number of items and their total value. Now that I have a view component and a 
view, I can modify the shared layout so that the cart summary is included in the responses generated by the 
application’s controllers, as shown in Listing  10-8 . 

     Listing 10-8.    Adding the Cart Summary in the _Layout.cshtml File   

  <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
      <link rel="stylesheet" asp-href-include="/lib/fontawesome/css/*.css" />  
     <title>SportsStore</title> 
 </head> 
 <body> 
     <div class="navbar navbar-inverse" role="navigation"> 
         <a class="navbar-brand" href="#">SPORTS STORE</a> 
          <div class="pull-right">  
              @await Component.InvokeAsync("CartSummary")  
          </div>  
     </div> 
     <div class="row panel"> 
         <div id="categories" class="col-xs-3"> 
             @await Component.InvokeAsync("NavigationMenu") 
         </div> 
         <div class="col-xs-8"> 
             @RenderBody() 
         </div> 
     </div> 
 </body> 
 </html> 

    You can see the cart summary by starting the application. When the cart is empty, only the checkout 
button is shown. If you add items to the cart, then the number of items and their combined cost are shown, 
as illustrated by Figure  10-2 . With this addition, customers know what is in their cart and have an obvious 
way to check out from the store.     



CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

277

     Submitting Orders 
 I have now reached the final customer feature in SportsStore: the ability to check out and complete an order. 
In the following sections, I will extend the domain model to provide support for capturing the shipping 
details from a user and add the application support to process those details. 

     Creating the Model Class 
 I added a class file called  Order.cs  to the  Models  folder and edited it to match the contents shown in 
Listing  10-9 . This is the class I will use to represent the shipping details for a customer. 

     Listing 10-9.    The Contents of the Order.cs File in the Models Folder   

  using System.Collections.Generic; 
 using System.ComponentModel.DataAnnotations; 
 using Microsoft.AspNetCore.Mvc.ModelBinding; 

   namespace SportsStore.Models { 

       public class Order { 

           [BindNever] 
         public int OrderID { get; set; } 
         [BindNever] 
         public ICollection<CartLine> Lines { get; set; } 

           [Required(ErrorMessage = "Please enter a name")] 
         public string Name { get; set; } 

  Figure 10-2.    Displaying a summary of the cart       

 



CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

278

           [Required(ErrorMessage = "Please enter the first address line")] 
         public string Line1 { get; set; } 
         public string Line2 { get; set; } 
         public string Line3 { get; set; } 

           [Required(ErrorMessage = "Please enter a city name")] 
         public string City { get; set; } 

           [Required(ErrorMessage = "Please enter a state name")] 
         public string State { get; set; } 

           public string Zip { get; set; } 

           [Required(ErrorMessage = "Please enter a country name")] 
         public string Country { get; set; } 

           public bool GiftWrap { get; set; } 
     } 
 } 

    I am using the validation attributes from the  System.ComponentModel.DataAnnotations  namespace, 
just as I did in Chapter   2    . I describe validation further in Chapter   27    . 

 I also use the  BindNever  attribute, which prevents the user supplying values for these properties in an 
HTTP request. This is a feature of the model binding system, which I describe in Chapter   26    .  

     Adding the Checkout Process 
    The goal is to reach the point where users are able to enter their shipping details and submit their order. To 
start, I need to add a Checkout button to the cart summary view. Listing  10-10  shows the change I applied to 
the  Views/Cart/Index.cshtml  file. 

     Listing 10-10.    Adding the Checkout Now Button to the Index.cshtml File in the Views/Cart Folder   

 ... 
 <div class="text-center"> 
     <a class="btn btn-primary" href="@Model.ReturnUrl">Continue shopping</a> 
      <a class="btn btn-primary" asp-action="Checkout" asp-controller="Order">  
          Checkout  
      </a>  
 </div> 
 ... 

   This change generates a link that I have styled as a button and that, when clicked, calls the  Checkout  
action method of the  Order  controller, which I create in the following section. You can see how this button 
appears in Figure  10-3 .  

http://dx.doi.org/10.1007/978-1-4842-0397-2_2
http://dx.doi.org/10.1007/978-1-4842-0397-2_27
http://dx.doi.org/10.1007/978-1-4842-0397-2_26


CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

279

 I now need to define the  Order  controller. I added a class file called  OrderController.cs  to the 
 Controllers  folder and used it to define the class shown in Listing  10-11 . 

     Listing 10-11.    The Contents of the OrderController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 

   namespace SportsStore.Controllers { 

       public class OrderController : Controller { 

           public ViewResult Checkout() => View(new Order()); 
     } 
 } 

    The  Checkout  method returns the default view and passes a new  ShippingDetails  object as the view 
model. To create the view, I created the  Views/Order  folder and added a Razor view file called  Checkout.
cshtml  with the markup shown in Listing  10-12 . 

  Figure 10-3.    The Checkout button       

 



CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

280

     Listing 10-12.    The Contents of the Checkout.cshtml File in the Views/Order Folder   

  @model Order 

   <h2>Check out now</h2> 
 <p>Please enter your details, and we'll ship your goods right away!</p> 

   <form asp-action="Checkout" method="post"> 
     <h3>Ship to</h3> 
     <div class="form-group"> 
         <label>Name:</label><input asp-for="Name" class="form-control" /> 
     </div> 
     <h3>Address</h3> 
     <div class="form-group"> 
         <label>Line 1:</label><input asp-for="Line1" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label>Line 2:</label><input asp-for="Line2" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label>Line 3:</label><input asp-for="Line3" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label>City:</label><input asp-for="City" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label>State:</label><input asp-for="State" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label>Zip:</label><input asp-for="Zip" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label>Country:</label><input asp-for="Country" class="form-control" /> 
     </div> 
     <h3>Options</h3> 
     <div class="checkbox"> 
         <label> 
             <input asp-for="GiftWrap" /> Gift wrap these items 
         </label> 
     </div> 
     <div class="text-center"> 
         <input class="btn btn-primary" type="submit" value="Complete Order" /> 
     </div> 
 </form> 

    For each of the properties in the model, I have created a  label  and  input  element to capture the user 
input, formatted with Bootstrap. The  asp-for  attribute on the  input  elements is handled by a built-in tag 
helper that generates the  type ,  id ,  name , and  value  attributes based on the specified model property, as 
described in Chapter   24    . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_24


CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

281

 You can see the effect of the new action method and view by starting the application, clicking the cart 
button at the top of the page, and then clicking the Checkout button, as shown in Figure  10-4 . You can also 
reach this point by requesting the  /Cart/Checkout  URL.   

  Figure 10-4.    The shipping details form       

 



CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

282

     Implementing Order Processing 
 I will process orders by writing them to the database. Most e-commerce sites would not simply stop there, of 
course, and I have not provided support for processing credit cards or other forms of payment. But I want to 
keep things focused on MVC, so a simple database entry will do. 

   Extending the Database 
       Adding a new kind of model to the database is simple once the basic plumbing that I created in Chapter   8     is 
in place. First, I added a new property to the database context class, as shown in Listing  10-13 . 

     Listing 10-13.    Adding a Property in the ApplicationDbContext.cs File   

  using Microsoft.EntityFrameworkCore; 

   namespace SportsStore.Models { 

       public class ApplicationDbContext : DbContext { 

           public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options) 
             : base(options) { } 

           public DbSet<Product> Products { get; set; } 
          public DbSet<Order> Orders { get; set; }  
     } 
 } 

    This change is enough of a foundation for Entity Framework Core to create a database migration that 
will allow  Order  objects to be stored in the database. To create the migration, open the Package Manger 
Console from the Tools ➤ NuGet Package Manage menu and run the following  command  : 

   Add-Migration Orders 

   This command tells EF Core to take a new snapshot of the application, work out how it differs from the 
previous database version, and generate a new migration called  Orders . To update the database schema, run 
the following  command  : 

   Update-Database 

   RESETTING THE DATABASE

 When you are making frequent changes to the model, there will come a point when your migrations 
and your database schema get out of sync. The easiest thing to do is delete the database and start over. 
However, this applies only during development, of course, because you will lose any data you have stored.     

 Select the SQL Server Object Explorer item from the Visual Studio View menu and click the Add Sql 
Server button. Enter  (localdb)\mssqllocaldb  into the Server Name field and click the Connect button. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_8


CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

283

A new item will appear in the SQL Server Object Explorer window, which you can expand to see the 
LocalDB databases that have been created. Right-click the database you want to remove and select 
Delete from the pop-up menu. Check the option to close the existing connections and then click the OK 
button to delete the database. 

 Once the database has been removed, run the following command from the Package Manager Console 
to create the database and apply the migrations you have created by running the following command: 

   Update-Database 

   This will reset the database so that it accurately reflects your model and allow you to return to 
developing your application.   

   Creating the Order Repository 
 I am going to follow the same pattern I used for the product repository to provide access to the  Order  objects. 
I added a class file called  IOrderRepository.cs  to the  Models  folder and used it to define the interface 
shown in Listing  10-14 . 

     Listing 10-14.    The Contents of the IOrderRepository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace SportsStore.Models { 

       public interface IOrderRepository { 

           IEnumerable<Order> Orders { get; } 
         void SaveOrder(Order order); 
     } 
 } 

    To implement the order repository interface, I added a class file called  EFOrderRepository.cs  to the 
 Models  folder and defined the class shown in Listing  10-15 . 

     Listing 10-15.    The Contents of the EFOrderRepository.cs File in the Models Folder   

  using System.Collections.Generic; 
 using Microsoft.EntityFrameworkCore; 
 using System.Linq; 

   namespace SportsStore.Models { 

       public class EFOrderRepository : IOrderRepository { 
         private ApplicationDbContext context; 

           public EFOrderRepository(ApplicationDbContext ctx) { 
             context = ctx; 
         } 



CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

284

           public IEnumerable<Order> Orders => context.Orders 
                             .Include(o => o.Lines) 
                             .ThenInclude(l => l.Product); 

           public void SaveOrder(Order order) { 
             context.AttachRange(order.Lines.Select(l => l.Product)); 
             if (order.OrderID == 0) { 
                 context.Orders.Add(order); 
             } 
             context.SaveChanges(); 
         } 
     } 
 } 

    This class implements the  IOrderRepository  using Entity Framework Core, allowing the set of  Order  
objects that have been stored to be retrieved and for orders to be created or changed. 

 UNDERSTANDING THE ORDER REPOSITORY

 There is a little extra work required to implement the repository for the orders in Listing  10-15 . Entity 
Framework Core requires instruction to load related data if it spans multiple tables. In the listing, I 
used the  Include  and  ThenInclude  methods to specify that when an  Order  object is read from the 
database, the collection associated with the  Lines  property should also be loaded along with each 
 Product  object associated each collection object: 

    ... 
 public IEnumerable<Order> Orders => context.Orders 
     . Include (o => o.Lines) 
     . ThenInclude (l => l.Product); 
 ... 

   This ensures that I receive all of the data objects that I need without having to perform the queries and 
assemble the data directly. 

 An additional step is also required when I store an  Order  object in the database. When the user’s cart 
data is de-serialized from the session store, the JSON package creates new objects that are created 
that are not known to Entity Framework Core, which then tries to write all of the objects into the 
database. For the  Product  objects, this means that EF Core tries to write objects that have already been 
stored, which causes an error. To avoid this problem, I notify Entity Framework Core that the objects 
exist and shouldn’t be stored in the database unless they are modified, as follows: 

   ... 
 context. AttachRange (order.Lines.Select(l => l.Product)); 
 ... 

   This ensures that EF Core won’t try to write the de-serialized  Product  objects that are associated with 
the  Order  object.  



CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

285

 In Listing  10-16 , I have registered the order repository as a service in the  ConfigureServices  method of 
the  Startup  class. 

     Listing 10-16.    Registering the Order Repository Service in the Startup.cs File   

 ... 
 public void ConfigureServices(IServiceCollection services) { 
     services.AddDbContext<ApplicationDbContext>(options => 
         options.UseSqlServer( 
             Configuration["Data:SportStoreProducts:ConnectionString"])); 
     services.AddTransient<IProductRepository, EFProductRepository>(); 
     services.AddScoped<Cart>(sp => SessionCart.GetCart(sp)); 
     services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>(); 
      services.AddTransient<IOrderRepository, EFOrderRepository>();  
     services.AddMvc(); 
     services.AddMemoryCache(); 
     services.AddSession(); 
 } 
 ... 

         Completing the Order Controller 
 To complete the  OrderController  class, I need to modify the constructor so that it receives the services it 
requires to process an order and add a new action method that will handle the HTTP form  POST  request 
when the user clicks the Complete Order button. Listing  10-17  shows both changes. 

      Listing 10-17.    Completing the Controller in the OrderController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 
  using System.Linq;  

   namespace SportsStore.Controllers { 

       public class OrderController : Controller { 
          private IOrderRepository repository;  
          private Cart cart;  

            public OrderController(IOrderRepository repoService, Cart cartService) {  
              repository = repoService;  
              cart = cartService;  
          }  

           public ViewResult Checkout() => View(new Order()); 

            [HttpPost]  
          public IActionResult Checkout(Order order) {  
              if (cart.Lines.Count() == 0) {  
                  ModelState.AddModelError("", "Sorry, your cart is empty!");  
              }  



CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

286

              if (ModelState.IsValid) {  
                  order.Lines = cart.Lines.ToArray();  
                  repository.SaveOrder(order);  
                  return RedirectToAction(nameof(Completed));  
              } else {  
                  return View(order);  
              }  
          }  

            public ViewResult Completed() {  
              cart.Clear();  
              return View();  
          }  
     } 
 } 

    The  Checkout  action method is decorated with the  HttpPost  attribute, which means that it will be 
invoked for a  POST  request—in this case, when the user submits the form. Once again, I am relying on the 
model binder system so that I can receive the  Order  object, which I then complete using data from the  Cart  
and store in the repository. 

 MVC checks the validation constraints that I applied to the  Order  class using the data annotation 
attributes, and any validation problems violations are passed to the action method through the  ModelState  
property. I can see whether there are any problems by checking the  ModelState.IsValid  property. I call 
the  ModelState.AddModelError  method to register an error message if there are no items in the cart. I will 
explain how to display such errors shortly, and I have much more to say about model binding and validation 
in Chapters   27     and   28    . 

 UNIT TEST: ORDER PROCESSING

 To perform unit testing for the  OrderController  class, I need to test the behavior of the  POST  version 
of the  Checkout  method. Although the method looks short and simple, the use of MVC model binding 
means that there is a lot going on behind the scenes that needs to be tested. 

 I want to process an order only if there are items in the cart  and  the customer has provided valid 
shipping details. Under all other circumstances, the customer should be shown an error. Here is the 
first test method, which I defined in a class file called  OrderControllerTests.cs  in the  SportsStore.
Tests  project: 

    using Microsoft.AspNetCore.Mvc; 
 using Moq; 
 using SportsStore.Controllers; 
 using SportsStore.Models; 
 using Xunit; 

   namespace SportsStore.Tests { 

       public class OrderControllerTests { 

           [Fact] 
         public void Cannot_Checkout_Empty_Cart() { 

http://dx.doi.org/10.1007/978-1-4842-0397-2_27
http://dx.doi.org/10.1007/978-1-4842-0397-2_28


CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

287

             // Arrange - create a mock repository 
             Mock<IOrderRepository> mock = new Mock<IOrderRepository>(); 
             // Arrange - create an empty cart 
             Cart cart = new Cart(); 
             // Arrange - create the order 
             Order order = new Order(); 
             // Arrange - create an instance of the controller 
             OrderController target = new OrderController(mock.Object, cart); 

               // Act 
             ViewResult result = target.Checkout(order) as ViewResult; 

               // Assert - check that the order hasn't been stored 
             mock.Verify(m => m.SaveOrder(It.IsAny<Order>()), Times.Never); 
             // Assert - check that the method is returning the default view 
             Assert.True(string.IsNullOrEmpty(result.ViewName)); 
             // Assert - check that I am passing an invalid model to the view 
             Assert.False(result.ViewData.ModelState.IsValid); 
         } 
     } 
 } 

    This test ensures that I cannot check out with an empty cart. I check this by ensuring that the 
 SaveOrder  of the mock  IOrderRepository  implementation is never called, that the view the method 
returns is the default view (which will redisplay the data entered by customers and give them a chance 
to correct it), and that the model state being passed to the view has been marked as invalid. This 
may seem like a belt-and-braces set of assertions, but I need all three to be sure that I have the right 
behavior. The next test method works in much the same way but injects an error into the view model 
to simulate a problem reported by the model binder (which would happen in production when the 
customer enters invalid shipping data): 

    ... 
 [Fact] 
 public void Cannot_Checkout_Invalid_ShippingDetails() { 

       // Arrange - create a mock order repository 
     Mock<IOrderRepository> mock = new Mock<IOrderRepository>(); 
     // Arrange - create a cart with one item 
     Cart cart = new Cart(); 
     cart.AddItem(new Product(), 1); 
     // Arrange - create an instance of the controller 
     OrderController target = new OrderController(mock.Object, cart); 
     // Arrange - add an error to the model 
     target.ModelState.AddModelError("error", "error"); 

       // Act - try to checkout 
     ViewResult result = target.Checkout(new Order()) as ViewResult; 

       // Assert - check that the order hasn't been passed stored 
     mock.Verify(m => m.SaveOrder(It.IsAny<Order>()), Times.Never); 



CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

288

     // Assert - check that the method is returning the default view 
     Assert.True(string.IsNullOrEmpty(result.ViewName)); 
     // Assert - check that I am passing an invalid model to the view 
     Assert.False(result.ViewData.ModelState.IsValid); 
 } 
 ... 

    Having established that an empty cart or invalid details will prevent an order from being processed, I 
need to ensure that I process orders when appropriate. Here is the test: 

    ... 
 [Fact] 
 public void Can_Checkout_And_Submit_Order() { 
     // Arrange - create a mock order repository 
     Mock<IOrderRepository> mock = new Mock<IOrderRepository>(); 
     // Arrange - create a cart with one item 
     Cart cart = new Cart(); 
     cart.AddItem(new Product(), 1); 
     // Arrange - create an instance of the controller 
     OrderController target = new OrderController(mock.Object, cart); 

       // Act - try to checkout 
     RedirectToActionResult result = 
          target.Checkout(new Order()) as RedirectToActionResult; 

       // Assert - check that the order has been stored 
     mock.Verify(m => m.SaveOrder(It.IsAny<Order>()), Times.Once); 
     // Assert - check that the method is redirecting to the Completed action 
     Assert.Equal("Completed", result.ActionName); 
 } 
 ... 

    I did not need to test that I can identify valid shipping details. This is handled for me automatically by the 
model binder using the attributes applied to the properties of the  Order  class.   

     Displaying Validation Errors 
       MVC will use the validation attributes applied to the  Order  class to validate user data. However, I need to 
make a simple change to display any problems. This relies on another built-in tag helper that inspects the 
validation state of the data provided by the user and adds warning messages for each problem that has been 
discovered. Listing  10-18  shows the addition of an HTML element that will be processed by the tag helper to 
the  Checkout.cshtml  file. 

     Listing 10-18.    Adding a Validation Summary to the Checkout.cshtml File   

  @model Order 

   <h2>Check out now</h2> 
 <p>Please enter your details, and we'll ship your goods right away!</p> 



CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

289

    <div asp-validation-summary="All" class="text-danger"></div>  

   <form asp-action="Checkout"  method="post"> 
     <h3>Ship to</h3> 
 ... 

    With this simple change, validation errors are reported to the user. To see the effect, go to the  /Order/
Checkout  URL and try to check out without selecting any products or filling any shipping details, as shown 
in Figure  10-5 . The tag helper that generates these messages is part of the model validation system, which I 
describe in detail in Chapter   27    .  

  Figure 10-5.    Displaying validation messages       

 ■   Tip    The data submitted by the user is sent to the server before it is validated, which is known as 
 server-side validation  and for which MVC has excellent support. The problem with server-side validation 
is that the user isn’t told about errors until after the data has been sent to the server and processed and 
the result page has been generated—something that can take a few seconds on a busy server. For this 
reason, server-side validation is usually complemented by client-side validation, where JavaScript is used 
to check the values that the user has entered before the form data is sent to the server. I describe client-
side validation in Chapter   27    .   

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_27
http://dx.doi.org/10.1007/978-1-4842-0397-2_27


CHAPTER 10 ■ SPORTSSTORE: COMPLETING THE CART

290

     Displaying a Summary Page 
 To complete the checkout process, I need to create the view that will be shown when the browser is 
redirected to the  Completed  action on the  Order  controller. I added a Razor view file called  Completed.
cshtml  to the  Views/Order  folder and added the markup shown in Listing  10-19 . 

     Listing 10-19.    The Contents of the Completed.cshtml File in the Views/Order Folder   

 <h2>Thanks!</h2> 
 <p>Thanks for placing your order.</p> 
 <p>We'll ship your goods as soon as possible.</p> 

   I don’t need to make any code changes to integrate this view into the application because I already 
added the required statements when I defined the  Completed  action method in Listing  10-17 . Now 
customers can go through the entire process, from selecting products to checking out. If they provide valid 
shipping details (and have items in their cart), they will see the summary page when they click the Complete 
Order button, as shown in Figure  10-6 .    

     Summary 
 I have completed all the major parts of the customer-facing portion of SportsStore. It might not be enough to 
worry Amazon, but I have a product catalog that can be browsed by category and page, a neat shopping cart, 
and a simple checkout process. 

 The well-separated architecture means I can easily change the behavior of any piece of the application 
without worrying about causing problems or inconsistencies elsewhere. For example, I could change the 
way that orders are stored and it would not have any impact on the shopping cart, the product catalog, 
or any other area of the application. In the next chapter, I add the features required to administer the 
SportsStore application.     

  Figure 10-6.    The completed order summary view       

 



291© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_11

    CHAPTER 11   

 SportsStore: Administration                          

 In this chapter, I continue to build the SportsStore application in order to give the site administrator a way of 
managing orders and products. 

     Managing Orders 
    In the previous chapter, I added support for receiving orders from customers and storing them in a database. 
In this chapter, I am going to create a simple administration tool that will let me view the orders that have 
been received and mark them as shipped. 

     Enhancing the Model 
 The first change I need to make is to enhance the model so that I can record which orders have been 
shipped. Listing  11-1  shows the addition of a new property to the  Order  class, which is defined in the  Order.
cs  file in the  Models  folder. 

     Listing 11-1.    Adding a Property in the Order.cs File   

  using System.Collections.Generic; 
 using System.ComponentModel.DataAnnotations; 
 using Microsoft.AspNetCore.Mvc.ModelBinding; 

   namespace SportsStore.Models { 

       public class Order { 

           [BindNever] 
         public int OrderID { get; set; } 
         [BindNever] 
         public ICollection<CartLine> Lines { get; set; } 

            [BindNever]  
          public bool Shipped { get; set; }  

           [Required(ErrorMessage = "Please enter a name")] 
         public string Name { get; set; } 



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

292

           [Required(ErrorMessage = "Please enter the first address line")] 
         public string Line1 { get; set; } 
         public string Line2 { get; set; } 
         public string Line3 { get; set; } 

           [Required(ErrorMessage = "Please enter a city name")] 
         public string City { get; set; } 

           [Required(ErrorMessage = "Please enter a state name")] 
         public string State { get; set; } 

           public string Zip { get; set; } 

           [Required(ErrorMessage = "Please enter a country name")] 
         public string Country { get; set; } 

           public bool GiftWrap { get; set; } 
     } 
 } 

    This iterative approach of extending and adapting the model to support different features is typical of 
MVC development. In an ideal world, you would be able to completely define the model classes at the start 
of the project and just build the application around them, but that happens only for the simplest of projects 
and, in practice, iterative development is to be expected as the understanding of what is required develops 
and evolves. 

 Entity Framework Core migrations makes this process easier because you don’t have to manually keep 
the database schema synchronized to the model class by writing your own SQL commands. To update 
the database to reflect the addition of the  Shipped  property to the  Order  class, open the Package Manager 
Console and run the following commands to create a new migration and apply it to the database:       

   Add-Migration ShippedOrders 
 Update-Database 

        Adding the Actions and View 
 The functionality required to display and update the set of orders in the database is relatively simple because 
it builds on the features and infrastructure that I created in previous chapters. In Listing  11-2 , I have added 
two new action methods to the  Order  controller. 

     Listing 11-2.    Adding Action Methods in the OrderController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 
 using System.Linq; 

   namespace SportsStore.Controllers { 

       public class OrderController : Controller { 
         private IOrderRepository repository; 
         private Cart cart; 



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

293

           public OrderController(IOrderRepository repoService, Cart cartService) { 
             repository = repoService; 
             cart = cartService; 
         } 

            public ViewResult List() =>  
              View(repository.Orders.Where(o => !o.Shipped));  

            [HttpPost]  
          public IActionResult MarkShipped(int orderID) {  
              Order order = repository.Orders  
                  .FirstOrDefault(o => o.OrderID == orderID);  
              if (order != null) {  
                  order.Shipped = true;  
                  repository.SaveOrder(order);  
              }  
              return RedirectToAction(nameof(List));  
          }  

           public ViewResult Checkout() => View(new Order()); 

           [HttpPost] 
         public IActionResult Checkout(Order order) { 
             if (cart.Lines.Count() == 0) { 
                 ModelState.AddModelError("", "Sorry, your cart is empty!"); 
             } 
             if (ModelState.IsValid) { 
                 order.Lines = cart.Lines.ToArray(); 
                 repository.SaveOrder(order); 
                 return RedirectToAction(nameof(Completed)); 
             } else { 
                 return View(order); 
             } 
         } 

           public ViewResult Completed() { 
             cart.Clear(); 
             return View(); 
         } 
     } 
 } 

    The  List  method selects all the  Order  objects in the repository that have a  Shipped  value of  false  and 
passes them to the default view. This is the action method that I will use to display a list of the unshipped 
order to the administrator. 

 The  MarkShipped  method will receive a POST request that specifies the ID of an order, which is used to 
locate the corresponding  Order  object from the repository so that its  Shipped  property can be set to  true  and 
saved. 

 To display the list of unshipped orders, I added a Razor view file called  List.cshtml  to the  Views/Order  
folder and added the markup shown in Listing  11-3 . A table element is used to display some of the details 
from each other, including details of which products have been purchased. 



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

294

     Listing 11-3.    The Contents of the List.cshtml File in the Views/Order Folder   

  @model IEnumerable<Order> 

   @{ 
     ViewBag.Title = "Orders"; 
     Layout = "_AdminLayout"; 
 } 

   @if (Model.Count() > 0) { 

       <table class="table table-bordered table-striped"> 
         <tr><th>Name</th><th>Zip</th><th colspan="2">Details</th><th></th></tr> 
         @foreach (Order o in Model) { 
             <tr> 
                 <td>@o.Name</td><td>@o.Zip</td><th>Product</th><th>Quantity</th> 
                 <td> 
                     <form asp-action="MarkShipped" method="post"> 
                         <input type="hidden" name="orderId" value="@o.OrderID" /> 
                         <button type="submit" class="btn btn-sm btn-danger"> 
                             Ship 
                         </button> 
                     </form> 
                 </td> 
             </tr> 
             @foreach (CartLine line in o.Lines) { 
                 <tr> 
                     <td colspan="2"></td> 
                     <td>@line.Product.Name</td><td>@line.Quantity</td> 
                     <td></td> 
                 </tr> 

               } 
         } 
         </table> 
 } else { 
     <div class="text-center">No Unshipped Orders</div> 
 } 

    Each order is displayed with a Ship button that submits a form to the  MarkShipped  action method. I 
specified a different layout for the  List  view using the  Layout  property, which overrides the layout specified 
in the  _ViewStart.cshtml  file. 

 To add the layout, I used the MVC View Layout Page item template to create a file called  _AdminLayout.
cshtml  in the  Views/Shared  folder and added the markup shown in Listing  11-4 . 

     Listing 11-4.    The Contents of the _AdminLayout.cshtml File in the Views/Shared Folder   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

295

     <title>@ViewBag.Title</title> 
 </head> 
 <body class="panel panel-default"> 
     <div class="panel-heading"><h4>@ViewBag.Title</h4></div> 
     <div class="panel-body"> 
         @RenderBody() 
     </div> 
 </body> 
 </html> 

   To see and manage the orders in the application, start the application, select some products, and then 
check out. Then navigate to the  /Order/List  URL and you will see a summary of the order you created, as 
shown in Figure  11-1 . Click the Ship button; the database will be updated, and the list of pending orders will 
be empty.  

  Figure 11-1.    Managing orders       

 ■   Note    At the moment, there is nothing to stop customers from requesting the  /Order/List  URL and 
administering their own orders. I explain how to restrict access to action methods in Chapter   12    .    

     Adding Catalog Management 
 The convention for managing more complex collections of items is to present the user with two types of 
pages: a  list  page and an  edit  page, as shown in Figure  11-2 .  

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_12


CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

296

 Together, these pages allow a user to create, read, update, and delete items in the collection. 
Collectively, these actions are known as  CRUD . Developers need to implement CRUD so often that Visual 
Studio scaffolding includes scenarios for creating CRUD controllers with predefined action methods 
(I explained how to enable the scaffolding feature in Chapter   8    ). But like all the Visual Studio templates, I 
think it is better to learn how to use the features of the ASP.NET Core MVC directly. 

     Creating a CRUD Controller 
 I am going to start by creating a separate controller for managing the product catalog. I added a class file 
called  AdminController.cs  to the  Controllers  folder and used added the code shown in Listing  11-5 . 

     Listing 11-5.    The Contents of the AdminController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 

   namespace SportsStore.Controllers { 

       public class AdminController : Controller { 
         private IProductRepository repository; 

           public AdminController(IProductRepository repo) { 
             repository = repo; 
         } 

           public ViewResult Index() => View(repository.Products); 
     } 
 } 

    The controller constructor declares a dependency on the  IProductRepository  interface, which will 
be resolved when instances are created. The controller defines a single action method,  Index , that calls the 
 View  method to select the default view for the action, passing the set of products in the database as the view 
model. 

  Figure 11-2.    Sketch of a CRUD UI for the product catalog       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_8


CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

297

 UNIT TEST: THE INDEX ACTION

 The behavior that I care about for the  Index  method of the  Admin  controller is that it correctly returns the 
 Product  objects that are in the repository. I can test this by creating a mock repository implementation and 
comparing the test data with the data returned by the action method. Here is the unit test, which I placed 
into a new unit test file called  AdminControllerTests.cs  in the  SportsStore.UnitTests  project: 

    using System.Collections.Generic; 
 using System.Linq; 
 using Microsoft.AspNetCore.Mvc; 
 using Moq; 
 using SportsStore.Controllers; 
 using SportsStore.Models; 
 using Xunit; 

   namespace SportsStore.Tests { 

       public class AdminControllerTests { 

           [Fact] 
         public void Index_Contains_All_Products() { 
             // Arrange - create the mock repository 
             Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
             mock.Setup(m => m.Products).Returns(new Product[] { 
                 new Product {ProductID = 1, Name = "P1"}, 
                 new Product {ProductID = 2, Name = "P2"}, 
                 new Product {ProductID = 3, Name = "P3"}, 
             }); 

               // Arrange - create a controller 
             AdminController target = new AdminController(mock.Object); 

               // Action 
             Product[] result 
                 = GetViewModel<IEnumerable<Product>>(target.Index())?.ToArray(); 

               // Assert 
             Assert.Equal(3, result.Length); 
             Assert.Equal("P1", result[0].Name); 
             Assert.Equal("P2", result[1].Name); 
             Assert.Equal("P3", result[2].Name); 
         } 

           private T GetViewModel<T>(IActionResult result) where T : class { 
             return (result as ViewResult)?.ViewData.Model as T; 
         } 
     } 
 } 

    I added a  GetViewModel  method to the test to unpack the result from the action method and get the 
view model data. I’ll be adding more tests that use this method later in the chapter.   



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

298

     Implementing the List View 
 The next step is to add a view for the  Index  action method of the  Admin  controller. I created the  Views/Admin  
folder and added a Razor file called  Index.cshtml , the contents of which are shown in Listing  11-6 . 

      Listing 11-6.    The Contents of the Index.cshtml File in the Views/Admin Folder   

  @model IEnumerable<Product> 

   @{ 
     ViewBag.Title = "All Products"; 
     Layout = "_AdminLayout"; 
 } 

   <table class="table table-striped table-bordered table-condensed"> 
     <tr> 
         <th class="text-right">ID</th> 
         <th>Name</th> 
         <th class="text-right">Price</th> 
         <th class="text-center">Actions</th> 
     </tr> 
     @foreach (var item in Model) { 
         <tr> 
             <td class="text-right">@item.ProductID</td> 
             <td>@item.Name</td> 
             <td class="text-right">@item.Price.ToString("c")</td> 
             <td class="text-center"> 
                 <form asp-action="Delete" method="post"> 
                     <a asp-action="Edit" class="btn btn-sm btn-warning" 
                        asp-route-productId="@item.ProductID"> 
                         Edit 
                     </a> 
                     <input type="hidden" name="ProductID" value="@item.ProductID" /> 
                     <button type="submit" class="btn btn-danger btn-sm"> 
                         Delete 
                     </button> 
                 </form> 
             </td> 
         </tr> 
     } 
 </table> 
 <div class="text-center"> 
     <a asp-action="Create" class="btn btn-primary">Add Product</a> 
 </div> 

    This view contains a table that has a row for each product with cells that contains the name of the table, 
the price, and buttons that will allow the product to be edited or deleted by sending requests to  Edit  and 
 Delete  actions. In addition to the table, there is an Add Product button that targets the  Create  action. I’ll 
add the  Edit ,  Delete , and  Create  actions in the sections that follow, but you can see how the products are 
displayed by starting the application and requesting the  /Admin/Index  URL, as shown in Figure  11-3 .  



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

299

 ■   Tip    The Edit button is inside the form element in Listing  11-6  so that the two buttons sit next to each other, 
working around the spacing that Bootstrap applies. The Edit button will send an HTTP  GET  request to the server in 
order to get the current details of a product; this doesn’t require a  form  element. However, since the Delete button will 
make a change to the application state, I need to use an HTTP  POST  request—and that does require the  form  element.   

     Editing Products 
 To provide create and update features, I will add a product-editing page like the one shown in Figure  11-2 . 
These are the two parts to this job:

•    Display a page that will allow the administrator to change values for the properties of 
a product  

•   Add an action method that can process those changes when they are submitted    

  Figure 11-3.    Displaying the list of products       

 



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

300

   Creating the Edit Action Method 
 Listing  11-7  shows the  Edit  action method I added to the  Admin  controller, which will receive the HTTP 
request sent by the browser when the user clicks an Edit button. 

     Listing 11-7.    Adding an Edit Action Method in the AdminController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 
  using System.Linq;  

   namespace SportsStore.Controllers { 

       public class AdminController : Controller { 
         private IProductRepository repository; 

           public AdminController(IProductRepository repo) { 
             repository = repo; 
         } 

           public ViewResult Index() => View(repository.Products); 

            public ViewResult Edit(int productId) =>  
              View(repository.Products  
                  .FirstOrDefault(p => p.ProductID == productId));  
     } 
 } 

    This simple method finds the product with the ID that corresponds to the  productId  parameter and 
passes it as a view model object to the  View  method. 

 UNIT TEST: THE EDIT ACTION METHOD

 I want to test for two behaviors in the  Edit  action method. The first is that I get the product I ask for 
when I provide a valid ID value to make sure that I am editing the product I expected. The second 
behavior to test is that I do not get any product at all when I request an ID value that is not in the 
repository. Here are the test methods I added to the  AdminControllerTests.cs  class file: 

    ... 
 [Fact] 
 public void Can_Edit_Product() { 
     // Arrange - create the mock repository 
     Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
     mock.Setup(m => m.Products).Returns(new Product[] { 
         new Product {ProductID = 1, Name = "P1"}, 
         new Product {ProductID = 2, Name = "P2"}, 
         new Product {ProductID = 3, Name = "P3"}, 
     }); 

       // Arrange - create the controller 
     AdminController target = new AdminController(mock.Object); 



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

301

       // Act 
     Product p1 = GetViewModel<Product>(target.Edit(1)); 
     Product p2 = GetViewModel<Product>(target.Edit(2)); 
     Product p3 = GetViewModel<Product>(target.Edit(3)); 

       // Assert 
     Assert.Equal(1, p1.ProductID); 
     Assert.Equal(2, p2.ProductID); 
     Assert.Equal(3, p3.ProductID); 
 } 

   [Fact] 
 public void Cannot_Edit_Nonexistent_Product() { 
     // Arrange - create the mock repository 
     Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
     mock.Setup(m => m.Products).Returns(new Product[] { 
         new Product {ProductID = 1, Name = "P1"}, 
         new Product {ProductID = 2, Name = "P2"}, 
         new Product {ProductID = 3, Name = "P3"}, 
     }); 

       // Arrange - create the controller 
     AdminController target = new AdminController(mock.Object); 

       // Act 
     Product result = GetViewModel<Product>(target.Edit(4)); 

       // Assert 
     Assert.Null(result); 
 } 
 ... 

        Creating the Edit View 
 Now that I have an action method, I can create a view for it to display. I added a Razor view file called  Edit.
cshtml  to the  Views/Admin  folder and added the markup shown in Listing  11-8 . 

     Listing 11-8.    The Contents of the Edit.cshtml File in the Views/Admin Folder   

  @model Product 
 @{ 
     ViewBag.Title = "Edit Product"; 
     Layout = "_AdminLayout"; 
 } 

   <form asp-action="Edit" method="post"> 
     <input type="hidden" asp-for="ProductID" /> 
     <div class="form-group"> 
         <label asp-for="Name"></label> 
         <input asp-for="Name" class="form-control" /> 
     </div> 
     <div class="form-group"> 



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

302

         <label asp-for="Description"></label> 
         <textarea asp-for="Description" class="form-control"></textarea> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Category"></label> 
         <input asp-for="Category" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Price"></label> 
         <input asp-for="Price" class="form-control" /> 
     </div> 
     <div class="text-center"> 
         <button class="btn btn-primary" type="submit">Save</button> 
         <a asp-action="Index" class="btn btn-default">Cancel</a> 
     </div> 
 </form> 

    The view contains an HTML form that uses tag helpers to generate much of the content, including 
setting the target for the  form  and  a  elements, setting the content of the  label  elements, and producing the 
 name ,  id , and  value  attributes for the  input  and  textarea  elements. 

 You can see the HTML produced by the view by starting the application, navigating to the  /Admin/Index  
URL, and clicking the Edit button for one of the products, as shown in Figure  11-4 .  

  Figure 11-4.    Displaying product values for editing       

 



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

303

 ■   Tip    I have used a hidden input element for the  ProductID  property for simplicity. The value of the 
 ProductID  is generated by the database as a primary key when a new object is stored by the Entity Framework 
Core, and safely changing it can be a complex process.   

   Updating the Product Repository 
 Before I can process edits, I need to enhance the product repository so that it is able to save changes. First, I 
added a new method to the  IProductRepository  interface, as shown in Listing  11-9 . 

     Listing 11-9.    Adding a Method to the IProductRespository.cs File   

  using System.Collections.Generic; 

   namespace SportsStore.Models { 

       public interface IProductRepository { 
         IEnumerable<Product> Products { get; } 

            void SaveProduct(Product product);  
     } 
 } 

    I can then add the new method to the Entity Framework Core implementation of the repository, which 
is defined in the  EFProductRepository.cs  file, as shown in Listing  11-10 .     

     Listing 11-10.    Implementing the SaveProduct Method in the EFProductRepository.cs File   

  using System.Collections.Generic; 
  using System.Linq;  

   namespace SportsStore.Models { 

       public class EFProductRepository : IProductRepository { 
         private ApplicationDbContext context; 

           public EFProductRepository(ApplicationDbContext ctx) { 
             context = ctx; 
         } 

           public IEnumerable<Product> Products => context.Products; 

            public void SaveProduct(Product product) {  
              if (product.ProductID == 0) {  
                  context.Products.Add(product);  
              } else {  
                  Product dbEntry = context.Products  
                      .FirstOrDefault(p => p.ProductID == product.ProductID);  
                  if (dbEntry != null) {  



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

304

                      dbEntry.Name = product.Name;  
                      dbEntry.Description = product.Description;  
                      dbEntry.Price = product.Price;  
                      dbEntry.Category = product.Category;  
                  }  
              }  
              context.SaveChanges();  
          }  
     } 
 } 

    The implementation of the  SaveChanges  method adds a product to the repository if the  ProductID  is  0 ; 
otherwise, it applies any changes to the existing entry in the database. 

 I do not want to go into details of the Entity Framework Core because, as I explained earlier, it is a topic 
in itself and not part of ASP.NET Core MVC. But there is something in the  SaveProduct  method that has a 
bearing on the design of the MVC application. 

 I know I need to perform an update when I receive a  Product  parameter that has a  ProductID  that is not 
zero. I do this by getting a  Product  object from the repository with the same  ProductID  and updating each of 
the properties so they match the parameter object. 

 I can do this because the Entity Framework Core keeps track of the objects that it creates from the 
database. The object passed to the  SaveChanges  method is created by the MVC model binding feature, 
which means that the Entity Framework Core does not know anything about the new  Product  object and will 
not apply an update to the database when it is modified. There are lots of ways of resolving this issue, and 
I have taken the simplest one, which is to locate the corresponding object that the Entity Framework Core 
 does  know about and update it explicitly. 

 The addition of a new method in the  IProductRepository  interface has broken the fake repository 
class— FakeProductRepository —that I created in Chapter   8    . I used the fake repository to kick-start 
the development process and demonstrate how services can be used to seamlessly replace interface 
implementations without needing to modify the components that rely on them. I don’t need the fake 
repository any further, and in Listing  11-11 , you can see that I have removed the interface from the class 
declaration so that I don’t have to keep modifying the class as I add repository features. 

     Listing 11-11.    Disconnecting a Class from an Interface in the FakeProductRepository.cs File   

  using System.Collections.Generic; 

   namespace SportsStore.Models { 

        public class FakeProductRepository /* : IProductRepository */ {  

           public IEnumerable<Product> Products => new List<Product> { 
             new Product { Name = "Football", Price = 25 }, 
             new Product { Name = "Surf board", Price = 179 }, 
             new Product { Name = "Running shoes", Price = 95 } 
         }; 
     } 
 } 

       Handling Edit POST Requests 
 I am ready to implement an overload of the  Edit  action method in the  Admin  controller that will handle  POST  
requests when the administrator clicks the Save button. Listing  11-12  shows the new action method. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_8


CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

305

     Listing 11-12.    Defining the POST-Handling Edit Action Method in the AdminController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 
 using System.Linq; 

   namespace SportsStore.Controllers { 

       public class AdminController : Controller { 
         private IProductRepository repository; 

           public AdminController(IProductRepository repo) { 
             repository = repo; 
         } 

           public ViewResult Index() => View(repository.Products); 

           public ViewResult Edit(int productId) => 
             View(repository.Products 
                 .FirstOrDefault(p => p.ProductID == productId)); 

            [HttpPost]  
          public IActionResult Edit(Product product) {  
              if (ModelState.IsValid) {  
                  repository.SaveProduct(product);  
                  TempData["message"] = $"{product.Name} has been saved";  
                  return RedirectToAction("Index");  
              } else {  
                  // there is something wrong with the data values  
                  return View(product);  
              }  
          }  
     } 
 } 

    I check that the model binding process has been able to validate the data submitted to the user by 
reading the value of the  ModelState.IsValid  property. If everything is OK, I save the changes to the 
repository and redirect the user to the  Index  action so they see the modified list of products. If there is a 
problem with the data, I render the default view again so that the user can make corrections.     

 After I have saved the changes in the repository, I store a message using the  temp data  feature, which 
is part of the ASP.NET Core session state feature. This is a key/value dictionary similar to the session data 
and view bag features I used previously. The key difference from session data is that temp data persists 
until it is read. 

 I cannot use  ViewBag  in this situation because  ViewBag  passes data between the controller and view 
and it cannot hold data for longer than the current HTTP request. When an edit succeeds, the browser 
is redirected to a new URL, so the  ViewBag  data is lost. I could use the session data feature, but then the 
message would be persistent until I explicitly removed it, which I would rather not have to do. 

 So, the temp data feature is the perfect fit. The data is restricted to a single user’s session (so that users 
do not see each other’s  TempData ) and will persist long enough for me to read it. I will read the data in the 
view rendered by the action method to which I have redirected the user, which I define in the next section. 



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

306

 UNIT TEST: EDIT SUBMISSIONS

 For the  POST -processing  Edit  action method, I need to make sure that valid updates to the  Product  
object that is received as the method argument are passed to the product repository to be saved. I 
also want to check that invalid updates (where a model validation error exists) are not passed to the 
repository. Here are the test methods, which I added to the  AdminControllerTests.cs  file: 

    ... 
 [Fact] 
 public void Can_Save_Valid_Changes() { 
     // Arrange - create mock repository 
     Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
     // Arrange - create mock temp data 
     Mock<ITempDataDictionary> tempData = new Mock<ITempDataDictionary>(); 
     // Arrange - create the controller 
     AdminController target = new AdminController(mock.Object) { 
         TempData = tempData.Object 
     }; 
     // Arrange - create a product 
     Product product = new Product { Name = "Test" }; 

       // Act - try to save the product 
     IActionResult result = target.Edit(product); 

       // Assert - check that the repository was called 
     mock.Verify(m => m.SaveProduct(product)); 
     // Assert - check the result type is a redirection 
     Assert.IsType<RedirectToActionResult>(result); 
     Assert.Equal("Index", (result as RedirectToActionResult).ActionName); 
 } 

   [Fact] 
 public void Cannot_Save_Invalid_Changes() { 
     // Arrange - create mock repository 
     Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
     // Arrange - create the controller 
     AdminController target = new AdminController(mock.Object); 
     // Arrange - create a product 
     Product product = new Product { Name = "Test" }; 
     // Arrange - add an error to the model state 
     target.ModelState.AddModelError("error", "error"); 

       // Act - try to save the product 
     IActionResult result = target.Edit(product); 

       // Assert - check that the repository was not called 
     mock.Verify(m => m.SaveProduct(It.IsAny<Product>()), Times.Never()); 
     // Assert - check the method result type 
     Assert.IsType<ViewResult>(result); 
 } 
 ... 



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

307

        Displaying a Confirmation Message 
 I am going to deal with the message I stored using  TempData  in the  _AdminLayout.cshtml  layout file, as 
shown in Listing  11-13 . By handling the message in the template, I can create messages in any view that uses 
the template without needing to create additional Razor expressions.        

     Listing 11-13.    Handling the ViewBag Message in the _AdminLayout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
     <title>@ViewBag.Title</title> 
 </head> 
 <body class="panel panel-default"> 
     <div class="panel-heading"><h4>@ViewBag.Title</h4></div> 
     <div class="panel-body"> 
          @if (TempData["message"] != null) {  
              <div class="alert alert-success">@TempData["message"]</div>  
          }  
         @RenderBody() 
     </div> 
 </body> 
 </html> 

 ■     Tip    The benefit of dealing with the message in the template like this is that users will see it displayed on 
whatever page is rendered after they have saved a change. At the moment, I return them to the list of products, 
but I could change the workflow to render some other view, and the users will still see the message (as long as 
the next view also uses the same layout).  

 I now have all the pieces in place to edit products. To see how it all works, start the application, navigate 
to the  /Admin/Index  URL, click the Edit button, and make a change. Click the Save button. You will be 
redirected to the  /Admin/Index  URL, and the  TempData  message will be displayed, as shown in Figure  11-5 . 
The message will disappear if you reload the product list screen, because  TempData  is deleted when it is read. 
That is convenient since I do not want old messages hanging around.   



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

308

   Adding Model Validation 
 I have reached the point where I need to add validation rules to the model classes. At the moment, the 
administrator could enter negative prices or blank descriptions, and SportsStore would happily store that 
data in the database. Whether or not the bad data would be successfully persisted would depend on whether 
it conformed to the constraints in the SQL tables created by Entity Framework Core, and that is not enough 
protection for most applications. To guard against bad data values, I decorated the properties of the  Product  
class with attributes, as shown in Listing  11-14 , just as I did for the  Order  class in Chapter   10    .     

     Listing 11-14.    Applying Validation Attributes in the Product.cs File   

   using System.ComponentModel.DataAnnotations;  
  using Microsoft.AspNetCore.Mvc.ModelBinding;  

   namespace SportsStore.Models { 

  Figure 11-5.    Editing a product and seeing the TempData message       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_10


CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

309

       public class Product { 
         public int ProductID { get; set; } 

            [Required(ErrorMessage = "Please enter a product name")]  
         public string Name { get; set; } 

            [Required(ErrorMessage = "Please enter a description")]  
         public string Description { get; set; } 

            [Required]  
          [Range(0.01, double.MaxValue,  
              ErrorMessage = "Please enter a positive price")]  
         public decimal Price { get; set; } 

            [Required(ErrorMessage = "Please specify a category")]  
         public string Category { get; set; } 
     } 
 } 

    In Chapter   10    , I used a tag helper to display a summary of validation errors at the top of the form. 
For this example, I am going to use a similar approach, but I am going to display error messages next to 
individual form elements in the  Edit  view, as shown in Listing  11-15 . 

     Listing 11-15.    Adding Validation Error Elements in the Edit.cshtml File   

  @model Product 
 @{ 
     ViewBag.Title = "Edit Product"; 
     Layout = "_AdminLayout"; 
 } 

   <form asp-action="Edit" method="post"> 
     <input type="hidden" asp-for="ProductID" /> 
     <div class="form-group"> 
         <label asp-for="Name"></label> 
          <div><span asp-validation-for="Name" class="text-danger"></span></div>  
         <input asp-for="Name" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Description"></label> 
          <div><span asp-validation-for="Description" class="text-danger"></span></div>  
         <textarea asp-for="Description" class="form-control"></textarea> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Category"></label> 
          <div><span asp-validation-for="Category" class="text-danger"></span></div>  
         <input asp-for="Category" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Price"></label> 
          <div><span asp-validation-for="Price" class="text-danger"></span></div>  
         <input asp-for="Price" class="form-control" /> 

http://dx.doi.org/10.1007/978-1-4842-0397-2_10


CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

310

     </div> 
     <div class="text-center"> 
         <button class="btn btn-primary" type="submit">Save</button> 
         <a asp-action="Index" class="btn btn-default">Cancel</a> 
     </div> 
 </form> 

    When applied to a  span  element, the  asp-validation-for  attribute applies a tag helper that will add a 
validation error message for the specified property if there are any validation problems. 

 The tag helpers will insert an error message into the  span  element and add the element to the  input-
validation-error  class, which makes it easy to apply CSS styles to error message elements, as shown in 
Listing  11-16 . 

     Listing 11-16.    Adding CSS to the _AdminLayout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
     <title>@ViewBag.Title</title> 
      <style>  
          .input-validation-error { border-color: red; background-color: #fee ; }  
      </style>  
 </head> 
 <body class="panel panel-default"> 
     <div class="panel-heading"><h4>@ViewBag.Title</h4></div> 
     <div class="panel-body"> 
         @if (TempData["message"] != null) { 
             <div class="alert alert-success">@TempData["message"]</div> 
         } 
         @RenderBody() 
     </div> 
 </body> 
 </html> 

   The CSS style I defined selects elements that are members of the  input-validation-error  class and 
applies a red border and background color. 

 ■   Tip    Explicitly setting styles when using a CSS library like Bootstrap can cause inconsistencies when 
content themes are applied. In Chapter   27    , I show an alternative approach that uses JavaScript code to apply 
Bootstrap classes to elements with validation errors, which keeps everything consistent.  

 You can apply the validation message tag helpers anywhere in the view, but it is conventional (and 
sensible) to put it somewhere near the problem element to give the user some context. Figure  11-6  shows 
the validation messages and cues that are displayed, which you can see by running the application, editing a 
product, and submitting invalid data.   

http://dx.doi.org/10.1007/978-1-4842-0397-2_27


CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

311

   Enabling Client-Side Validation 
    Currently, data validation is applied only when the administration user submits edits to the server, but 
most users expect immediate feedback if there are problems with the data they have entered. This is why 
developers often want to perform  client-side validation , where the data is checked in the browser using 
JavaScript. MVC applications can perform client-side validation based on the data annotations I applied to 
the domain model class. 

 The first step is to add the JavaScript libraries that provide the client-side feature to the application, 
which is done in the  bower.json  file, as shown in Listing  11-17 . You may need to select the SportsStore 
project and click the Show All Items button at the top of the Solution Explorer to reveal the  bower.json  file. 

 ■   Note    The client-side validation packages will not be installed correctly unless you replace the Visual Studio 
 git  tool, as described in Chapter   2    .  

  Figure 11-6.    Data validation when editing products       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_2


CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

312

     Listing 11-17.    Adding JavaScript Packages in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
     "bootstrap": "3.3.6", 
     "fontawesome": "4.6.3", 
      "jquery": "2.2.4",  
      "jquery-validation": "1.15.0",  
      "jquery-validation-unobtrusive": "3.2.6"  
   } 
 } 

   Client-side validation is built on top of the popular jQuery library, which simplifies working with the 
browser’s DOM API. The next step is to add the JavaScript files to the layout so they are loaded when the 
SportsStore administration features are used, as shown in Listing  11-18 . 

     Listing 11-18.    Adding the Client-Side Validation Libraries to the _AdminLayout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
     <title>@ViewBag.Title</title> 
     <style> 
         .input-validation-error { border-color: red; background-color: #fee ; } 
     </style> 
      <script asp-src-include="lib/jquery/**/jquery.min.js"></script>  
      <script asp-src-include="lib/jquery-validation/**/jquery.validate.min.js">  
      </script>  
      <script asp-src-include="lib/jquery-validation-unobtrusive/**/*.min.js"></script>  
 </head> 
 <body class="panel panel-default"> 
     <div class="panel-heading"><h4>@ViewBag.Title</h4></div> 
     <div class="panel-body"> 
         @if (TempData["message"] != null) { 
             <div class="alert alert-success">@TempData["message"]</div> 
         } 
         @RenderBody() 
     </div> 
 </body> 
 </html> 

   These additions use a tag helper to select the files that are included in the  script  elements. I describe 
how this process works in Chapter   25    , and this approach allows me to use wildcards to select JavaScript files, 
which means that the application won’t break if the names of the files in the Bower package change when a 
new version is released. Some caution is required, however, because (as I explain in Chapter   25    ) it is easy to 
select files that you didn’t expect. 

 Enabling client-side validation doesn’t cause any visual change, but the constraints specified by the 
attributes applied to the C# model class are enforced at the browser, preventing the user from submitting the form 
with bad data and providing immediate feedback when there is a problem. See Chapter   27     for more details.   

http://dx.doi.org/10.1007/978-1-4842-0397-2_25
http://dx.doi.org/10.1007/978-1-4842-0397-2_25
http://dx.doi.org/10.1007/978-1-4842-0397-2_27


CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

313

     Creating New Products 
 Next, I will implement the  Create  action method, which is the one specified by the Add Product link in the 
main product list page. This will allow the administrator to add new items to the product catalog. Adding 
the ability to create new products will require one small addition to the application. This is a great example 
of the power and flexibility of a well-structured MVC application. First, add the  Create  method, shown in 
Listing  11-19 , to the  Admin  controller. 

     Listing 11-19.    Adding the Create Action Method to the AdminController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 
 using System.Linq; 

   namespace SportsStore.Controllers { 

       public class AdminController : Controller { 
         private IProductRepository repository; 

           public AdminController(IProductRepository repo) { 
             repository = repo; 
         } 

           public ViewResult Index() => View(repository.Products); 

           public ViewResult Edit(int productId) => 
             View(repository.Products 
                 .FirstOrDefault(p => p.ProductID == productId)); 

           [HttpPost] 
         public IActionResult Edit(Product product) { 
             if (ModelState.IsValid) { 
                 repository.SaveProduct(product); 
                 TempData["message"] = $"{product.Name} has been saved"; 
                 return RedirectToAction("Index"); 
             } else { 
                 // there is something wrong with the data values 
                 return View(product); 
             } 
         } 

            public ViewResult Create() => View("Edit", new Product());  
     } 
 } 

    The  Create  method does not render its default view. Instead, it specifies that the  Edit  view should be 
used. It is perfectly acceptable for one action method to use a view that is usually associated with another 
view. In this case, I provide a new  Product  object as the view model so that the  Edit  view is populated with 
empty fields. 



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

314

 ■   Note    I have not added a unit test for this action method. Doing so would only be testing the ASP.NET Core 
MVC ability to process the result from the action method result, which is something you can take for granted. 
(Tests are not usually written for framework features unless you suspect there is a defect.)  

 That is the only change that is required because the  Edit  action method is already set up to receive 
 Product  objects from the model binding system and store them in the database. You can test this 
functionality by starting the application, navigating to  /Admin/Index , clicking the Add Product button, and 
populating and submitting the form. The details you specify in the form will be used to create a new product 
in the database, which will then appear in the list, as shown in Figure  11-7 .   

  Figure 11-7.    Adding a new product to the catalog       

 



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

315

     Deleting Products 
 Adding support for deleting items is also simple. First, I add a new method to the  IProductRepository  
interface, as shown in Listing  11-20 . 

     Listing 11-20.    Adding a Method to Delete Products to the IProductRepository.cs File   

  using System.Collections.Generic; 

   namespace SportsStore.Models { 

       public interface IProductRepository { 
         IEnumerable<Product> Products { get; } 

           void SaveProduct(Product product); 

            Product DeleteProduct(int productID);  
     } 
 } 

    Next, I implement this method in the Entity Framework Core repository class,  EFProductRepository , as 
shown in Listing  11-21 .     

     Listing 11-21.    Implementing Deletion Support in the EFProductRepository.cs File   

  using System.Collections.Generic; 
 using System.Linq; 

   namespace SportsStore.Models { 

       public class EFProductRepository : IProductRepository { 
         private ApplicationDbContext context; 

           public EFProductRepository(ApplicationDbContext ctx) { 
             context = ctx; 
         } 

           public IEnumerable<Product> Products => context.Products; 

           public void SaveProduct(Product product) { 
             if (product.ProductID == 0) { 
                 context.Products.Add(product); 
             } else { 
                 Product dbEntry = context.Products 
                     .FirstOrDefault(p => p.ProductID == product.ProductID); 
                 if (dbEntry != null) { 
                     dbEntry.Name = product.Name; 
                     dbEntry.Description = product.Description; 
                     dbEntry.Price = product.Price; 
                     dbEntry.Category = product.Category; 
                 } 
             } 



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

316

             context.SaveChanges(); 
         } 

            public Product DeleteProduct(int productID) {  
              Product dbEntry = context.Products  
                  .FirstOrDefault(p => p.ProductID == productID);  
              if (dbEntry != null) {  
                  context.Products.Remove(dbEntry);  
                  context.SaveChanges();  
              }  
              return dbEntry;  
          }  
     } 
 } 

    The final step is to implement a  Delete  action method in the  Admin  controller. This action method 
should support only  POST  requests because deleting objects is not an idempotent operation. As I explain in 
Chapter   16    , browsers and caches are free to make  GET  requests without the user’s explicit consent, so I must 
be careful to avoid making changes as a consequence of  GET  requests. Listing  11-22  shows the new action 
method. 

     Listing 11-22.    Adding the Delete Action Method in the AdminController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 
 using System.Linq; 

   namespace SportsStore.Controllers { 

       public class AdminController : Controller { 
         private IProductRepository repository; 

           public AdminController(IProductRepository repo) { 
             repository = repo; 
         } 

           public ViewResult Index() => View(repository.Products); 

           public ViewResult Edit(int productId) => 
             View(repository.Products 
                 .FirstOrDefault(p => p.ProductID == productId)); 

           [HttpPost] 
         public IActionResult Edit(Product product) { 
             if (ModelState.IsValid) { 
                 repository.SaveProduct(product); 
                 TempData["message"] = $"{product.Name} has been saved"; 
                 return RedirectToAction("Index"); 
             } else { 
                 // there is something wrong with the data values 
                 return View(product); 
             } 

http://dx.doi.org/10.1007/978-1-4842-0397-2_16


CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

317

         } 

           public IActionResult Create() => View("Edit", new Product()); 

            [HttpPost]  
          public IActionResult Delete(int productId) {  
              Product deletedProduct = repository.DeleteProduct(productId);  
              if (deletedProduct != null) {  
                  TempData["message"] = $"{deletedProduct.Name} was deleted";  
              }  
              return RedirectToAction("Index");  
          }  
     } 
 } 

    UNIT TEST: DELETING PRODUCTS

 I want to test the basic behavior of the  Delete  action method, which is that when a valid  ProductID  
is passed as a parameter, the action method calls the  DeleteProduct  method of the repository 
and passes the correct  ProductID  value to be deleted. Here is the test that I added to the 
 AdminControllerTests.cs  file: 

    ... 
 [Fact] 
 public void Can_Delete_Valid_Products() { 
     // Arrange - create a Product 
     Product prod = new Product { ProductID = 2, Name = "Test" }; 

       // Arrange - create the mock repository 
     Mock<IProductRepository> mock = new Mock<IProductRepository>(); 
     mock.Setup(m => m.Products).Returns(new Product[] { 
         new Product {ProductID = 1, Name = "P1"}, 
         prod, 
         new Product {ProductID = 3, Name = "P3"}, 
     }); 

       // Arrange - create the controller 
     AdminController target = new AdminController(mock.Object); 

       // Act - delete the product 
     target.Delete(prod.ProductID); 

       // Assert - ensure that the repository delete method was 
     // called with the correct Product 
     mock.Verify(m => m.DeleteProduct(prod.ProductID)); 
 } 
 ... 



CHAPTER 11 ■ SPORTSSTORE: ADMINISTRATION

318

     You can see the delete feature by starting the application, navigating to  /Admin/Index , and clicking one 
of the Delete buttons in the product list page, as shown in Figure  11-8 . As shown in the figure, I have taken 
advantage of the  TempData  variable to display a message when a product is deleted from the catalog.    

  Figure 11-8.    Deleting a product from the catalog       

     Summary 
 In this chapter, I introduced the administration capability and showed you how to implement CRUD 
operations that allow the administrator to create, read, update, and delete products from the repository and 
mark orders as shipped. In the next chapter, I show you how to secure the administration functions so that 
they are not available to all users, and I deploy the SportsStore application into production.     

 



319© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_12

    CHAPTER 12   

 SportsStore: Security and 
Deployment                          

 In the previous chapter, I added support for administering the SportsStore application, and it probably did 
not escape your attention that anyone could modify the product catalog if I deploy the application as it is. 
All they would need to know is that the administration features are available using the  /Admin/Index  and  /
Order/List  URLs. In this chapter, I am going to show you how to prevent random people from using the 
administration functions by password-protecting them. Once I have the security in place, I will show you 
how to prepare and deploy the SportsStore application into production. 

     Securing the Administration Features 
       Authentication and authorization are provided by the ASP.NET Core Identity system, which integrates 
neatly into both the ASP.NET Core platform and MVC applications. In the sections that follow, I will create 
a basic security setup that allows one user, called  Admin , to authenticate and access the administration 
features in the application. ASP.NET Core Identity provides many more features for authenticating users 
and authorizing access to application features and data, and you can find a more detailed information in 
Chapters   28    –  30    , where I show you how to create and manage user accounts, how to use roles and policies, 
and how to support authentication from third parties, such as Microsoft, Google, Facebook, and Twitter. In 
this chapter, however, my goal is just to get enough functionality in place to prevent customers from being 
able to access the sensitive parts of the SportsStore application and, in doing so, give you a flavor of how 
authentication and authorization fit into an MVC application. 

     Adding the Identity Package to the Project 
 The first step is to add ASP.NET Identity to the SportsStore project, which requires some new NuGet 
packages. Listing  12-1  shows the additions to the  project.json  file in the SportsStore project. 

     Listing 12-1.    Adding ASP.NET Core Identity in the project.json File of the SportsStore Project   

 ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 

http://dx.doi.org/10.1007/978-1-4842-0397-2_28
http://dx.doi.org/10.1007/978-1-4842-0397-2_30


CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

320

   "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
   "Microsoft.AspNetCore.Razor.Tools": { 
     "version": "1.0.0-preview2-final", 
     "type": "build" 
   }, 
   "Microsoft.AspNetCore.StaticFiles": "1.0.0", 
   "Microsoft.AspNetCore.Mvc": "1.0.0", 
   "Microsoft.EntityFrameworkCore.SqlServer": "1.0.0", 
   "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final", 
   "Microsoft.Extensions.Configuration.Json": "1.0.0", 
   "Microsoft.AspNetCore.Session": "1.0.0", 
   "Microsoft.Extensions.Caching.Memory": "1.0.0", 
   "Microsoft.AspNetCore.Http.Extensions": "1.0.0", 
    "Microsoft.AspNetCore.Identity.EntityFrameworkCore": "1.0.0"  
 }, 
 ... 

   When the changes to the  project.json  file are saved, Visual Studio will use NuGet to download and 
install the Identity package.  

     Creating the Identity Database 
 The ASP.NET Identity system is endlessly configurable and extensible and supports lots of options for how 
its user data is stored. I am going to use the most common, which is to store the data using Microsoft SQL 
Server accessed using Entity Framework Core. 

   Creating the Context Class 
 I need to create a database context file that will acts as the bridge between the database and the Identity 
model objects it provides access to. I added a class file called  AppIdentityDbContext.cs  to the  Models  folder 
and used it to define the class shown in Listing  12-2 .     

     Listing 12-2.    The Contents of the AppIdentityDbContext.cs File in the Models Folder   

  using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
 using Microsoft.EntityFrameworkCore; 

   namespace SportsStore.Models { 

       public class AppIdentityDbContext : IdentityDbContext<IdentityUser> { 

           public AppIdentityDbContext(DbContextOptions<AppIdentityDbContext> options) 
             : base(options) { } 
     } 
 } 

    This class is derived from  IdentityDbContext , which provides Identity-specific features for Entity 
Framework Core. For the type parameter I used the  IdentityUser  class, which is the built-in class used to 



CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

321

represent users. In Chapter   28    , I demonstrate how to use a custom class that you can extend to add extra 
information about the users of your application.  

   Defining the Connection String 
 The next step is to define the connection string that will be for the database. In Listing  12-3 , you can see the 
additions I made to the  appsettings.json  file of the SportsStore project, which follows the same format as 
the connection string that I defined for the product database in Chapter   8    .     

     Listing 12-3.    Defining a Connection String in the appsettings.json File   

 { 
   "Data": { 
     "SportStoreProducts": { 
       "ConnectionString": "Server=(localdb)\\MSSQLLocalDB;Database=SportsStore;Trusted_Conne
ction=True;MultipleActiveResultSets=true" 
     }, 
      "SportStoreIdentity": {  
        "ConnectionString": "Server=(localdb)\\MSSQLLocalDB;Database=Identity;Trusted_Connecti
on=True;MultipleActiveResultSets=true"  
      }  
   } 
 } 

   Remember that the connection string has to be defined in a single unbroken line in the  appsettings.
json  file and is shown across multiple lines in the listing only because of the fixed width of a book page. 
The addition in the listing defines a connecton string called  SportsStoreIdentity  that specifies a LocalDB 
database called  Identity .  

   Configuring the Application 
 Like other ASP.NET Core features, Identity is configured in the  Start  class. Listing  12-4  shows the additions 
I made to set up Identity in the SportsStore project, using the context class and connection string defined 
previously. 

     Listing 12-4.    Configuring Identity in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using SportsStore.Models; 
 using Microsoft.Extensions.Configuration; 
 using Microsoft.EntityFrameworkCore; 
  using Microsoft.AspNetCore.Identity.EntityFrameworkCore;  

   namespace SportsStore { 

       public class Startup { 
         IConfigurationRoot Configuration; 

http://dx.doi.org/10.1007/978-1-4842-0397-2_28
http://dx.doi.org/10.1007/978-1-4842-0397-2_8


CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

322

           public Startup(IHostingEnvironment env) { 
             Configuration = new ConfigurationBuilder() 
                 .SetBasePath(env.ContentRootPath) 
                 .AddJsonFile("appsettings.json").Build(); 
         } 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddDbContext<ApplicationDbContext>(options => 
                 options.UseSqlServer( 
                     Configuration["Data:SportStoreProducts:ConnectionString"])); 

                services.AddDbContext<AppIdentityDbContext>(options =>  
                  options.UseSqlServer(  
                      Configuration["Data:SportStoreIdentity:ConnectionString"]));  

                services.AddIdentity<IdentityUser, IdentityRole>()  
                  .AddEntityFrameworkStores<AppIdentityDbContext>();  

               services.AddTransient<IProductRepository, EFProductRepository>(); 
             services.AddScoped<Cart>(sp => SessionCart.GetCart(sp)); 
             services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>(); 
             services.AddTransient<IOrderRepository, EFOrderRepository>(); 
             services.AddMvc(); 
             services.AddMemoryCache(); 
             services.AddSession(); 
         } 

           public void Configure(IApplicationBuilder app, 
                 IHostingEnvironment env, ILoggerFactory loggerFactory) { 

               app.UseDeveloperExceptionPage(); 
             app.UseStatusCodePages(); 
             app.UseStaticFiles(); 
             app.UseSession(); 
              app.UseIdentity();  
             app.UseMvc(routes => { 

               //  ...routes omitted for brevity...  

               }); 
             SeedData.EnsurePopulated(app); 
              IdentitySeedData.EnsurePopulated(app);  
         } 
     } 
 } 

    In the  ConfigureServices  method, I extended the Entity Framework Core configuration to register 
the context class and used the  AddIdentity  method to set up the Identity services using the built-in classes 
to represent users and roles. In the  Configure  method, I called the  UseIdentity  method to set up the 
components that will intercept requests and responses to implement the security policy. I also added a call 
to an  IdentitySeedData.EnsurePopulated  method, which I will create in the next section to add the user 
data to the database.  



CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

323

   Defining the Seed Data 
 I am going to explicitly create the  Admin  user by seeding the database when the application starts. I added a 
class file called  IdentitySeedData.cs  to the  Models  folder and defined the static class shown in Listing  12-5 .     

     Listing 12-5.    The Contents of the IdentitySeedData.cs File in the Models Folder   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Identity; 
 using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace SportsStore.Models { 

       public static class IdentitySeedData { 
         private const string adminUser = "Admin"; 
         private const string adminPassword = "Secret123$"; 

           public static async void EnsurePopulated(IApplicationBuilder app) { 

               UserManager<IdentityUser> userManager = app.ApplicationServices 
                 .GetRequiredService<UserManager<IdentityUser>>(); 

               IdentityUser user = await userManager.FindByIdAsync(adminUser); 
             if (user == null) { 
                 user = new IdentityUser("Admin"); 
                 await userManager.CreateAsync(user, adminPassword); 
             } 
         } 
     } 
 } 

    This code uses the  UserManager<T  > class, which is provided as a service by ASP.NET Core Identity for 
managing users, as described in Chapter   28    . The database is searched for the  Admin  user account, which is 
created—with a password of  Secret123$ —if it is not present. Do not change the hard-coded password in 
this example because Identity has a validation policy that requires passwords to contain a number and range 
of characters. See Chapter   28     for details of how to change the validation settings. 

 ■   Caution   Hard-coding the details of an administration account is often required so that you can log into an 
application once it has been deployed and start administering it. When you do this, you must remember to change the 
password for the account you have created. See Chapter   28     for details of how to change passwords using Identity.   

   Creating and Applying the Database Migration 
 All of the components are in place, and it is time to use the Entity Framework Core migrations feature to 
define the schema and apply it to the database. Open the Package Manager Console and run the following 
command to create the migration:     

   Add-Migration Initial -Context AppIdentityDbContext 

http://dx.doi.org/10.1007/978-1-4842-0397-2_28
http://dx.doi.org/10.1007/978-1-4842-0397-2_28
http://dx.doi.org/10.1007/978-1-4842-0397-2_28


CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

324

   The important difference from previous database commands is that I have used the  -Context  option 
to specify the name of the context class associated with the database that I want to work with, which is 
 AppIdentityDbContext . When you have multiple databases in the application, it is important to ensure that 
you are working with the right one. 

 Once Entity Framework Core has generated the initial migration, run the following command to create 
the database and run the migration commands:     

   Update-Database -Context AppIdentityDbContext 

   The result is a new LocalDB database called  Identity  that you can inspect using the Visual Studio SQL 
Server Object Explorer.   

     Applying a Basic Authorization Policy 
 Now that I have installed and configured ASP.NET Core Identity, I can apply an authorization policy to the 
parts of the application that I want to protect. I am going to use the most basic authorization policy possible, 
which is to allow access to any authenticated user. Although this can be a useful policy in real applications 
as well, there are also options for creating finer-grained authorization controls (as described in Chapters 
  28    –  30    ), but since the SportsStore application has only one user, distinguishing between anonymous and 
authenticated requests is sufficient. 

 The  Authorize  attribute is used to restrict access to action methods, and in Listing  12-6 , you can see 
that I have used the attribute to protect access to the administration actions in the  Order  controller.     

     Listing 12-6.    Restricting Access in the OrderController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 
 using System.Linq; 
  using Microsoft.AspNetCore.Authorization;  

   namespace SportsStore.Controllers { 

       public class OrderController : Controller { 
         private IOrderRepository repository; 
         private Cart cart; 

           public OrderController(IOrderRepository repoService, Cart cartService) { 
             repository = repoService; 
             cart = cartService; 
         } 

            [Authorize]  
         public ViewResult List() => 
             View(repository.Orders.Where(o => !o.Shipped)); 

           [HttpPost] 
          [Authorize]  
         public IActionResult MarkShipped(int orderID) { 
             Order order = repository.Orders 
                 .FirstOrDefault(o => o.OrderID == orderID); 
             if (order != null) { 

http://dx.doi.org/10.1007/978-1-4842-0397-2_28
http://dx.doi.org/10.1007/978-1-4842-0397-2_30


CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

325

                 order.Shipped = true; 
                 repository.SaveOrder(order); 
             } 
             return RedirectToAction(nameof(List)); 
         } 

           public ViewResult Checkout() => View(new Order()); 

           [HttpPost] 
         public IActionResult Checkout(Order order) { 
             if (cart.Lines.Count() == 0) { 
                 ModelState.AddModelError("", "Sorry, your cart is empty!"); 
             } 
             if (ModelState.IsValid) { 
                 order.Lines = cart.Lines.ToArray(); 
                 repository.SaveOrder(order); 
                 return RedirectToAction(nameof(Completed)); 
             } else { 
                 return View(order); 
             } 
         } 

           public ViewResult Completed() { 
             cart.Clear(); 
             return View(); 
         } 
     } 
 } 

    I don’t want to stop unauthenticated users from accessing the other action methods in the  Order  
controller, so I have applied the  Authorize  attribute only to the  List  and  MarkShipped  methods. I want to 
protect all of the action methods defined by the  Admin  controller, and I can do this by applying the  Authorize  
attribute to the controller class, which then applies the authorization policy to all the action methods it 
contains, as shown in Listing  12-7 . 

     Listing 12-7.    Restricting Access in the AdminController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models; 
 using System.Linq; 
  using Microsoft.AspNetCore.Authorization;  

   namespace SportsStore.Controllers { 

        [Authorize]  
     public class AdminController : Controller { 
         private IProductRepository repository; 

           public AdminController(IProductRepository repo) { 
             repository = repo; 
         } 



CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

326

           public ViewResult Index() => View(repository.Products); 

           public ViewResult Edit(int productId) => 
             View(repository.Products 
                 .FirstOrDefault(p => p.ProductID == productId)); 

           [HttpPost] 
         public IActionResult Edit(Product product) { 
             if (ModelState.IsValid) { 
                 repository.SaveProduct(product); 
                 TempData["message"] = $"{product.Name} has been saved"; 
                 return RedirectToAction("Index"); 
             } else { 
                 // there is something wrong with the data values 
                 return View(product); 
             } 
         } 

           public ViewResult Create() => View("Edit", new Product()); 

           [HttpPost] 
         public IActionResult Delete(int productId) { 
             Product deletedProduct = repository.DeleteProduct(productId); 
             if (deletedProduct != null) { 
                 TempData["message"] = $"{deletedProduct.Name} was deleted"; 
             } 
             return RedirectToAction("Index"); 
         } 
     } 
 } 

         Creating the Account Controller and Views 
 When an unauthenticated user sends a request that requires authorization, they are redirected to the  /
Account/Login  URL, which the application can use to prompt the user for their credentials. In preparation, 
I added a view model to represent the user’s credentials by adding a class file called  LoginModel.cs  to the 
 Models/ViewModels  folder and using it to define the class shown in Listing  12-8 . 

     Listing 12-8.    The Contents of the LoginModel.cs File in the Models/ViewModels Folder   

  using System.ComponentModel.DataAnnotations; 

   namespace SportsStore.Models.ViewModels { 

       public class LoginModel { 

           [Required] 
         public string Name { get; set; } 

           [Required] 



CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

327

         [UIHint("password")] 
         public string Password { get; set; } 

           public string ReturnUrl { get; set; } = "/"; 
     } 
 } 

    The  Name  and  Password  properties have been decorated with the  Required  attribute, which uses model 
validation to ensure that values have been provided. The  Password  property has been decorated with the 
 UIHint  attribute so that when I use the  asp-for  attribute on the  input  element in the login Razor view, the 
tag helper will set the  type  attribute to  password ; that way, the text entered by the user isn’t visible onscreen. 
I describe the use of the  UIHint  attribute in Chapter   24    . 

 Next, I added a class file called  AccountController.cs  to the  Controllers  folder and used it to define 
the controller shown in Listing  12-9 . This is the controller that will respond to requests to the  /Account/
Login  URL. 

     Listing 12-9.    The Contents of the AccountController.cs File in the Controllers Folder   

  using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Authorization; 
 using Microsoft.AspNetCore.Identity; 
 using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
 using Microsoft.AspNetCore.Mvc; 
 using SportsStore.Models.ViewModels; 

   namespace SportsStore.Controllers { 

       [Authorize] 
     public class AccountController : Controller { 
         private UserManager<IdentityUser> userManager; 
         private SignInManager<IdentityUser> signInManager; 

           public AccountController(UserManager<IdentityUser> userMgr, 
                 SignInManager<IdentityUser> signInMgr) { 
             userManager = userMgr; 
             signInManager = signInMgr; 
         } 

           [AllowAnonymous] 
         public ViewResult Login(string returnUrl) { 
             return View(new LoginModel { 
                 ReturnUrl = returnUrl 
             }); 
         } 

           [HttpPost] 
         [AllowAnonymous] 
         [ValidateAntiForgeryToken] 
         public async Task<IActionResult> Login(LoginModel loginModel) { 
             if (ModelState.IsValid) { 
                 IdentityUser user = 
                     await userManager.FindByNameAsync(loginModel.Name); 

http://dx.doi.org/10.1007/978-1-4842-0397-2_24


CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

328

                 if (user != null) { 
                     await signInManager.SignOutAsync(); 
                     if ((await signInManager.PasswordSignInAsync(user, 
                             loginModel.Password, false, false)).Succeeded) { 
                         return Redirect(loginModel?.ReturnUrl ?? "/Admin/Index"); 
                     } 
                 } 
             } 
             ModelState.AddModelError("", "Invalid name or password"); 
             return View(loginModel); 
         } 

           public async Task<RedirectResult> Logout(string returnUrl = "/") { 
             await signInManager.SignOutAsync(); 
             return Redirect(returnUrl); 
         } 
     } 
 } 

    When the user is redirected to the  /Account/Login  URL, the GET version of the  Login  action method 
renders the default view for the page, providing a view model object that includes the URL that the browser 
should be redirected to if the authentication request is successful. 

 Authentication credentials are submitted to the POST version of the  Login  method, which uses the 
 UserManager<IdentityUser  > and  SignInManager<IdentityUser  > services that have been received through 
the controller’s constructor to authenticate the user and log them into the system. I explain how these 
classes work in Chapters   28    –  30    , but for now it is enough to know that if there is an authentication failure, 
then I create a model validation error and render the default view; however, if authentication is successful, 
then I redirect the user to the URL that they want to access before they are prompted for their credentials. 

 ■   Caution   In general, using client-side data validation is a good idea. It offloads some of the work from 
your server and gives users immediate feedback about the data they are providing. However, you should not 
be tempted to perform authentication at the client, as this would typically involve sending valid credentials 
to the client so they can be used to check the username and password that the user has entered, or at least 
trusting the client’s report of whether they have successfully authenticated. Authentication should always be 
done at the server.  

 To provide the  Login  method with a view to render, I created the  Views/Account  folder and added a 
Razor view file called  Login.cshtml  with the contents shown in Listing  12-10 . 

     Listing 12-10.    The Contents of the Login.cshtml File in the Views/Account Folder   

  @model LoginModel 
 @{ 
     ViewBag.Title = "Log In"; 
     Layout = "_AdminLayout"; 
 } 

   <div class="text-danger" asp-validation-summary="All"></div> 

http://dx.doi.org/10.1007/978-1-4842-0397-2_28
http://dx.doi.org/10.1007/978-1-4842-0397-2_30


CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

329

   <form asp-action="Login" asp-controller="Account" method="post"> 
     <input type="hidden" asp-for="ReturnUrl" /> 
     <div class="form-group"> 
         <label asp-for="Name"></label> 
         <div><span asp-validation-for="Name" class="text-danger"></span></div> 
         <input asp-for="Name" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Password"></label> 
         <div><span asp-validation-for="Password" class="text-danger"></span></div> 
         <input asp-for="Password" class="form-control" /> 
     </div> 
     <button class="btn btn-primary" type="submit">Log In</button> 
 </form> 

    The final step is a change to the shared administration layout to add a button that will log the current 
user out by sending a request to the  Logout  action, as shown in Listing  12-11 . This is a useful feature that 
makes it easier to test the application, without which you would need to clear the browser’s cookies in order 
to return to the unauthenticated state. 

     Listing 12-11.    Adding a Logout Button in the _AdminLayout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
     <title>@ViewBag.Title</title> 
     <style> 
         .input-validation-error { border-color: red; background-color: #fee ; } 
     </style> 
     <script asp-src-include="lib/jquery/**/jquery.min.js"></script> 
     <script asp-src-include="lib/jquery-validation/**/jquery.validate.min.js"> 
     </script> 
     <script asp-src-include="lib/jquery-validation-unobtrusive/**/*.min.js"></script> 
 </head> 
 <body class="panel panel-default"> 
     <div class="panel-heading"> 
         <h4> 
             @ViewBag.Title 
              <a class="btn btn-sm btn-primary pull-right"  
                 asp-action="Logout" asp-controller="Account">Log Out</a>  
         </h4> 
     </div> 
     <div class="panel-body"> 
         @if (TempData["message"] != null) { 
             <div class="alert alert-success">@TempData["message"]</div> 
         } 
         @RenderBody() 
     </div> 
 </body> 
 </html> 



CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

330

        Testing the Security Policy 
 Everything is in place and you can test the security policy by starting the application and requesting 
the  /Admin/Index  URL. Since you are presently unauthenticated and you are trying to target an action 
that requires authorization, your browser will be redirected to the  /Account/Login  URL. Enter  Admin  
and  Secret123$  as the name and password and submit the form. The  Account  controller will check the 
credentials you provided with the seed data added to the Identity database and—assuming you entered the 
right details—authenticate you and redirect you back to the  /Account/Login  URL, to which you now have 
access. Figure  12-1  illustrates the process.    

  Figure 12-1.    The administration authentication/authorization process       

     Deploying the Application 
       All the features and functionality for the SportsStore application are in place, so it is time to prepare 
the application and deploy it into production. Lots of hosting options are available for ASP.NET 
Core MVC applications, and the one that I use in this chapter is the Microsoft Azure platform, which 
I have chosen because it comes from Microsoft and because it offers free accounts, which means that 
you can follow the SportsStore example all the way through, even if you don’t want to use Azure for 
your own projects. 

 ■   Note   You will need an Azure account for this section. If you don’t have one, you can create a free account 
at    http://azure.microsoft.com     .  

 

http://azure.microsoft.com/


CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

331

     Creating the Databases 
 The starting point is to create the databases that the SportsStore application will use in production. This 
is something that you can do as part of the Visual Studio deployment process, but it is a chicken-and-egg 
situation because you need to know the connection strings for the databases before you deploy, which is the 
process that creates the databases. 

 ■   Caution   The Azure portal changes often as Microsoft adds new features and revises existing ones. The 
instructions in this section were accurate when I wrote them, but the required steps may have changed slightly 
by the time you read this. The basic approach should still be the same, but the names of data fields and the 
exact order of steps may require some experimentation to get the right results.  

 The simplest approach is to log in to    http://portal.azure.com      using your Azure account and create 
the databases manually. Once you are logged in, select the SQL Databases resource category and click the 
Add button to create a new database.     

 For the first database enter the name  products . Click the Configure Required Settings link and then 
the Create a New Server link. Enter a new server name—which must be unique across Azure—and select 
a database administrator username and password. I entered the server name  sportsstorecoredb , with the 
administrator name of  sportsstoreadmin  and a password of  Secret123$ . You will have to use a different server 
name, and I suggest that you use a more robust password. Select a location for your database and then click the 
OK button to close the options and then the Create button to create the database itself. Azure will take a few 
minutes to perform the creation process, after which it will appear in the SQL Databases resource category. 

 Create another SQL server, this time entering the name  identity . You can use the database server that 
you created a moment ago, rather than creating a new one. The result is two SQL Server databases hosted by 
Azure with the details shown in Table  12-1 . You will have a different database server name and—ideally—
better passwords.  

   Table 12-1.    The Azure Databases for the SportsStore Application   

 Database Name  Server Name  Administrator  Password 

  products    sportsstorecoredb    sportsstoreadmin    Secret123$  

  identity    sportsstorecoredb    sportsstoreadmin    Secret123$  

   Opening Firewall Access for Configuration 
 I need to populate the databases with their schemas, and the simplest way to do that is by opening 
Azure firewall access so that I can run the Entity Framework Core commands from my development 
machine. 

 Select either of the databases in the SQL Databases resource category, click the Tools button, and 
then click the Open in Visual Studio link. Now click the Configure Your Firewall link, click the Add 
Client IP button, and then click Save. This allows your current IP address to reach the database server 
and perform configuration commands. (You can inspect the database schema by clicking the Open In 
Visual Studio button, which will open Visual Studio and use the SQL Server Object Explorer to examine 
the database.)  

http://portal.azure.com/


CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

332

   Getting the Connection Strings 
    I will need the connection strings for the new database shortly. Azure provides this information when you click a 
database in the SQL Databases resource category through a Show Database Connection Strings link. Connection 
strings are provided for different development platforms, and it is the ADO.NET strings that are required for .NET 
applications. Here is the connection string that the Azure portal provides for the  identity  database: 

   Server=tcp:sportsstorecoredb.database.windows.net,1433;Data Source=sportsstorecoredb.
database.windows.net;Initial Catalog=products;Persist Security Info=False;User ID= {your_
username} ;Password= {your_password} ;Pooling=False;MultipleActiveResultSets=False;Encrypt=Tr
ue;TrustServerCertificate=False;Connection Timeout=30; 

   You will see different configuration options depending on how Azure provisioned your database. Notice 
that there are placeholders for the username and password, which I have marked in bold, that must be 
changed when you use the connection string to configure the application.   

     Preparing the Application 
 I have some basic preparation to do before I can deploy the application, to make it ready for the production 
environment. In the sections that follow, I change the way that errors are displayed and set up the 
production connection strings for the databases. 

   Creating the Error Controller and View 
 At the moment, the application is configured to use the developer-friendly error pages, which provide 
helpful information when a problem occurs. This is not information that end users should see, so I added a 
class file called  ErrorController.cs  to the  Controllers  folder and used it to define the simple controller 
shown in Listing  12-12 . 

     Listing 12-12.    The Contents of the ErrorController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 

   namespace SportsStore.Controllers { 

       public class ErrorController : Controller { 

           public ViewResult Error() => View(); 
     } 
 } 

    The controller defines an  Error  action that renders the default view. To provide the controller with the 
view, I created the  Views/Error  folder, added a Razor view file called  Error.cshtml , and applied the markup 
shown in Listing  12-13 . 

     Listing 12-13.    The Contents of the Error.cshtml File in the Views/Error Folder   

 @{ 
     Layout = null; 
 } 



CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

333

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
     <title>Error</title> 
 </head> 
 <body> 
     <h2 class="text-danger">Error.</h2> 
     <h3 class="text-danger">An error occurred while processing your request.</h3> 
 </body> 
 </html> 

   This kind of error page is the last resort, and it is best to keep it as simple as possible and not to rely 
on shared views, view components, or other rich features. In this case, I have disabled shared layouts 
and defined a simple HTML document that explains that there has been an error, without providing any 
information about what has happened.  

   Defining the Production Database Settings 
 The next step is to create a file that will provide the application with its database connection strings in 
production. I added a new ASP.NET Configuration File called  appsettings.production.json  to the 
SportsStore project and added the content shown in Listing  12-14 . 

 ■   Tip    The Solution Explorer nests this file inside  appsettings.json  in the file listing, which you will have to 
expand if you want to edit the file again later.  

     Listing 12-14.    The Contents of the appsettings.production.json File   

 { 
   "Data": { 
     "SportStoreProducts": { 
       "ConnectionString": "Server=tcp:sportsstorecoredb.database.windows.net,1433;Data 
Source=sportsstorecoredb.database.windows.net;Initial Catalog=products;Persist Security 
Info=False;User ID= {your_username} ;Password= {your_password} ;MultipleActiveResultSets=False;E
ncrypt=True;TrustServerCertificate=False;Connection Timeout=30;" 
     }, 
     "SportStoreIdentity": { 
       "ConnectionString": "Server=tcp:sportsstorecoredb.database.windows.net,1433;Data 
Source=sportsstorecoredb.database.windows.net;Initial Catalog=identity;Persist Security 
Info=False;User ID= {your_username} ;Password= {your_password} ;MultipleActiveResultSets=False;E
ncrypt=True;TrustServerCertificate=False;Connection Timeout=30;" 
     } 
   } 
 } 

   This file is hard to read because connection strings cannot be split across multiple lines. The contents of 
this file duplicate the connection strings section of the  appsettings.json  file but use the Azure connection 
strings. (Remember to replace the username and password placeholders.)  



CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

334

   Configuring the Application 
 Now I can change the  Startup  class so that the application behaves differently when in production and uses 
the  Error  controller and the Azure connection strings. Listing  12-15  shows the changes I made. 

     Listing 12-15.    Configuring the Application in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using SportsStore.Models; 
 using Microsoft.Extensions.Configuration; 
 using Microsoft.EntityFrameworkCore; 
 using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 

   namespace SportsStore { 

       public class Startup { 
         IConfigurationRoot Configuration; 

           public Startup(IHostingEnvironment env) { 
             Configuration = new ConfigurationBuilder() 
                 .SetBasePath(env.ContentRootPath) 
                 .AddJsonFile("appsettings.json") 
                  .AddJsonFile($"appsettings.{env.EnvironmentName}.json", true)  
                 .Build(); 
         } 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddDbContext<ApplicationDbContext>(options => 
                 options.UseSqlServer( 
                     Configuration["Data:SportStoreProducts:ConnectionString"])); 

               services.AddDbContext<AppIdentityDbContext>(options => 
                 options.UseSqlServer( 
                     Configuration["Data:SportStoreIdentity:ConnectionString"])); 

               services.AddIdentity<IdentityUser, IdentityRole>() 
                 .AddEntityFrameworkStores<AppIdentityDbContext>(); 

               services.AddTransient<IProductRepository, EFProductRepository>(); 
             services.AddScoped<Cart>(sp => SessionCart.GetCart(sp)); 
             services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>(); 
             services.AddTransient<IOrderRepository, EFOrderRepository>(); 
             services.AddMvc(); 
             services.AddMemoryCache(); 
             services.AddSession(); 
         } 



CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

335

           public void Configure(IApplicationBuilder app, 
                 IHostingEnvironment env, ILoggerFactory loggerFactory) { 

                if (env.IsDevelopment()) {  
                 app.UseDeveloperExceptionPage(); 
                 app.UseStatusCodePages(); 
              } else {  
                  app.UseExceptionHandler("/Error");  
              }  

               app.UseStaticFiles(); 
             app.UseSession(); 
             app.UseIdentity(); 
             app.UseMvc(routes => { 
                  routes.MapRoute(name: "Error", template: "Error",  
                      defaults: new { controller = "Error", action = "Error" });  
                 routes.MapRoute( 
                     name: null, 
                     template: "{category}/Page{page:int}", 
                     defaults: new { controller = "Product", action = "List" } 
                 ); 
                 routes.MapRoute( 
                     name: null, 
                     template: "Page{page:int}", 
                     defaults: new { controller = "Product", action = "List", 
                         page = 1 } 
                 ); 
                 routes.MapRoute( 
                     name: null, 
                     template: "{category}", 
                     defaults: new { controller = "Product", action = "List", 
                          page = 1 } 
                 ); 
                 routes.MapRoute( 
                     name: null, 
                     template: "", 
                     defaults: new { controller = "Product", action = "List", 
                         page = 1 }); 

                   routes.MapRoute(name: null, template: "{controller}/{action}/{id?}"); 
             }); 
             SeedData.EnsurePopulated(app); 
             IdentitySeedData.EnsurePopulated(app); 
         } 
     } 
 } 

    The  IHostingEnvironment  interface is used to provide information about the environment in which the 
application is running, such as development or production. 



CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

336

 I have taken advantage of this feature to load different configuration files with the right connection 
strings for development and production and to change the set of components that are used to handle 
requests so that developer-specific features like Browser Link are not enabled when the application is 
deployed. There are a lot of options available for tailoring the configuration of an application in different 
environments, which I explain in Chapter   14    .  

   Updating the Project Configuration 
 There are some final tweaks required to the SportsStore  project.json  file to make sure that the right parts of 
the application are deployed, as shown in Listing  12-16 . 

     Listing 12-16.    Updating the SportsStore project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
     "Microsoft.AspNetCore.Razor.Tools": { 
       "version": "1.0.0-preview2-final", 
       "type": "build" 
     }, 
     "Microsoft.AspNetCore.StaticFiles": "1.0.0", 
     "Microsoft.AspNetCore.Mvc": "1.0.0", 
     "Microsoft.EntityFrameworkCore.SqlServer": "1.0.0", 
     "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final", 
     "Microsoft.Extensions.Configuration.Json": "1.0.0", 
     "Microsoft.AspNetCore.Session": "1.0.0", 
     "Microsoft.Extensions.Caching.Memory": "1.0.0", 
     "Microsoft.AspNetCore.Http.Extensions": "1.0.0", 
     "Microsoft.AspNetCore.Identity.EntityFrameworkCore": "1.0.0" 
   }, 

     "tools": { 
     "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final", 
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final", 
     "Microsoft.EntityFrameworkCore.Tools": { 
       "version": "1.0.0-preview2-final", 
       "imports": [ "portable-net45+win8+dnxcore50", "portable-net45+win8" ] 
     } 
   }, 

     "frameworks": { 
     "netcoreapp1.0": { 

http://dx.doi.org/10.1007/978-1-4842-0397-2_14


CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

337

       "imports": [ "dotnet5.6", "portable-net45+win8" ] 
     } 
   }, 

     "buildOptions": { 
     "emitEntryPoint": true, 
     "preserveCompilationContext": true 
   }, 

     "runtimeOptions": { 
     "configProperties": { 
       "System.GC.Server": true 
     } 
   }, 

      "publishOptions": {  
      "include": ["wwwroot", "Views", "appsettings.json",  
          "appsettings.production.json", "web.config"]  
    },  

     "scripts": { 
     "postpublish": [ "dotnet publish-iis --publish-folder %publish:OutputPath% --framework 
%publish:FullTargetFramework%" ] 
   } 
 } 

    The additions in the  publishOptions  section include key parts of the project in the deployment process, 
including the Razor views and the configuration file that contains the production database connection 
strings.   

     Applying the Database Migrations 
 To set up the databases with the schemas required for the application, open the Package Manager Console 
and run the following commands:     

   Update-Database -Context ApplicationDbContext -Environment Production 
 Update-Database -Context AppIdentityDbContext -Environment Production 

   The  -Environment  option specifies the hosting environment that is used to obtain the connection 
strings to reach the databases. If these commands do not work, ensure that you have configured the Azure 
firewall to allow access to your development machine, as described earlier in this chapter.  

     Deploying the Application 
 To deploy the application, right-click the SportsStore project in the Solution Explorer (the project, not 
the solution) and select Publish from the pop-up menu. Visual Studio will present you with a choice of 
publishing methods, as shown in Figure  12-2 .  



CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

338

 Select the Microsoft Azure App Service option. You will be prompted to provide your Azure account 
credentials. Click the New button, as shown in Figure  12-3 .  

  Figure 12-2.    Selecting a publishing method       

  Figure 12-3.    Creating a new Azure app service       

 

 



CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

339

 The next dialog window asks you configure the Azure web application settings, as shown in Figure  12-4 . 
Select a name for your application, which must be unique across Azure because all applications share a common 
domain name by default. I selected  sportsstorecore , which means that my deployment of the application will be 
available at    http://sportsstorecore.azurewebsites.com     .  

  Figure 12-4.    Configuring the app service       

 Next, select a resource group or select one from the drop-down list. A resource group is used to 
categorize the cloud assets you create for an application and is useful for managing large deployments of 
different applications. For this example, I created a resource group called  SportsStore . 

 You must also create a service plan. Click on the New button and enter a name, select a region and pick 
the category that will be used to host the application, as shown in Figure  12-5 . I have specified a plan called 
 SportsStoreCorePlan , located in the East US region using the Free size option.  

 

http://sportsstorecore.azurewebsites.com/


CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

340

 Click the OK button to select the service plan options and then click the Create button to proceed with 
the deployment process. When Visual Studio finishes setting up the deployment, you will see the Publish 
screen shown in Figure  12-6 .  

  Figure 12-5.    Selecting the app service plan       

 



CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

341

 The final step is to click the Publish button. Visual Studio will start the publishing process and deploy 
the application into the Azure cloud. This process can take a while because there are a lot of files to transfer 
for the initial deployment of a project; subsequent updates are faster because only new and changed files are 
uploaded. 

 When the publishing process is complete, Azure will start the application, and Visual Studio will open a 
browser window to the hosting URL, as shown in Figure  12-7 .    

  Figure 12-6.    Preparing to publish the application       

 



CHAPTER 12 ■ SPORTSSTORE: SECURITY AND DEPLOYMENT

342

     Summary 
 In this and previous chapters, I demonstrated how the ASP.NET Core MVC can be used to create a realistic 
e-commerce application. This extended example introduced many key MVC features: controllers, action 
methods, routing, views, metadata, validation, layouts, authentication, and more. You also saw how some of 
the key technologies related to MVC can be used. These included the Entity Framework Core, dependency 
injection, and unit testing. The result is an application that has a clean, component-oriented architecture 
that separates the various concerns and a code base that will be easy to extend and maintain. And that’s the 
end of the SportsStore application. In the next chapter, I show you how to use Visual Studio Code to create 
ASP.NET Core MVC applications.     

  Figure 12-7.    The deployed application       

 



343© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_13

    CHAPTER 13   

 Working with Visual Studio Code                          

 In this chapter, I show you how to create an ASP.NET Core MVC application using Visual Studio Code, which 
is an open source, cross-platform editor produced by Microsoft. Despite the name, Visual Studio Code is 
unrelated to Visual Studio and is based on the Electron framework, which is used by the Atom editor popular 
with developers of other web application frameworks such as Angular. 

 Visual Studio Code supports Windows, OS X/macOS and the most popular Linux distributions. Visual 
Studio Code is in its early days, and not all of the features work as they should; however, Microsoft makes 
monthly updates, and progress has been rapid. Some current limitations, such as no debugging support for 
ASP.NET Core applications, may have been resolved by the time you read this book, but completing all of the 
examples in this book still requires Visual Studio and Windows. 

 The Visual Studio Code development process is less automated than in full Visual Studio but is 
workable and offers a decent starting point for developing ASP.NET Core MVC applications on other 
operating systems or as a lighter-weight alternative to Visual Studio 2015 on Windows. 

 ■   Note    Microsoft has announced that the tooling used to create ASP.NET Core MVC applications will change 
in the future. See this book’s page on Apress.com for updates when the new tools are released.  

     Setting Up the Development Environment 
             The process for setting up Visual Studio Code requires a little work because some of the functionality that 
is included in Visual Studio is handled by external tools. Some of these tools are the same ones that Visual 
Studio uses behind the scenes, but others are new to the world of .NET development and may be unfamiliar. 
The good news is that these tools are widely used by developers of other web application frameworks, and 
the quality and features are good. In the sections that follow, I walk you through the process of installing 
Visual Studio Code and the essential tools and add-ons that are required for MVC development. 

     Installing Node.js 
       In the world of client-side development, Node.js (also known as Node) has emerged as the runtime on which 
many popular development tools rely. Node was created in 2009 as a simple and efficient runtime for server-
side applications written in JavaScript. It is based on the JavaScript engine used in the Chrome browser and 
provides an API for executing JavaScript code outside of the browser environment. 

 Node.js has enjoyed some success as an application server, but for this chapter it is interesting because 
it has provided the foundation for a new generation of cross-platform build tools and package managers. 
Some smart design decisions by the Node team and the cross-platform support provided by the Chrome 
JavaScript runtime have created an opportunity that has been seized upon by enthusiastic tool writers, 
especially those who want to support web application development. 



CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

344

 ■   Note    Two versions of Node.js are available. The Long Term Support (LTS) version provides a stable 
foundation for deployment into production environments where changes are to be minimized. LTS updates are 
released every 6 months and maintained for 18 months. The Current version is a more rapidly changing release 
that favors new features over stability. For this chapter, I have used the Current release.  

   Installing Node.js on Windows 
 Download and run the Node.js installer for Windows from    http://nodejs.org     . When you install Node.js, 
ensure that it is added to the path. Figure  13-1  shows the Windows installer, which offers to modify the PATH 
environment variable as an installation option.   

   Installing Node.js on OS X/macOS 
 An installer for OS X/macOS can be downloaded from    http://nodejs.org     . Run the installer and accept the 
defaults. When the installation has completed, ensure that  /usr/local/bin  is in your  $PATH .  

  Figure 13-1.    Adding Node to the path       

 

http://nodejs.org/
http://nodejs.org/


CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

345

   Installing Node.js on Linux 
 The easiest way to install Node.js on Linux is to use a package manager; the Node team has provided 
instructions for the main distributions at    http://nodejs.org/en/download/package-manager     . For Ubuntu, 
I used the following commands to download and install Node.js: 

   curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash - 
 sudo apt-get install -y nodejs 

         Checking the Node Installation 
 Once you have completed the installation, open a new command prompt and run the following command: 

   node -v 

   If the installation has been successful and Node has been added to the path, then you will see the 
version number. At the time of writing, the current version of Node is 6.3.0. If you get unexpected results 
while following the examples in this chapter, try using this specific version.  

     Installing Git 
       Visual Studio Code includes integrated Git support, but a separate installation is required to support the 
Bower tool, which is used to manage client-side packages. 

   Installing Git on Windows or OS X/macOS 
 Download and run the installer from    https://git-scm.com/downloads     .  

   Installing Git on Linux 
 Git is already installed on most Linux distributions. If you want to install it anyway, then consult the 
installation instructions for your distribution at    https://git-scm.com/download/linux     . For Ubuntu, I used 
the following command: 

   sudo apt-get install git 

         Checking the Git Installation 
 Once you have completed the installation, run the following command in a new command prompt/
Terminal to check that Git is installed and available: 

   git --version 

http://nodejs.org/en/download/package-manager
https://git-scm.com/downloads
https://git-scm.com/download/linux


CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

346

   This command prints out the version of the Git package that has been installed. At the time of writing, 
the latest version of Git for Windows is 2.9.0, and the latest version of Git for OS X/macOs/Linux is 2.8.1.  

     Installing Yeoman, Bower, and Gulp 
                      Node.js comes with  the   Node Package Manager (NPM), which is used to download and install development 
packages that are written in JavaScript. There are several packages that are useful for ASP.NET Core MVC 
development, as described in Table  13-1 .  

 For Windows, these packages are installed using the following command: 

   npm install -g yo@1.8.4 bower@1.7.9 generator-aspnet@0.2.]1 

   There may be later versions of these packages available by the time you read this chapter, but the 
versions in the installation commands are the ones that I used to create the example. For Linux and OS X/
macOS, the same command is used but requires  sudo . 

   sudo npm install -g yo@1.8.4 bower@1.7.9 generator-aspnet@0.2.1 

        Installing .NET Core 
    The .NET Core runtime is required for ASP.NET Core MVC development. Each supported platform has its 
own installation process, which is described at    www.microsoft.com/net/core     . Microsoft provides installers 
for Windows and OS X/macOS and provides instructions for Linux using tar archives. 

   Installing .NET Core on Windows 
 To install .NET Core on Windows, simply download and run the .NET Core SDK installer (which is separate 
from the .NET Core for Visual Studio installer that was required in Chapter   2    ).  

   Table 13-1.    Useful NPM Packages for ASP.NET Core Development   

 Name  Description 

  yo   Yeoman (known as  yo ) is a tool that makes it easier to start new 
development projects by setting up the initial contents, as demonstrated 
in the “Creating an ASP.NET Core Project” section. 

  bower   This is the same Bower tool that I described in Chapter   6     and that is 
used to manage client-side packages. 

  generator-aspnet   This package provides Yeoman with the information it needs to create 
new ASP.NET Core MVC projects, as described in the “Creating an ASP.
NET Core Project” section. 

http://www.microsoft.com/net/core
http://dx.doi.org/10.1007/978-1-4842-0397-2_2
http://dx.doi.org/10.1007/978-1-4842-0397-2_6


CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

347

   Installing .NET Core on OS X/macOS 
 You must install the latest version of the OpenSSL package on macOS before running the .NET Core 
installer; Microsoft recommends using the Homebrew package manager to do this. Open a new Terminal 
and run the following command to install Homebrew: 

   /usr/bin/ruby -e "$(curl -fsSL 
https://raw.githubusercontent.com/Homebrew/install/master/install)" 

   To upgrade OpenSSL, run the following commands: 

   brew update 
 brew install openssl 
 brew link --force openssl 

   Next, download the .NET Core installer from    https://go.microsoft.com/fwlink/?LinkID=809124     . 
Run the installer to add .NET Core to your system.  

   Installing .NET Core on Linux 
 Microsoft provides instructions for installing .NET Core on the most popular Linux distributions at    www.
microsoft.com/net/core     . I have used Ubuntu for this chapter, and the process requires first setting up a 
new feed for  apt-get  using the following commands: 

   sudo sh -c 'echo "deb [arch=amd64] https://apt-mo.trafficmanager.net/repos/dotnet/ trusty 
main" > /etc/apt/sources.list.d/dotnetdev.list' 
 sudo apt-key adv --keyserver apt-mo.trafficmanager.net --recv-keys 417A0893 
 sudo apt-get update 

   The next step is to install .NET Core. 

   sudo apt-get install dotnet-dev-1.0.0-preview2-003121 

         Checking the .NET Core Installation 
 Regardless of the platform you are using, you can check that .NET Core has been installed and is ready for 
use. Open a new command prompt or Terminal and run the following command: 

   dotnet --version 

   The  dotnet  command starts the .NET runtime, and the version number for the .NET package you 
installed will be displayed. At the time of writing, the current release is  1.0.0-preview2-003121 , but this is 
likely to have been superseded by the time you read this book.  

https://go.microsoft.com/fwlink/?LinkID=809124
http://www.microsoft.com/net/core
http://www.microsoft.com/net/core


CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

348

     Installing Visual Studio Code 
    The most important step is to download and install Visual Studio Code, which is available from    http://
code.visualstudio.com     . Installation packages are available for Windows, OS X/macOS and popular Linux 
distributions. Download and install the package for your chosen platform. 

 ■   Note    Microsoft makes a new release of Visual Studio Code every month, which means the version you 
install will be different from the version that is current as I write this, which is version 1.3. This means some 
experimentation may be required to complete some of the examples in this chapter, although the fundamentals 
should remain the same.  

   Installing Visual Studio Code on Windows 
 To install Visual Studio Code for Windows, simply run the installer. When the process is complete, Visual 
Studio Code will start, and you will see the editor window, as shown in Figure  13-2 .  

   Installing Visual Studio Code on OS X/macOS 
 Visual Studio Code is provided as a zip archive for the Mac, which can be downloaded from    https://
go.microsoft.com/fwlink/?LinkID=620882     . Expand the archive and double-click the  Visual Studio 
Code.app  file that it contains to start Visual Studio Code, producing the editor window shown in Figure  13-2 .   

   Installing Visual Studio Code on Linux 
 Microsoft provides a  .deb  file for Debian and Ubuntu and an  .rpm  file for Red Hat, Fedora, and CentOS. 
Download and install the file for your preferred Linux. Since I am using Ubuntu for this chapter, I 
downloaded the  .deb  file and installed it using the following command: 

   sudo dpkg -i code_1.3.0-1467909982_amd64.deb 

   When the installation is complete, run the following command to start Visual Studio Code, which will 
produce the editor window shown in Figure  13-2 : 

   /usr/share/code/code 

         Checking the Visual Studio Code Installation 
 The test of a successful installation of Visual Studio code is simply being able to start the application and see 
the editor, as shown in Figure  13-2 . (I have changed the color scheme because the dark default colors are not 
well-suited to creating screenshots for a book.)  

http://code.visualstudio.com/
http://code.visualstudio.com/
https://go.microsoft.com/fwlink/?LinkID=620882
https://go.microsoft.com/fwlink/?LinkID=620882


CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

349

     Installing the Visual Studio Code C# Extension 
    Visual Studio Code supports language-specific functionality through extensions, although these are not the 
same extensions that are supported by Visual Studio 2015. The most important extension for ASP.NET Core 
MVC development adds support for C#, which may seem like an odd omission from the basic install but 
reflects the fact that Microsoft has positioned Visual Studio Code as a general-purpose cross-platform editor 
that supports the widest possible range of languages and frameworks. 

 To install the C# extension, select Command Palette from the Visual Studio Code View menu. The 
command palette provides access to all the commands that can be performed by Visual Studio Code. Enter 
 ext  and hit Return and Visual Studio Code will open the extensions window. Enter  csharp  and locate the C# 
for Visual Studio Code extension in the list, as shown in Figure  13-3 .  

  Figure 13-2.    Running Visual Studio Code on Windows, OS X/macOS and Ubuntu Linux       

  Figure 13-3.    Locating the C# extension       

 

 



CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

350

 Click the Install button and Visual Studio Code will download and install the extension. Click the 
Enable button to activate the extension, as shown in Figure  13-4 .    

     Creating an ASP.NET Core Project 
 Visual Studio Code doesn’t have integrated support for creating ASP.NET Core projects and relies on the 
Yeoman package to set up the initial folder and file structure, using templates provided by the generator-
aspnet package. Open a new command prompt or Terminal, navigate to the directory where you want to 
create your ASP.NET projects, and run the following command:     

   yo aspnet 

   This command runs Yeoman and tells it to create a new ASP.NET Core project. The entire project setup 
process is done through the command line, navigating through options using the arrow keys and making 
selections using the Return key. Table  13-2  describes the set of project templates that are available for ASP.
NET Core development. (There are some other templates listed, but they are not used for ASP.NET Core.)  

  Figure 13-4.    Enabling the C# extension       

   Table 13-2.    The Yeoman ASP.NET Project Templates for ASP.NET Core Development   

 Name  Description 

 Empty Web Application  This template creates an ASP.NET Core project with minimal 
initial content and is similar to the Visual Studio 2015 Empty 
template. 

 Web Application  This template creates an ASP.NET Core project with initial 
content that includes controllers, views, and authentication. This 
is similar to the Visual Studio 2015 Web Application template 
with authentication enabled. 

 Web Application Basic  This template creates an ASP.NET Core project with the 
initial content that includes controllers and views but without 
authentication. 

 Web API Application  This template creates an ASP.NET Core project with an API 
controller (which I describe in Chapter   20    ). This is equivalent to 
the Visual Studio 2015 Web API template. 

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_20


CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

351

 Select the Empty Web Application template and press Return. Enter  PartyInvites  when prompted for 
the name of the project. Here is the output you will see as you create the project: 

   ? What type of application do you want to create?  Empty Web Application  
 ? What's the name of your ASP.NET application? (EmptyWebApplication)  PartyInvites  

   Press Return and Yeoman will create a  PartyInvites  folder and populate it with the minimum set of 
files required for an ASP.NET Core project.  

     Preparing the Project with Visual Studio Code 
 To open the project in Visual Studio Code, select Open Folder from the File menu, navigate to the 
 PartyInvites  folder, and click the Select Folder button. Visual Studio Code will open the project, and after a 
few seconds, you will see a message offering to add items to the project, as shown in Figure  13-5 .  

 Click the Yes button. Visual Studio Code will create a  .vscode  folder and add some files that configure 
the build process. Visual Studio Code uses a three-section layout by default. The sidebar, which is 
highlighted in Figure  13-6 , provides access to the main areas of functionality.  

  Figure 13-5.    The prompt to add assets to the project       

 



CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

352

 The topmost button opens the explorer pane, which shows the contents of the folder that has been 
opened. The other buttons provide access to the search feature, the integrated source code management, the 
debugger, and the set of installed extensions. Click a file in the explorer pane to open it for editing. Multiple 
files can be edited simultaneously, and you can create new editor panes by clicking the Split Editor button in 
the top right of the window. The Visual Studio Code editor is pretty good, with decent IntelliSense support 
for C# files and Razor views and assistance in completing NuGet and Bower package names and versions. 

 In addition to the contents of the project folder, the explorer pane shows which files are currently being 
edited, which makes it easy to remain focused on the subset of files that you are working with, which is a 
helpful addition when working on a subset of related files in a large project. 

     Adding NuGet Packages to the Project 
 The first step is to add the NuGet packages that contain the .NET assemblies required for MVC applications. 
Using the Visual Studio Code explorer pane, click the  project.json  file and use the code editor to make 
the changes to the  dependencies  and  tools  sections shown in Listing  13-1 . Visual Studio Code will offer 
suggestions for the package names and versions. 

  Figure 13-6.    The Visual Studio Code sidebar       

 



CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

353

      Listing 13-1.    Adding NuGet Packages to the project.json File   

  ... 
 { 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
   "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
   "Microsoft.Extensions.Configuration.EnvironmentVariables": "1.0.0", 
   "Microsoft.Extensions.Configuration.FileExtensions": "1.0.0", 
   "Microsoft.Extensions.Configuration.Json": "1.0.0", 
   "Microsoft.Extensions.Configuration.CommandLine": "1.0.0", 
    "Microsoft.AspNetCore.Mvc": "1.0.0",  
    "Microsoft.AspNetCore.StaticFiles": "1.0.0"  
 }, 

   "tools": { 
    "Microsoft.DotNet.Watcher.Tools": "1.0.0-preview2-final",  
   "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final" 
 }, 
 ... 

    The packages in the  dependencies  section add support for MVC and delivering static content, such as 
JavaScript and CSS files. The package in the  tools  section enables iterative development for Visual Studio 
Code, which I set up in the “Building and Running the Project” section. 

 Save the changes to the  project.json  file and use the command prompt/Terminal to run the following 
command inside the  PartyInvites  folder: 

   dotnet restore 

   This command processes the  project.json  file and downloads the NuGet packages that it specifies. 
(Visual Studio Code will sometimes detect that there are packages to download and offer to run this 
command for you, but this is an unreliable feature at the time of writing, and not all changes are detected. 
Running the command explicitly ensures that the application can be compiled. You may need to close the 
 project.json  file within Visual Studio Code before running the  restore  command.)  

     Adding Client-Side Packages to the Project 
 Bower is used to manage client-side packages in Visual Studio Code projects, just as it is in Visual Studio 
2015, although some additional work is required. 

 The first step is to add a file called  .bowerrc , which is used to tell Bower where to install its packages. 
Move the mouse pointer over the  PARTYINVITES  item in the explorer page and click the New File icon, as 
shown in Figure  13-7 .  



CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

354

 Set the name of the file to  .bowerrc  (note that there are two  r ’s in the file name) and add the content 
shown in Listing  13-2 . 

     Listing 13-2.    The Contents of the .bowerrc File   

 { 
   "directory": "wwwroot/lib" 
 } 

   Next, create a file called  bower.json  and add the content shown in Listing  13-3 . 

     Listing 13-3.    The Contents of the .bower.json File   

 { 
   "name": "PartyInvites", 
   "private": true, 
   "dependencies": { 
     "bootstrap": "3.3.6", 
     "jquery": "2.2.3", 
     "jquery-validation": "1.15.0", 
     "jquery-validation-unobtrusive": "3.2.6" 
   } 
 } 

   Visual Studio Code provides IntelliSense support when adding packages to the  project.json  file or the 
 bower.json  file, which makes it easier to select the packages you require and specify the versions that will be 
used. 

 Using the command prompt/Terminal to run the following command in the  PartyInvites  folder, 
which uses the Bower tool to download and install the client-side packages specified in the  bower.json  file: 

   bower install 

  Figure 13-7.    Creating a new file       

 



CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

355

        Configuring the Application 
 The project initialization process has created an empty project without support for MVC. Listing  13-4  shows 
the changes to the  Startup.cs  file to set up MVC using the most basic configuration. The statements in the 
listing apply the packages added to the project in Listing  13-1  and are described in Chapter   14    . 

     Listing 13-4.    Adding Support for MVC in the Startup.cs File   

  using System; 
 using System.Collections.Generic; 
 using System.Linq; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 

   namespace PartyInvites { 
     public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app, 
                 IHostingEnvironment env, ILoggerFactory loggerFactory) { 
              app.UseStatusCodePages();  
              app.UseDeveloperExceptionPage();  
              app.UseStaticFiles();  
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

         Building and Running the Project 
 To build and run the project, use the command prompt or Terminal to navigate to the  PartyInvites  
directory and run the following command: 

   dotnet watch run 

   Visual Studio Code will compile the code in the project and use the Kestrel application server, described 
in Chapter   14    , to run the application, waiting for HTTP requests on port 5000. Any changes to C# files will 
trigger an automatic recompilation. (Use the  dotnet run  command if you want to run the project and ignore 
any changes.) 

 Visual Studio Code doesn’t provide an alternative to Browser Link and doesn’t open a browser window 
automatically. To test the application, start a new browser and navigate to  http://localhost:5000 . You will 
see the response shown in Figure  13-8 . The 404 error is shown because there are no controllers in the project 
to handle requests at the moment.    

http://dx.doi.org/10.1007/978-1-4842-0397-2_14
http://dx.doi.org/10.1007/978-1-4842-0397-2_14


CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

356

     Re-creating the PartyInvites Application 
 All of the preparation is complete, which means that I can switch my focus to creating an MVC application. 
I am going to re-create the simple PartyInvites application from Chapter   2     but with some changes and 
additions to highlight working with Visual Studio Code. 

     Creating the Model and Repository 
 To get started, move the mouse pointer over the  PARTYINVITES  item in the explorer pane and click the New 
Folder button, as shown in Figure  13-9 . Set the name of the folder to  Models .  

 Right-click the  Models  folder in the explorer pane, select New File from the pop-up menu, set the name 
of the file to  GuestResponse.cs , and add the C# code shown in Listing  13-5 . 

  Figure 13-8.    Testing the example application       

  Figure 13-9.    Creating a new folder       

 

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_2


CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

357

 WORKING WITH THE VISUAL STUDIO CODE EDITOR

 Visual Studio Code (and the C# extension installed earlier in the chapter) provides a full editing 
experience for C# and Razor files, as well as for common web formats such as JavaScript, CSS, and 
plain HTML files. In many ways, writing an MVC application in Visual Studio Code has a lot in common 
with the Visual Studio 2015 editor: there is IntelliSense support, color coding, and highlighting for errors 
(with suggestions to fix them). 

 The main deficit in Visual Studio Code is a lack of customization, especially when it comes to formatting 
code. As I write this, there are configuration options available for other languages, but the C# extension 
doesn’t allow customization, which can make it a little difficult to work with if your preferred coding 
style isn’t the one it supports by default. But overall, the editor is responsive and easy to work with, and 
writing MVC applications on OS X/macOS or Linux doesn’t feel like a second-class experience.  

     Listing 13-5.    The Contents of the GuestResponse.cs File in the Models Folder   

  using System.ComponentModel.DataAnnotations; 

   namespace PartyInvites.Models { 

       public class GuestResponse { 

           public int id {get; set; } 

           [Required(ErrorMessage = "Please enter your name")] 
         public string Name { get; set; } 

           [Required(ErrorMessage = "Please enter your email address")] 
         [RegularExpression(".+\\@.+\\..+", 
             ErrorMessage = "Please enter a valid email address")] 
         public string Email { get; set; } 

           [Required(ErrorMessage = "Please enter your phone number")] 
         public string Phone { get; set; } 

           [Required(ErrorMessage = "Please specify whether you'll attend")] 
         public bool? WillAttend { get; set; } 
     } 
 } 

    Next, add a file called  IRepository.cs  to the  Models  folder and use it to define the interface shown in 
Listing  13-6 . The most important difference between the application in this chapter and the one in Chapter   2     
is that I am going to store the model data in a persistent database. The  IRepository  interface describes how 
the application will access the model data without specifying its implementation. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_2


CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

358

     Listing 13-6.    The Contents of the IRepository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace PartyInvites.Models { 

       public interface IRepository { 
         IEnumerable<GuestResponse> Responses {get; } 

           void AddResponse(GuestResponse response); 
     } 
 } 

    Add a file called  ApplicationDbContext.cs  to the  Models  folder and use it to define the database 
context class shown in Listing  13-7 . 

     Listing 13-7.    The Contents of the ApplicationDbContext.cs File in the Models Folder   

  using Microsoft.EntityFrameworkCore; 

   namespace PartyInvites.Models { 
     public class ApplicationDbContext : DbContext { 

           public ApplicationDbContext() {} 

           protected override void OnConfiguring(DbContextOptionsBuilder builder) { 
             builder.UseSqlite("Filename=./PartyInvites.db"); 
         } 

           public DbSet<GuestResponse> Invites {get; set;} 
     } 
 } 

    SQLite stores its data in a file, which is specified by the context class. For the example application, the 
data will be stored in a file called  PartyInvites.db , which is defined in the  OnConfiguring  method. 

 To complete the set of classes required to store and access the model data, an implementation of the 
 IRepository  interface is required that uses the database context class. Add a new file called  EFRepository.
cs  to the  Models  folder and add the code shown in Listing  13-8 . 

     Listing 13-8.    The Contents of the EFRepository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace PartyInvites.Models { 
     public class EFRepository : IRepository { 
         private ApplicationDbContext context = new ApplicationDbContext(); 

           public IEnumerable<GuestResponse> Responses => context.Invites; 

           public void AddResponse(GuestResponse response) { 
             context.Invites.Add(response); 



CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

359

             context.SaveChanges(); 
         } 
     } 
 } 

    The  EFRepository  class follows a similar pattern to the one I used in Chapter   8     to set up the SportsStore 
database. In Listing  13-9 , I have added a configuration statement to the  ConfigureServices  method of the 
 Startup  class that tells ASP.NET to create the  EFRepository  class when implementations of the  IRepository  
interface are demanded by the dependency injection feature (which is described in Chapter   18    ). 

     Listing 13-9.    Configuring the Repository in the Startup.cs File   

  using System; 
 using System.Collections.Generic; 
 using System.Linq; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
  using PartyInvites.Models;  

   namespace PartyInvites { 
     public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddTransient<IRepository, EFRepository>();  
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app, 
                 IHostingEnvironment env, ILoggerFactory loggerFactory) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

         Creating the Database 
 In the rest of the book, whenever I need to demonstrate a feature that requires data persistence, I use 
the LocalDB feature, which is a simplified version of Microsoft SQL Server. But the LocalDB feature is 
available only on Windows, which means that an alternative is required when creating ASP.NET Core MVC 
applications on other platforms. The best alternative to LocalDB is SQLite, which is a cross-platform zero-
configuration database that can be embedded in applications and for which Microsoft has included support 
in Entity Framework Core. In the sections that follow, I walk through the process of adding SQLite to the 
project and using it as the data store for party responses.        

http://dx.doi.org/10.1007/978-1-4842-0397-2_8
http://dx.doi.org/10.1007/978-1-4842-0397-2_18


CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

360

 USING SQLITE FOR DEVELOPMENT

 One of the reasons that LocalDB is such a useful tool is because it allows development using the SQL 
Server database engine, which makes transition to a production SQL Server environment simple and 
largely risk-free. SQLite is an excellent database, but it isn’t well-suited to large-scale web applications, 
and that means a transition to another database is required when an MVC application is deployed. 
The configuration changes can be simplified using the project configuration features that I describe 
in Chapter   14    , but you need to test the application thoroughly in a staging environment to surface any 
differences introduced by the production database. 

 See    https://www.sqlite.org/whentouse.html      if you are unsure whether to use SQLite in production. 
This page provides a good summary of where SQLite excels and where it doesn’t. 

 One issue to be aware of is that SQLite doesn’t support the full set of schema changes that Entity 
Framework Core can generate for other databases. This isn’t generally a problem when using SQLite in 
development because you can delete the database file and generate a new one with a clean schema. It 
does complicate matters if you are considering deploying an application using SQLite, however. 

 If you want to use the same database in development and production, then consult the list of supported 
Entity Framework Core databases at    http://ef.readthedocs.io/en/latest/providers/index.
html     . The list is short as I write this, but Microsoft has announced support for databases that are more 
suited to deployment than SQLite and that can also run on non-Windows platforms.  

   Adding the Database Packages 
 The first step for any new feature in an ASP.NET Core project is to add the required packages to the  project.
json  file, and this is no different when using Visual Studio Code. Listing  13-10  shows the additions to the 
 project.json  file for Entity Framework Core and its support for SQLite. 

     Listing 13-10.    Adding Database Packages to the project.json File   

  ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
   "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
   "Microsoft.Extensions.Configuration.EnvironmentVariables": "1.0.0", 
   "Microsoft.Extensions.Configuration.FileExtensions": "1.0.0", 
   "Microsoft.Extensions.Configuration.Json": "1.0.0", 
   "Microsoft.Extensions.Configuration.CommandLine": "1.0.0", 
   "Microsoft.AspNetCore.Mvc": "1.0.0", 
   "Microsoft.AspNetCore.StaticFiles": "1.0.0", 
    "Microsoft.EntityFrameworkCore.Sqlite": "1.0.0",  
    "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final"    

http://dx.doi.org/10.1007/978-1-4842-0397-2_14
https://www.sqlite.org/whentouse.html
http://ef.readthedocs.io/en/latest/providers/index.html
http://ef.readthedocs.io/en/latest/providers/index.html


CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

361

 }, 

   "tools": { 
   "Microsoft.DotNet.Watcher.Tools": "1.0.0-preview2-final",     
   "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final", 
    "Microsoft.EntityFrameworkCore.Tools": {  
      "version": "1.0.0-preview2-final",  
      "imports": [ "portable-net45+win8+dnxcore50", "portable-net45+win8" ]  
    }    
 }, 
 ... 

    Save the changes to the  project.json  file, open a new command prompt/Terminal, and run the 
following command in the  PartyInvites  folder: 

   dotnet restore 

      Creating and Applying the Database Migration 
 Creating the database follows a similar process to the commands used by Visual Studio 2015, albeit 
executed using the  dotnet  tool. To create an initial database migration, run the following command in the 
 PartyInvites  folder: 

   dotnet ef migrations add Initial 

   Entity Framework Core will create a folder called  Migrations  that contains the C# classes that will be 
used to set up the database schema. To apply the database migration, run the following command in the 
 PartyInvites  folder, which will create the database in the  bin/Debug/netcoreapp1.0  folder: 

   dotnet ef database update 

   Visual Studio Code doesn’t include support for inspecting SQLite databases, but you can find an 
excellent open source tool for Windows, OS X/macOS and Linux at    http://sqlitebrowser.org     .   

     Creating the Controllers and Views 
 In this section, I add the controller and views to the application. I started by creating a  Controllers  folder and 
adding a file called  HomeController.cs  to it, which I used to create the controller shown in Listing  13-11 . 

 ■   Tip    It can be hard to create a folder in Visual Studio Code because clicking the  PARTYINVITES  item in the 
explorer pane hides the folder contents, rather than selecting the root folder. Click one of the files in the root 
folder, such as  project.json , and then move the mouse pointer over the  PARTYINVITES  item to select the New 
Folder button.  

http://sqlitebrowser.org/


CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

362

      Listing 13-11.    The Contents of the HomeController.cs File in the Controllers Folder   

  using System; 
 using Microsoft.AspNetCore.Mvc; 
 using PartyInvites.Models; 
 using System.Linq; 

   namespace PartyInvites.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             this.repository = repo; 
         } 

           public ViewResult Index() { 
             int hour = DateTime.Now.Hour; 
             ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon"; 
             return View("MyView"); 
         } 

           [HttpGet] 
         public ViewResult RsvpForm() { 
             return View(); 
         } 

           [HttpPost] 
         public ViewResult RsvpForm(GuestResponse guestResponse) { 
             if (ModelState.IsValid) { 
                 repository.AddResponse(guestResponse); 
                 return View("Thanks", guestResponse); 
             } else { 
                 // there is a validation error 
                 return View(); 
             } 
         } 

           public ViewResult ListResponses() { 
             return View(repository.Responses.Where(r => r.WillAttend == true)); 
         } 
     } 
 } 

    To set up the built-in tag helpers, I created a  Views  folder and added a file called  _ViewImports.cshtml  
containing the expression shown in Listing  13-12 . 

     Listing 13-12.    The Contents of the _ViewImports.cshtml File in the Views Folder   

 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

   Next, I created a  Views/Home  folder and added a file called  MyView.cshtml , which is the view selected by 
the  Index  action method in Listing  13-11 . I added the markup shown in Listing  13-13 . 



CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

363

     Listing 13-13.    The Contents of the MyView.cshtml File in the Views/Home Folder   

  @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Index</title> 
     <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" /> 
 </head> 
 <body> 
     <div class="text-center"> 
         <h3>We're going to have an exciting party!</h3> 
         <h4>And you are invited</h4> 
         <a class="btn btn-primary" asp-action="RsvpForm">RSVP Now</a> 
     </div> 
 </body> 
 </html> 

    I added a file called  RsvpForm.cshtml  to the  Views/Home  folder and added the content shown in Listing  13-14 . 
This view provides the HTML form that invitees will fill in to accept or decline their invitation to the party. 

     Listing 13-14.    The Contents of the RsvpForm.cshtml File in the Views/Home Folder   

  @model PartyInvites.Models.GuestResponse 

   @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>RsvpForm</title> 
     <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" /> 
 </head> 
 <body> 
     <div class="panel panel-success"> 
         <div class="panel-heading text-center"><h4>RSVP</h4></div> 
         <div class="panel-body"> 
             <form class="p-a-1" asp-action="RsvpForm" method="post"> 
                 <div asp-validation-summary="All"></div> 
                 <div class="form-group"> 
                     <label asp-for="Name">Your name:</label> 
                     <input class="form-control" asp-for="Name" /> 
                 </div> 



CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

364

                 <div class="form-group"> 
                     <label asp-for="Email">Your email:</label> 
                     <input class="form-control" asp-for="Email" /> 
                 </div> 
                 <div class="form-group"> 
                     <label asp-for="Phone">Your phone:</label> 
                     <input class="form-control" asp-for="Phone" /> 
                 </div> 
                 <div class="form-group"> 
                     <label>Will you attend?</label> 
                     <select class="form-control" asp-for="WillAttend"> 
                         <option value="">Choose an option</option> 
                         <option value="true">Yes, I'll be there</option> 
                         <option value="false">No, I can't come</option> 
                     </select> 
                 </div> 
                 <div class="text-center"> 
                     <button class="btn btn-primary" type="submit"> 
                         Submit RSVP 
                     </button> 
                 </div> 
             </form> 
         </div> 
     </div> 
 </body> 
 </html> 

    The next view file is called  Thanks.cshtml  and is also created in the  Views/Home  folder, with the content 
shown in Listing  13-15  that is displayed when the guest has submitted their response. 

     Listing 13-15.    The Contents of the Thanks.cshtml File in the Views/Home Folder   

  @model PartyInvites.Models.GuestResponse 

   @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 

   <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Thanks</title> 
     <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" /> 
 </head> 
 <body class="text-center"> 
     <p> 
         <h1>Thank you, @Model.Name!</h1> 
         @if (Model.WillAttend == true) { 
             @:It's great that you're coming. The drinks are already in the fridge! 



CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

365

         } else { 
             @:Sorry to hear that you can't make it, but thanks for letting us know. 
         } 
     </p> 
     Click <a class="nav-link" asp-action="ListResponses">here</a> 
     to see who is coming. 
 </body> 
 </html> 

    The final view is called  ListResponses.cshtml  and, like the other views in this example, is added to the 
 Views/Home  folder. This view displays the list of guest responses using the markup shown in Listing  13-16 . 

     Listing 13-16.    The Contents of the ListResponses.cshtml File in the Views/Home Folder   

  @model IEnumerable<PartyInvites.Models.GuestResponse> 

   @{ 
     Layout = null; 
 } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" /> 
     <title>Responses</title> 
 </head> 
 <body> 
     <div class="panel-body"> 
         <h2>Here is the list of people attending the party</h2> 
         <table class="table table-sm table-striped table-bordered"> 
             <thead> 
                 <tr><th>Name</th><th>Email</th><th>Phone</th></tr> 
             </thead> 
             <tbody> 
                 @foreach (PartyInvites.Models.GuestResponse r in Model) { 
                     <tr><td>@r.Name</td><td>@r.Email</td><td>@r.Phone</td></tr> 
                 } 
             </tbody> 
         </table> 
     </div> 
 </body> 
 </html> 

    The  dotnet watch  command that was started earlier in the chapter has ensured that the application 
has been compiled each time a C# class has been edited, and you can see the completed application by 
navigating to  http://localhost:5000 , as shown in Figure  13-10 .    



CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

366

     Unit Testing in Visual Studio Code 
       Visual Studio Code doesn’t support separate unit test projects, which means that unit testing must be mixed 
in with the MVC application classes and configured using the same  project.json  file that sets up the ASP.
NET packages and tools. In the sections that follow, I add the xUnit testing package to the application, create 
a simple unit test, and show you how to run it. 

     Configuring the Application 
 The first step is to add packages to the  project.json  file and to provide details of the testing package that is 
being used, as shown in Listing  13-17 . 

     Listing 13-17.    Configuring Unit Testing in the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
     "Microsoft.Extensions.Configuration.EnvironmentVariables": "1.0.0", 
     "Microsoft.Extensions.Configuration.FileExtensions": "1.0.0", 
     "Microsoft.Extensions.Configuration.Json": "1.0.0", 
     "Microsoft.Extensions.Configuration.CommandLine": "1.0.0", 
     "Microsoft.AspNetCore.Mvc": "1.0.0", 
     "Microsoft.AspNetCore.StaticFiles": "1.0.0", 
     "Microsoft.EntityFrameworkCore.Sqlite": "1.0.0", 
     "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final" , 

  Figure 13-10.    Running the completed application       

 



CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

367

      "xunit": "2.1.0",  
      "dotnet-test-xunit": "2.2.0-preview2-build1029"  
   }, 

      "testRunner": "xunit",  

     "tools": { 
     "Microsoft.DotNet.Watcher.Tools": "1.0.0-preview2-final",     
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final", 
     "Microsoft.EntityFrameworkCore.Tools": { 
       "version": "1.0.0-preview2-final", 
       "imports": [ "portable-net45+win8+dnxcore50", "portable-net45+win8" ] 
     }   
   }, 

    //  ...other sections omitted for brevity...  
 } 

    Run the following command in the  PartyInvites  directory to install the testing packages: 

   dotnet restore 

        Creating a Unit Test 
 Unit tests are created as described in Chapter   7    , but the test classes must be part of the application project. 
I created a folder called  Tests  and added a class called  HomeControllerTests.cs , the content of which is 
shown in Listing  13-18 . 

     Listing 13-18.    The Contents of the HomeControllerTests.cs File in the Tests Folder   

  using System; 
 using System.Collections.Generic; 
 using PartyInvites.Controllers; 
 using PartyInvites.Models; 
 using Xunit; 
 using Microsoft.AspNetCore.Mvc; 
 using System.Linq; 

   namespace PartyInvites.Tests { 
     public class HomeControllerTests { 

           [Fact] 
         public void ListActionFiltersNonAttendees() { 
             //Arrange 
             HomeController controller = new HomeController(new FakeRepository()); 
             // Act 
             ViewResult result = controller.ListResponses(); 
             // Assert 
             Assert.Equal(2, (result.Model as IEnumerable<GuestResponse>).Count()); 

http://dx.doi.org/10.1007/978-1-4842-0397-2_7


CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

368

         } 
     } 

       class FakeRepository : IRepository { 
         public IEnumerable<GuestResponse> Responses => 
             new List<GuestResponse> { 
                 new GuestResponse { Name = "Bob", WillAttend = true }, 
                 new GuestResponse { Name = "Alice", WillAttend = true }, 
                 new GuestResponse { Name = "Joe", WillAttend = false } 
             }; 

           public void AddResponse(GuestResponse response) { 
             throw new NotImplementedException(); 
         } 
     } 
 } 

    This is a standard xUnit test that checks the  ListResponses  action in the  Home  controller and correctly 
filters out  GuestResponse  objects in the repository for which the  WillAttend  property is false.  

     Running Tests 
 The Visual Studio Code editor detects tests and adds an inline link to run them, as shown in Figure  13-11 . 
Clicking  run test  will open an output window and show the result. (The debug test link doesn’t work at the 
time of writing, and in some cases, you may not see any output at all.)  

 A more reliable approach is to run all the tests in a project. Execute the following command in the 
project folder: 

   dotnet test 

  Figure 13-11.    Running a test within the code editor       

 



CHAPTER 13 ■ WORKING WITH VISUAL STUDIO CODE

369

   All the tests in the project will be run and the results shown, producing output like this: 

   xUnit.net .NET CLI test runner (64-bit .NET Core win10-x64) 
   Discovering: PartyInvites 
   Discovered:  PartyInvites 
   Starting:    PartyInvites 
   Finished:    PartyInvites 
 === TEST EXECUTION SUMMARY === 
    PartyInvites  Total: 1, Errors: 0, Failed: 0, Skipped: 0, Time: 0.196s 
 SUMMARY: Total: 1 targets, Passed: 1, Failed: 0. 

   You can also run all the unit tests in the project every time a C# class changes using this command: 

   dotnet watch test 

   This command cannot be used at the same time as the  dotnet watch run  command because both 
commands will compile the project when there is a change and try to create the same output files.   

     Summary 
 In this chapter, I provided a brief overview of working with Visual Studio Code, which is a light-weight 
development tool that supports ASP.NET Core MVC development on Windows, OS X/macOS and Linux. 
Visual Studio Code isn’t a full replacement for the complete Visual Studio product yet, but it provides the core 
features required to create MVC applications and is being enhanced by Microsoft with monthly releases. 

 That’s the end of this part of the book. In Part 2, I begin the process of digging into the details and 
showing you how the features I used to create the application work in depth.     



   PART II 

   ASP.NET Core MVC in Detail 

            So far, you’ve learned about why ASP.NET Core MVC exists and have gained an understanding of 
its architecture and underlying design goals. You’ve taken it for a good, long test-drive by building a 
realistic e-commerce application. Now it’s time to open the hood and expose the full details of the 
framework’s machinery. 

 In Part 2 of this book, I dig into the details. I start with an exploration of the structure of an ASP.
NET Core MVC application and the way that requests are processed. I then focus on individual 
features, such as routing, controllers and actions, the MVC view and tag helper system, and the way 
that MVC works with domain models.       



373© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_14

    CHAPTER 14   

 Configuring Applications                          

 The topic of configuration may not seem interesting, but it reveals a lot about how MVC applications 
work and how HTTP requests are handled. Resist the temptation to skip this chapter, and take the time to 
understand the way that the configuration system shapes MVC web applications. It is worth your time and 
will give you a solid foundation for understanding the chapters that follow. 

 If you have used earlier versions of ASP.NET, one of most striking changes to ASP.NET Core is the way 
that an application is configured. A whole set of files— Global.asax ,  FilterConfig.cs , and  RouteConfig.
cs —are gone and in their place are classes called  Startup  and  Program  and a set of JSON files. In this 
chapter, I explain how these are used to configure MVC applications and show how MVC builds on features 
provided by the ASP.NET Core platform. Table  14-1  puts configuring applications in context.  

 ■   Note   Microsoft has announced that it will change the way that ASP.NET Core applications are configured in 
a future release, changing the role of the  project.json  file and introducing an XML configuration file. See this 
book’s page on Apress.com for updates when the new tools are released.  

   Table 14-1.    Putting Configuration in Context   

 Question  Answer 

 What is it?  The  Program  and  Startup  classes and the JSON files are used to 
configure how an application works and what packages it depends on. 

 Why is it useful?  The configuration system allows applications to be tailored to their 
environments and to manage their package dependencies. 

 How is it used?  The most important component is the  Startup  class, which is used to 
create services (which are objects that provide common functionality 
throughout an application) and middleware components (which are 
used to handle HTTP requests). 

 Are there any pitfalls or limitations?  In complex applications, the configuration can become difficult to 
manage. See the “Dealing with Complex Configurations” section for 
ASP.NET features intended to manage this problem. 

 Are there any alternatives?  No. The configuration system is an integral part of ASP.NET and the 
means by which MVC applications are set up. 

 Has it changed since MVC 5?  The configuration system has completely changed since MVC 5, with 
an entirely new approach that is intended to make it possible to run 
applications outside of the traditional IIS platform. 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

374

     Preparing the Example Project 
 For this chapter, I created a new project called ConfiguringApps using the Empty template. I am going 
to configure the application later in the chapter, but there are some basics that I need to put in place in 
preparation for the changes I make. 

 I am going to use Bootstrap to style the HTML content in this chapter, so I created the  bower.json  file 
using the Bower Configuration File item template and added the package shown in Listing  14-1 .          

 Table  14-2  summarizes the chapter.  

   Table 14-2.    Chapter Summary   

 Problem  Solution  Listing 

 Add functionality to the application  Add NuGet packages to the dependencies 
and tools sections of the  project.json  file 

 1–6 

 Manage the initialization of the ASP.NET 
application 

 Use the  Program  class  7 

 Configure the application  Use the  ConfigureServices  and  Configure  
methods of the  Startup  class 

 8, 9 

 Create common functionality  Use the  ConfigureServices  method to 
create services 

 10–12 

 Generate content responses  Create content-generating middleware  13–15 

 Prevent requests from traversing the request 
pipeline 

 Create short-circuiting middleware  16–17 

 Edit a request before it is processed by other 
middleware components 

 Create request-editing middleware  18–20 

 Edit a response that has been processed by 
other middleware components 

 Create response-editing middleware  21, 22 

 Set up MVC functionality  Use the  UseMvc  or  UseMvcWithDefaultRoute  
method 

 23 

 Change the application configuration for 
different environments 

 Use the hosting environment service  24 

 Log application data  Use the logging middleware  25–27 

 Handle application errors  Use the developer or production error-
handling middleware 

 28, 29 

 Manage multiple browsers during development  Use Browser Link  30 

 Enable images, JavaScript and CSS files  Enable the static content middleware  31 

 Separate configuration data from C# code  Create external configuration sources, such 
as JSON files 

 32–37 

 Configure MVC services  Use the options features  38 

 Configure complex applications  Use multiple external files or classes  39–43 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

375

     Listing 14-1.    Adding Bootstrap in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6"  
   } 
 } 

   Next, I created the  Controllers  folder and added a class file called  HomeController.cs , which I used to 
define the controller shown in Listing  14-2 . 

     Listing 14-2.    The Contents of the HomeController.cs File in the Controllers Folder   

  using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc; 

   namespace ConfiguringApps.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() 
             => View(new Dictionary<string, string> { 
                 ["Message"] = "This is the Index action" 
             }); 
     } 
 } 

    I created the  Views/Home  folder and added a view file called  Index.cshtml  with the content shown in 
Listing  14-3 . 

     Listing 14-3.    The Contents of the Index.cshtml File in the Views/Home Folder   

  @model Dictionary<string, string> 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
     <title>Result</title> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-condensed table-bordered table-striped"> 
         @foreach (var kvp in Model) { 
             <tr><th>@kvp.Key</th><td>@kvp.Value</td></tr> 
         } 
     </table> 
 </body> 
 </html> 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

376

    The  link  element in the view relies on a built-in tag helper to select the Bootstrap CSS files. To enable 
the built-in tag helpers, I used the MVC View Imports Page item template to create the  _ViewImports.
cshtml  file in the  Views  folder and added the expression shown in Listing  14-4 . 

     Listing 14-4.    The Contents of the _ViewImports.cshtml File in the Views Folder   

 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

 ■     Note   The application won’t build or run at the moment because the controller and the view depend on 
features that are not present in the project. I address this in the sections that follow as I describe how ASP.NET 
Core MVC applications are configured.   

     Understanding the JSON Configuration Files 
    In ASP.NET Core development, the  JavaScript Object Notation  (JSON) format plays two different roles. The 
first is as the preferred data interchange format between an MVC application and its clients. In Chapter   20    , I 
explain how you can create controllers that return JSON data to their clients instead of HTML, which allows 
asynchronous HTTP requests to retrieve just the data that a client needs, usually known as  Ajax requests , 
although JSON has largely replaced the XML formats that the  X  in Ajax stood for. 

 For this chapter, I am interested in the other role that JSON plays, which is as the format for 
configuration files. Table  14-3  describes the different JSON configuration files that can be added to an ASP.
NET Core MVC application.  

 ■   Tip   JSON is a format used to describe serialized objects and does not support any program logic. By 
contrast, files with the  .js  extension contain JavaScript code that can be executed. JSON files cannot contain 
JavaScript code, but JavaScript files  can  contain JSON data (because JSON is based on the way that JavaScript 
literal objects are defined).  

http://dx.doi.org/10.1007/978-1-4842-0397-2_20


CHAPTER 14 ■ CONFIGURING APPLICATIONS

377

     Configuring the Solution 
    The  global.json  file is used to configure the overall solution. Here is the content that Visual Studio adds by 
default for an ASP.NET Core project: 

   { 
   "projects": [ "src", "test" ], 
   "sdk": { 
     "version": "1.0.0-preview2-003121" 
   } 
 } 

   The  projects  setting specifies the set of folders that contain projects or source code. The convention 
is to put the deployable part of a solution—the MVC application, for example—in the  src  folder while test 
projects go into the  test  folder. This is only a convention, and you can use the  global.json  file to list any 
set of folders you like and use them for any purpose that suits you. The  sdk  setting tells Visual Studio which 
version of .NET will be used to run the project. The version specified by this setting is used for all the projects 
in the solution. 

   Table 14-3.    The JSON Configuration Files in an ASP.NET Core MVC Project   

 Name  Description 

  global.json   This file, which is found in the Solution Items folder, is responsible for telling 
Visual Studio where to find the projects in the solution and which version of 
the .NET execution environment should be used to run the application. See the 
 “Configuration the Solution”  section for details. 

  launchSettings.json   This file, which is revealed by expanding the Properties item in the MVC 
application project, is used to specify how the application is started. 

  appsettings.json   This file is used to define application-specific settings, as described in the 
 “Using Configuration Data”  section later in this chapter. 

  bower.json   This file is used by Bower to list the client-side packages that are installed into 
the project, as described in Chapter   6    . 

  bundleconfig.json   This file is used to bundle and minify JavaScript and CSS files, as described in 
Chapter   6    . 

  project.json   This file is used to specify the NuGet packages that are installed into the 
application, as described in Chapter   6    . This file is also used for other project 
settings, as described in the  “Configuring the Project”  section. 

  project.lock.json   This file, which is revealed by expanding the  project.json  item in the Solution 
Explorer, contains detailed dependencies between packages installed in the 
project. It is generated automatically and should not be edited manually. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_6
http://dx.doi.org/10.1007/978-1-4842-0397-2_6
http://dx.doi.org/10.1007/978-1-4842-0397-2_6


CHAPTER 14 ■ CONFIGURING APPLICATIONS

378

  If you are new to working with JSON, then it is worth taking some time to read the specification at    www.json.
org     . The format is simple to work with, and there is good support for generating and parsing JSON data on 
most platforms, including within MVC applications (see Chapters   20     and   21     for examples) and at the client 
using a simple JavaScript API. In fact, most MVC developers won’t deal directly with JSON at all, and it is 
only in the configuration files that hand-crafting JSON is required. 

 There are two pitfalls that many developers new to JSON fall into, and while you should still take the 
time to read the specification, knowing the most common problems will give you somewhere to start when 
Visual Studio or ASP.NET Core can’t parse your JSON files. Here is an addition to the default content in the 
 global.json  file that contains the two most common problems (this is just for demonstration purposes 
because Visual Studio will complain if you actually add new entries to the  global.json  file): 

   { 
   "projects": [ "src", "test" ], 
   "sdk": { 
     "version": "1.0.0-preview2-003121" 
   } 
    mysetting : [ fast, slow ]  
 } 

   First, almost everything in JSON is quoted. It is easy to forget that you are writing C# code and expect 
property names and values to be accepted without quotes. In JSON, anything other than Boolean values and 
numbers has to be quoted, like this: 

   { 
   "projects": [ "src", "test" ], 
   "sdk": { 
     "version": "1.0.0-preview2-003121" 
   } 
    "mysetting" : [ "fast", "slow"]  
 } 

   Second, when you add a new property to the JSON description of an object, you must remember to add 
a comma to the previous brace character, like this: 

   { 
   "projects": [ "src", "test" ], 
   "sdk": { 
     "version": "1.0.0-preview2-003121" 
    },  
   "mysetting" : [ "fast", "slow"] 
 } 

   It can be hard to see the difference even when it is highlighted—which is why it is such a common 
error—but I have added a comma following the  }  character that closes the  sdk  section. Be careful, though, 
because a trailing comma that has no following section is also illegal. If your JSON changes are causing 
problems, there are the two errors to check for first.   

 JSON: QUOTING AND COMMAS 

http://www.json.org/
http://www.json.org/
http://dx.doi.org/10.1007/978-1-4842-0397-2_20
http://dx.doi.org/10.1007/978-1-4842-0397-2_21


CHAPTER 14 ■ CONFIGURING APPLICATIONS

379

     Configuring the Project 
    The  project.json  file is used to configure a single project within the solution. Here is the default content of 
the  project.json  file for an MVC application created with the  Empty  template: 

    { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0" 
   }, 

     "tools": { 
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final" 
   }, 

     "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6", "portable-net45+win8"] 
     } 
   }, 

     "buildOptions": { "emitEntryPoint": true, "preserveCompilationContext": true }, 

     "runtimeOptions": { 
     "configProperties": { 
       "System.GC.Server": true 
     } 
   }, 

     "publishOptions": { 
     "include": ["wwwroot", "web.config"] 
   }, 

     "scripts": { 
     "postpublish": [ "dotnet publish-iis --publish-folder %publish:OutputPath% --framework 
%publish:FullTargetFramework%" ] 
   } 
 } 

    Table  14-4  describes each configuration section in the  project.json  file. The two most important parts 
of the  project.json  file are  dependencies  and  tools , which I configure in the following sections.  



CHAPTER 14 ■ CONFIGURING APPLICATIONS

380

   Adding Dependencies to the project.json File 
 The  dependencies  section is the one that you will edit the most often as you add packages that provide 
the functionality required by your project. In Listing  14-5 , I have added a set of packages that provide core 
features useful for MVC development. 

     Listing 14-5.    Adding Useful MVC Packages to the project.json File   

 ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
   "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
    "Microsoft.AspNetCore.StaticFiles": "1.0.0",  
    "Microsoft.AspNetCore.Mvc": "1.0.0",  
    "Microsoft.VisualStudio.Web.BrowserLink.Loader": "14.0.0",  
    "Microsoft.AspNetCore.Razor.Tools": {  
      "version": "1.0.0-preview2-final",  
      "type": "build"  
    }  
 }, 
 ... 

   For most packages, you can use the simple syntax, where you list the package name and the required 
version like this: 

   ... 
 "Microsoft.AspNetCore.Mvc": "1.0.0", 
 ... 

   Table 14-4.    The project.json Configuration Sections   

 Name  Description 

  dependencies   This section specifies the NuGet packages on which the project depends, as 
described in the “Adding Dependencies to the project.json File” section. 

  tools   This section sets up the packages that are used as development tools, as summarized 
in the “Registering Development Tools in the project.json File” section. 

  frameworks   This section specifies which .NET frameworks the project targets and the 
dependencies they require. 

  buildOptions   This section is used to configure the way that projects are built. 

  runtimeOptions   This section is used to configure the way the application runs. 

  publishOptions   This section is used to configure the way the project is published. 

  scripts   This section specifies commands that are run at key moments in the build life cycle, 
such as before an application is deployed. 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

381

   The expanded syntax allows you to specify the type of a dependency, which will affect how it is used. 
There are two examples of the expanded syntax in the  project.json  file, including this one: 

   ... 
 "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
 }, 
 ... 

   The  version  property specifies the release of the package, just as in the simple syntax. The  type  
property provides additional information about the role of the package. There are three different values that 
can be specified, as described in Table  14-5 .   

   Registering Development Tools in the project.json File 
 Some of the packages that you will add to the  dependencies  section will provide tools that are used during 
development and must be registered in the  tools  section of the  project.json  file in order to work. In 
Listing  14-6 , I have added a new entry in the  tools  section that registers the functionality provided by the 
 Microsoft.AspNetCore.Razor.Tools  package, which adds IntelliSense support for the built-in tag helpers 
to the Visual Studio editor for Razor view files. 

      Listing 14-6.    Registering Tools in the project.json File   

 ... 
 "tools": { 
    "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final",  
   "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final" 
 }, 
 ... 

   When you add tools to your project, the package will generally come with instructions that describe 
the entry for the tools section of the  project.json  file. The most common tools you will encounter in 
projects are the one shown in Listing  14-6  for tag helpers and the package that adds Entity Framework Core 
commands for managing databases, as described in Chapter   8    .    

   Table 14-5.    The Type Values in the Expanded project.json Dependency Syntax   

 Name  Description 

  default   This value specifies a regular development dependency, such that the application 
relies on the assemblies in the package to perform its work. This is the value used 
in the simple syntax. 

  platform   This value specifies that a package provides platform-level features. This value 
must be specified for the  Microsoft.NETCore.App  package. 

  build   This value specifies that the assemblies in the package are used in the build 
process and do not provide features required by the application at runtime. This is 
the value used by the Visual Studio scaffolding, which I explained how to configure 
in Chapter   8    . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_8
http://dx.doi.org/10.1007/978-1-4842-0397-2_8


CHAPTER 14 ■ CONFIGURING APPLICATIONS

382

     Understanding the Program Class 
 The  Program  class is defined in a file called  Program.cs  and provides the entry point for running the 
application, providing .NET with a  main  method that can be executed to configure the hosting environment 
and select the class that configures the application. Listing  14-7  shows the default  Program  class added to 
projects by Visual Studio. 

 You won’t need to change the  Program  class for most projects unless you are deploying into an unusual 
or highly customized hosting environment. I demonstrate one such change in the “Dealing with Complex 
Configurations” section, but for most projects that are deployed to standard platforms like IIS or Azure, the 
default class can be used.     

     Listing 14-7.    The Default Contents of the Program.cs File   

  using System.IO; 
 using Microsoft.AspNetCore.Hosting; 

   namespace ConfiguringApps { 

       public class Program { 

           public static void Main(string[] args) { 
             var host = new WebHostBuilder() 
                 .UseKestrel() 
                 .UseContentRoot(Directory.GetCurrentDirectory()) 
                 .UseIISIntegration() 
                 .UseStartup<Startup>() 
                 .Build(); 

               host.Run(); 
         } 
     } 
 } 

    The first statement in the main method sets up the hosting environment by creating a  WebHostBuilder  
object and then calling a sequence of configuration methods on it, as described in Table  14-6 .  

   Table 14-6.    The Configuration Methods in the Program Class   

 Name  Description 

  UseKestrel   This method configures the Kestrel web server, as described in the “Using 
Kestrel Directly” sidebar. 

  UseContentRoot   This method configures the root directory for the application, which is used 
for loading configuration files and delivering static content such as images, 
JavaScript, and CSS. 

  UseIISIntegration   This method enables integration with IIS and IIS Express. 

  UseStartup   This method specifies the class that will be used to configure ASP.NET, as 
described in the “Understanding the Startup Class” section. 

  Build   This method combines the configurations settings provided by all the other 
methods and prepares them for use. 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

383

 Once the configuration has been prepared, the second expression in the  Main  method starts the 
application by calling the  Run  method. At the point, the hosting platform is able to receive HTTP requests 
and forward them to the application for processing. 

 USING KESTREL DIRECTLY

 When you add packages to  project.json , you will notice that one of the default entries in the 
dependencies section—even in projects created from the  Empty  template—is for Kestrel. 

   ... 
 "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
 ... 

   Kestrel is a new cross-platform web server designed to run ASP.NET Core applications. It is used 
automatically when you run an ASP.NET Core application using IIS Express (which is the server provided 
by Visual Studio for use during development) or the full version of IIS, which has been the traditional 
web platform for .NET applications. 

 You can also run Kestrel directly if you want, which means you can run your ASP.NET Core MVC 
applications on any of the supported platforms, bypassing the Windows-only restriction of IIS. There are 
two ways to run an application using Kestrel. The first is to click the arrow at the right edge of the IIS 
Express button on the Visual Studio toolbar and select the entry that matches the name of the project. 
This will open a new command prompt and run the application using Kestrel. 

 You can achieve the same effect by opening your own command prompt, navigating to the folder that 
contains the application’s configuration files (the one that contains the  project.json  file), and running 
the following command: 

   dotnet run 

   By default, the Kestrel server starts listening for HTTP requests on port 5000.   

     Understanding the Startup Class 
 ASP.NET Core uses a C# class called  Startup  to configure application functionality. The configuration class 
is defined in the  Startup.cs  file, which Visual Studio adds to the root folder of web application projects. 
Examining how the  Startup  class works provides insights into the way that HTTP requests are processed 
and how MVC integrates into the rest of the ASP.NET platform. 

 ■   Tip   The name of the  Startup  class is provided as a type parameter to the  UseStartup  method called in 
the  Program  class, which means you can specify a different class name if you prefer.  

 In this section, I start with the simplest possible  Startup  class and add features to demonstrate the 
effect of different configuration options, ending up with a configuration that is suitable for most MVC 
projects. As the starting point, Listing  14-8  shows the  Startup  class that Visual Studio adds to  Empty  projects, 
which sets up just enough functionality to get ASP.NET to handle HTTP requests.     



CHAPTER 14 ■ CONFIGURING APPLICATIONS

384

     Listing 14-8.    The Initial Contents of the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 

   namespace ConfiguringApps { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 
             loggerFactory.AddConsole(); 

               if (env.IsDevelopment()) { 
                 app.UseDeveloperExceptionPage(); 
             } 

               app.Run(async (context) => { 
                 await context.Response.WriteAsync("Hello World!"); 
             }); 
         } 
     } 
 } 

    The  Startup  class defines two methods,  ConfigureServices  and  Configure , that set up the shared 
features required by an application and tell ASP.NET how they should be used. I explain how these methods 
work in the following sections. The default  Startup  class contains just enough functionality to respond to 
HTTP requests with a simple message, which you can see by starting the application, as shown in Figure  14-1 .  

  Figure 14-1.    Starting the application with the default Startup class       

 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

385

     Understanding How the Startup Class Is Used 
 When the application starts, ASP.NET creates a new instance of the  Startup  class and calls its 
 ConfigureServices  method so that the application can create its  services . As I explain in the “Understanding 
ASP.NET Services” section, services are objects that provide functionality to other parts of the application. 
This is a vague description, but that’s because services can be used to provide just about any functionality. 

 Once the services have been created, ASP.NET calls the  Configure  method. The purpose of the 
 Configure  method is to set up the  request pipeline , which is the set of components—known as  middleware —
that are used to handle incoming HTTP requests and produce responses for them. I explain how the request 
pipeline works and demonstrate how to create middleware components in the “Understanding ASP.NET 
Middleware” section. Figure  14-2  shows the way that ASP.NET uses the  Startup  class.  

 It isn’t especially useful to have a  Startup  class that just returns the same “Hello, World” message for 
all requests, so before I explain what the methods in the class do in detail, I need to jump ahead a little and 
enable MVC, as shown in Listing  14-9 . 

      Listing 14-9.    Enabling MVC in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 

   namespace ConfiguringApps { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 

                app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

    With these additions—which I explain in the sections that follow—there is enough infrastructure 
in place to process HTTP requests and generate responses using controllers and views. If you run the 
application, you will see the output shown in Figure  14-3 .  

  Figure 14-2.    How ASP.NET uses the Startup class to configure an application       

 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

386

 Notice that the content is not styled. The minimal configuration in Listing  14-9  doesn’t provide any 
support for serving up static content, such as CSS stylesheets and JavaScript files, so the  link  element in 
the HTML rendered by the  Index.cshtml  view produces a request for the Bootstrap CSS stylesheet that the 
application can’t process, which prevents the browser from getting the style information it required. I fix this 
problem in the “Adding the Remaining Middleware” section.  

     Understanding ASP.NET Services 
    ASP.NET calls the  Startup.ConfigureServices  method so that the application can set up the  services  it 
requires. The term  service  refers to any object that provides functionality to other parts of the application. 
As noted, this is a vague description because services can do  anything  that your application requires. As an 
example, I added an  Infrastructure  folder to the project and added to it a class file called  UptimeService.
cs , which I used to define the class shown in Listing  14-10 . 

     Listing 14-10.    The Contents of the UptimeService.cs File in the Infrastructure Folder   

  using System.Diagnostics; 

   namespace ConfiguringApps.Infrastructure { 

       public class UptimeService { 
         private Stopwatch timer; 

           public UptimeService() { 
             timer = Stopwatch.StartNew(); 
         } 

           public long Uptime => timer.ElapsedMilliseconds; 
     } 
 } 

    When this class is created, its constructor starts a timer that keeps track of how long the application has 
been running. This is a nice example of a service because it provides functionality that can be used in the 
rest of the application and it benefits from being created when the application is started. 

 ASP.NET services are registered using the  ConfigureServices  method of the  Startup  class, and in 
Listing  14-11 , you can see how I have registered the  UptimeService  class. 

  Figure 14-3.    The effect of enabling MVC       

 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

387

      Listing 14-11.    Registering a Custom Service in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
  using ConfiguringApps.Infrastructure;  

   namespace ConfiguringApps { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddSingleton<UptimeService>();  
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 

               app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    As its argument, the  ConfigureServices  method receives an object that implements the  IServiceCollection  
interface. Services are registered using extension methods called on the  IServiceCollection  that specify 
different configuration options. I describe the options available for creating services in Chapter   18    , but for 
the moment, I have used the  AddSingleton  method, which means that a single  UptimeService  object will be 
shared throughout the application. 

 Services are closely related to a feature called  dependency injection , which allows components such as 
controllers to easily obtain services and which I describe in depth in Chapter   18    . Services registered in the 
 Startup.ConfigureServices  method can be accessed by creating a constructor that accepts an argument of 
the service type you require. Listing  14-12  shows the constructor I added to the  Home  controller to access the 
shared  UptimeService  object that I created in Listing  14-11 . I have also updated the controller’s  Index  action 
method so that it includes the value of the service’s  Update  property in the view data it produces. 

     Listing 14-12.    Accessing a Service in the HomeController.cs File   

  using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc; 
  using ConfiguringApps.Infrastructure;  

   namespace ConfiguringApps.Controllers { 

       public class HomeController : Controller { 
          private UptimeService uptime;  

            public HomeController(UptimeService up) {  
              uptime = up;  
          }  

http://dx.doi.org/10.1007/978-1-4842-0397-2_18
http://dx.doi.org/10.1007/978-1-4842-0397-2_18


CHAPTER 14 ■ CONFIGURING APPLICATIONS

388

           public ViewResult Index() 
             => View(new Dictionary<string, string> { 
                 ["Message"] = "This is the Index action", 
                  ["Uptime"] = $"{uptime.Uptime}ms"  
             }); 
     } 
 } 

    When MVC needs an instance of the  Home  controller class to handle an HTTP request, it inspects the 
 HomeController  constructor and finds that it requires an  UptimeService  object. MVC then inspects the set 
of services that have been configured in the  Startup  class, finds that  UptimeService  has been configured 
so that a single  UptimeService  object is used for all requests, and passes that object as the constructor 
argument when the  HomeController  is created. 

 Services can be registered and consumed in more complex ways, but this example demonstrates the 
central idea behind services and shows how defining a service in the  Startup  class allows you to define 
functionality or data that be used throughout an application. 

 If you run the application and request the default URL, you will see a response that includes the number 
of milliseconds since the application has started, which is obtained from the  UptimeService  object that was 
created in the  Startup  class, as illustrated in Figure  14-4 .  

 Each time a request for the default URL is received, MVC creates a new  HomeController  object and 
provides it with the shared  UptimeService  object as a constructor argument. This allows the  Home  controller 
access to the application’s uptime without being concerned about how this information is provided or 
implemented. 

   Understanding the MVC Services 
 A package as complex as MVC uses many services; some are for its internal use, and others offer 
functionality to developers. Packages define extension methods that set up all the services they require in a 
single method call. For MVC, this method is called  AddMvc , and it is one of the two methods I added to the 
 Startup  class to get MVC working. 

   ... 
 public void ConfigureServices(IServiceCollection services) { 
     services.AddSingleton<UptimeService>(); 
      services.AddMvc();  
 } 
 ... 

  Figure 14-4.    Using a simple service       

 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

389

   This method sets up every service that MVC needs without filling up the  ConfigureServices  method 
with an enormous list of individual services. 

 ■   Note   The Visual Studio IntelliSense feature will show you a long list of other extension methods that you 
can call on the  IServiceCollection  object in the  ConfigureServices  method. Some of these methods, such 
as  AddSingleton  and  AddScoped , are used to register services in different ways. The other methods, such as 
 AddRouting  or  AddCors , add individual services that are already applied by the  AddMvc  method. The result is 
that for most applications, the  ConfigureServices  method contains a small number of custom services, the 
call to the  AddMvc  method, and, optionally, some statements to configure the built-in services, which I describe 
in the “Configuring MVC Services” section.    

     Understanding ASP.NET Middleware 
       In ASP.NET Core,  middleware  is the term used for the components that are combined to form the  request 
pipeline . The request pipeline is arranged like a chain, and when a new request arrives, it is passed to the 
first middleware component in the chain. This component inspects the request and decides whether to 
handle it and generate a response or to pass it on to the next component in the chain. Once a request has 
been handled, the response that will be returned to the client is passed back along the chain, which allows 
all of the earlier components to inspect or modify it. 

 The way that middleware components work may seem a little odd, but it allows for a lot of flexibility in 
the way that applications are put together. Understanding how the use of middleware shapes an application 
can be important, especially if you are not getting the responses you expect. To explain how the middleware 
system works, I am going to create some custom components that demonstrate each of the four types of 
middleware that you will encounter. 

   Creating Content-Generating Middleware 
  The most important type of middleware generates content for clients, and it is this category to which MVC 
belongs. To create a content-generating middleware component without the complexity of MVC, I added a 
class called  ContentMiddleware.cs  to the  Infrastructure  folder and used it to define the class shown in 
Listing  14-13 . 

     Listing 14-13.    The Contents of the ContentMiddleware.cs File in the Infrastructure Folder   

  using System.Text; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Http; 

   namespace ConfiguringApps.Infrastructure { 

       public class ContentMiddleware { 
         private RequestDelegate nextDelegate; 

           public ContentMiddleware(RequestDelegate next) { 
             nextDelegate = next; 
         } 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

390

           public async Task Invoke(HttpContext httpContext) { 
             if (httpContext.Request.Path.ToString().ToLower() == "/middleware") { 
                 await httpContext.Response.WriteAsync( 
                     "This is from the content middleware", Encoding.UTF8); 
             } else { 
                 await nextDelegate.Invoke(httpContext); 
             } 
         } 
     } 
 } 

    Middleware components don’t implement an interface or derive from a common base class. Instead, 
they define a constructor that takes a  RequestDelegate  object and define an  Invoke  method. The 
 RequestDelegate  object represents the next middleware component in the chain, and the  Invoke  method is 
called when ASP.NET receives an HTTP request. 

 Information about the HTTP request and the response that will be returned to the client is provided 
through the  HttpContext  argument to the  Invoke  method. I describe the  HttpContext  class and its 
properties in Chapter   17    , but for this chapter, it is enough to know that the  Invoke  method in Listing  14-13  
inspects the HTTP request and checks to see whether the request has been sent to the  /middleware  URL. If 
it has, then a simple text response is sent to the client; if a different URL has been used, then the request is 
forwarded to the next component in the chain. 

 The request pipeline is set up inside the  Configure  method of the  Startup  class. In Listing  14-14 , I have 
removed MVC methods from the example application and used the  ContentMiddleware  class as the sole 
component in the pipeline. 

     Listing 14-14.    Using a Custom Content Generating Middleware Component in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using ConfiguringApps.Infrastructure; 

   namespace ConfiguringApps { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<UptimeService>(); 
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 
              app.UseMiddleware<ContentMiddleware>();  
         } 
     } 
 } 

http://dx.doi.org/10.1007/978-1-4842-0397-2_17


CHAPTER 14 ■ CONFIGURING APPLICATIONS

391

    Custom middleware components are registered with the  UseMiddleware  extension method within the 
 Configure  method. The  UseMiddleware  method uses a type parameter to specify the middleware class. This 
so that ASP.NET Core can build up a list of all the middleware components that are going to be used and 
then instantiate them to create the chain. If you run the application and request the  /middleware  URL, you 
will see the result shown in Figure  14-5 .  

 Figure  14-6  illustrates the middleware pipeline that I created using the  ContentMiddleware  class. When 
ASP.NET Core receives an HTTP request, it passes it to the only middleware component registered in the 
 Startup  class. If the URL is  /middleware , then the component generates a result, which is returned to ASP.
NET Core and sent to the client.  

 If the URL isn’t  /middleware , then the  ContentMiddleware  class passes on the request to the next 
component in the chain. Since there is no other component, the request reaches a backstop handler provided 
by ASP.NET Core when it creates the pipeline, which sends the request back along the pipeline in the other 
direction (a process that will make more sense once you see how the other types of middleware work). 

   Using Services in Middleware 

 It isn’t just controllers that can use services that have been set up in the  ConfigureServices  method. 
ASP.NET inspects the constructors of middleware classes and uses services to provide values for any 
arguments that have been defined. In Listing  14-15 , I have added an argument to the constructor of the 
 ContentMiddleware  class, which tells ASP.NET that it requires an  UptimeService  object. 

  Figure 14-5.    Generating content from a custom middleware component       

  Figure 14-6.    The example middleware pipeline       

 

 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

392

     Listing 14-15.    Using a Service in the ContentMiddleware.cs File   

  using System.Text; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Http; 

   namespace ConfiguringApps.Infrastructure { 

       public class ContentMiddleware { 
         private RequestDelegate nextDelegate; 
          private UptimeService uptime;  

            public ContentMiddleware(RequestDelegate next, UptimeService up) {  
             nextDelegate = next; 
              uptime = up;  
         } 

           public async Task Invoke(HttpContext httpContext) { 
             if (httpContext.Request.Path.ToString().ToLower() == "/middleware") { 
                 await httpContext.Response.WriteAsync( 
                      "This is from the content middleware "+  
                          $"(uptime: {uptime.Uptime}ms)",  Encoding.UTF8);  
             } else { 
                 await nextDelegate.Invoke(httpContext); 
             } 
         } 
     } 
 } 

    Being able to use services means that middleware components can share common functionality and 
avoid code duplication.   

   Creating Short-Circuiting Middleware 
 The next type of middleware intercepts requests before they reach the content generation components in 
order to  short-circuit  the pipeline process, often for performance purposes. Listing  14-16  shows the contents 
of a class file called  ShortCircuitMiddleware.cs  that I added to the  Infrastructure  folder. 

     Listing 14-16.    The Contents of the ShortCircuitMiddleware.cs File in the Infrastructure Folder   

  using System.Linq; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Http; 

   namespace ConfiguringApps.Infrastructure { 

       public class ShortCircuitMiddleware { 
         private RequestDelegate nextDelegate; 

           public ShortCircuitMiddleware(RequestDelegate next) { 
             nextDelegate = next; 
         } 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

393

           public async Task Invoke(HttpContext httpContext) { 
             if (httpContext.Request.Headers["User-Agent"] 
                     .Any(h => h.ToLower().Contains("edge"))) { 
                 httpContext.Response.StatusCode = 403; 
             } else { 
                 await nextDelegate.Invoke(httpContext); 
             } 
         } 
     } 
 } 

    This middleware component inspects the request’s  User-Agent  header, which is used by browsers to 
identify themselves. Using the  User-Agent  header to identify specific browsers isn’t reliable enough to use in 
a real application, but it is sufficient for this example. 

 The term  short-circuiting  is used because this type of middleware doesn’t always forward requests to the 
next component in the chain. In this case, if the  User-Agent  header contains the term  edge , the component 
sets the status code to  403 – Forbidden  and doesn’t forward the request to the next component. Since the 
request is being rejected, there is no point in allowing the request to be handled by other components, which 
would needlessly consume system resources. Instead, the request handling is terminated early, and the 403 
response is sent to the client. 

 Middleware components receive requests in the order in which they are set up in the  Startup  class, 
which means that short-circuiting middleware must be set up before content-generating middleware, as 
shown in Listing  14-17 . 

     Listing 14-17.    Registering Short-Circuiting Middleware in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using ConfiguringApps.Infrastructure; 

   namespace ConfiguringApps { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<UptimeService>(); 
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 
              app.UseMiddleware<ShortCircuitMiddleware>();  
             app.UseMiddleware<ContentMiddleware>(); 
         } 
     } 
 } 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

394

    If you run the application and request any URL using the Microsoft Edge browser, then you will see the 403 
error. Requests from other browsers are ignored by the  ShortCircuitMiddleware  component and are passed on 
to the next component in the chain, which means that a response will be generated when the requested URL is  /
middleware . Figure  14-7  shows the addition of the short-circuiting component to the middleware pipeline.   

   Creating Request-Editing Middleware 
 The next type of middleware component examines doesn’t generate a response. Instead, it changes requests 
before they reach other components later in the chain. The kind of middleware is mainly used for platform 
integration to enrich the ASP.NET Core representation of an HTTP request with platform-specific features. 
It can also be used to prepare requests so that they are easier to process by subsequent components. As a 
demonstration, I added the  BrowserTypeMiddleware.cs  file to the  Infrastructure  folder and used it to 
define the middleware component shown in Listing  14-18 . 

     Listing 14-18.    The Contents of the BrowserTypeMiddleware.cs File in the Infrastructure Folder   

  using System.Linq; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Http; 

   namespace ConfiguringApps.Infrastructure { 

       public class BrowserTypeMiddleware { 
         private RequestDelegate nextDelegate; 

           public BrowserTypeMiddleware(RequestDelegate next) { 
             nextDelegate = next; 
         } 

           public async Task Invoke(HttpContext httpContext) { 
             httpContext.Items["EdgeBrowser"] 
                 = httpContext.Request.Headers["User-Agent"] 
                     .Any(v => v.ToLower().Contains("edge")); 
             await nextDelegate.Invoke(httpContext); 
         } 
     } 
 } 

  Figure 14-7.    Adding a short-circuiting component to the middleware pipeline       

 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

395

    This component inspects the  User-Agent  header of the request and looks for the term  edge , which 
suggests that the request may have been made using the Edge browser. The  HttpContext  object provides a 
dictionary through the  Items  property that is used to pass data between components, and the outcome of 
the header search is stored with the key  EdgeBrowser . To demonstrate how middleware components can 
cooperate, Listing  14-19  shows the  ShortCircuitMiddleware  class, which rejects requests when they are 
from Edge, making its decision based on the data produced by the  BrowserTypeMiddleware  component. 

     Listing 14-19.    Cooperating with Another Component in the ShortCircuitMiddleware.cs File   

  using System.Linq; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Http; 

   namespace ConfiguringApps.Infrastructure { 

       public class ShortCircuitMiddleware { 
         private RequestDelegate nextDelegate; 

           public ShortCircuitMiddleware(RequestDelegate next) { 
             nextDelegate = next; 
         } 

           public async Task Invoke(HttpContext httpContext) { 
              if (httpContext.Items["EdgeBrowser"] as bool? == true) {  
                 httpContext.Response.StatusCode = 403; 
             } else { 
                 await nextDelegate.Invoke(httpContext); 
             } 
         } 
     } 
 } 

    By their nature, middleware components that edit requests need to be placed before those components 
that they cooperate with or that rely on the changes they make. In Listing  14-20 , I have registered the 
 BrowserTypeMiddleware  class as the first component in the pipeline. 

     Listing 14-20.    Registering a Request-Editing Middleware Component in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using ConfiguringApps.Infrastructure; 

   namespace ConfiguringApps { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<UptimeService>(); 
         } 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

396

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 
              app.UseMiddleware<BrowserTypeMiddleware>();  
             app.UseMiddleware<ShortCircuitMiddleware>(); 
             app.UseMiddleware<ContentMiddleware>(); 
         } 
     } 
 } 

    Placing the component at the start of the pipeline ensures that the request has already been modified 
before it is received by the other components, as shown in Figure  14-8 .   

   Creating Response-Editing Middleware 
 The final type of middleware operates on the responses generated by other components in the pipeline. This 
is useful for logging details of requests and their responses or for dealing with errors. Listing  14-21  shows the 
contents of the  ErrorMiddleware.cs  file, which I added to the  Infrastructure  folder to demonstrate this 
type of middleware component. 

     Listing 14-21.    The Contents of the ErrorMiddleware.cs File in the Infrastructure Folder   

  using System.Text; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Http; 

   namespace ConfiguringApps.Infrastructure { 

       public class ErrorMiddleware { 
         private RequestDelegate nextDelegate; 

           public ErrorMiddleware(RequestDelegate next) { 
             nextDelegate = next; 
         } 

           public async Task Invoke(HttpContext httpContext) { 
             await nextDelegate.Invoke(httpContext); 

               if (httpContext.Response.StatusCode == 403) { 

  Figure 14-8.    Adding a response-editing component to the middleware pipeline       

 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

397

                 await httpContext.Response 
                     .WriteAsync("Edge not supported", Encoding.UTF8); 
             } else if (httpContext.Response.StatusCode == 404) { 
                 await httpContext.Response 
                     .WriteAsync("No content middleware response", Encoding.UTF8); 
             } 
         } 
     } 
 } 

    The component isn’t interested in a request until it has made its way through the middleware pipeline 
and a response has been generated. If the response status code is 403 or 404, then the component adds a 
descriptive message to the response. All other responses are ignored. Listing  14-22  shows the registration of 
the component class in the  Startup  class. 

 ■   Tip   You may be wondering where the  404 – Not Found  status code comes from since it isn’t set by any 
of the three middleware components I have created. The answer is that this is how the response is configured 
by ASP.NET when the request enters the pipeline and is the result returned to the client if no middleware 
component changes the response.  

     Listing 14-22.    Registering a Response-Editing Middleware Component in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using ConfiguringApps.Infrastructure; 

   namespace ConfiguringApps { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<UptimeService>(); 
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 
              app.UseMiddleware<ErrorMiddleware>();  
             app.UseMiddleware<BrowserTypeMiddleware>(); 
             app.UseMiddleware<ShortCircuitMiddleware>(); 
             app.UseMiddleware<ContentMiddleware>(); 
         } 
     } 
 } 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

398

    I registered the  ErrorMiddleware  class so that it occupies the first position in the pipeline. This may 
seem odd for a component that is interested only in responses, but registering the component at the start of 
the chain ensures that it is able to inspect the responses generated by any other component, as illustrated 
in Figure  14-9 . If this component is placed later in the pipeline, then it will only be able to inspect responses 
generated by some of the other components.  

 You can see the effect of the new middleware by starting the application and requesting any URL except 
 /middleware . The result will be the error message shown in Figure  14-10 .    

     Understanding How the Configure Method Is Invoked 
 The ASP.NET Core platform inspects the  Configure  method before it is invoked and gets a list of its 
arguments, which it provides using the services set up in the  ConfigureServices  method or using the 
special services shown in Table  14-7 .  

    Table 14-7.    The Special Services Available As Configure Method Arguments   

 Type  Description 

  IApplicationBuilder   This interface defines the functionality required to set up an 
application’s middleware pipeline. 

  IHostingEnvironment   This interface defines the functionality required to differentiate between 
different types of environment, such as development and production. 

  ILoggerFactory   This interface defines the functionality required to set up request 
logging. 

  Figure 14-9.    Adding a response-editing component to the middleware pipeline       

  Figure 14-10.    Editing the responses of other middleware components       

 

 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

399

   Using the Application Builder 
 Although you don’t have to define any arguments at all for the  Configure  method, most  Startup  classes will 
use at least the  IApplicationBuilder  interface because it allows the middleware pipeline to be created, as 
demonstrated earlier in the chapter. For custom middleware components, the  UseMiddleware  extension 
method is used to register classes. Complex content-generating middleware packages provide a single 
method that sets up all of their middleware components in a single step, just like they provide a single 
method for defining the services they use. In the case of MVC, two extension methods are available, as 
described in Table  14-8 .  

 Routing is the process by which request URLs are mapped to controllers and actions are defined by 
the application; I describe routing in detail in Chapters   15     and   16    . The  UseMvcWithDefaultRoute  method 
is useful for getting started with MVC development, but most applications call the  UseMvc  method, even 
if the result is to explicitly define the same routing configuration that would have been created by the 
 UseMvcWithDefaultRoute  method, as shown in Listing  14-23 . This makes the routing configuration used 
by the application obvious to other developers and makes it easy to add new routes later (which almost all 
applications require at some point). 

     Listing 14-23.    Setting Up the MVC Middleware Components in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using ConfiguringApps.Infrastructure; 

   namespace ConfiguringApps { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<UptimeService>(); 
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 
             app.UseMiddleware<ErrorMiddleware>(); 
             app.UseMiddleware<BrowserTypeMiddleware>(); 
             app.UseMiddleware<ShortCircuitMiddleware>(); 
             app.UseMiddleware<ContentMiddleware>(); 

   Table 14-8.    The MVC IApplicationBuilder Extension Methods   

 Name  Description 

  UseMvcWithDefaultRoute   This method sets up the MVC middleware components with the default 
route. 

  UseMvc   This method sets up the MVC middleware components using a custom 
routing configuration specified using a lambda expression. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_15
http://dx.doi.org/10.1007/978-1-4842-0397-2_16


CHAPTER 14 ■ CONFIGURING APPLICATIONS

400

              app.UseMvc(routes => {  
                  routes.MapRoute(  
                      name: "default",  
                      template: "{controller=Home}/{action=Index}/{id?}");  
              });  
         } 
     } 
 } 

    Since MVC sets up content-generating middleware components, the  UseMvc  method is called after all 
the other middleware components have been registered. To prepare the services that MVC depends on, the 
 AddMvc  method must be called in the  ConfigureServices  method.  

   Using the Hosting Environment 
       The  IHostingEnvironment  interface provides some basic—but important—information about the hosting 
environment in which the application is running using the properties described in Table  14-9 .  

 The  ContentRootPath  and  WebRootPath  properties are interesting but not needed in most applications 
because there is a built-in middleware component that can be used to deliver static content, as described in 
the “Enabling Static Content” section later in this chapter. 

 The important property is  EnvironmentName , which allows the configuration of the application to be 
modified based on the environment in which it is running. There are three conventional environments 
( development ,  staging , and  production ), and each represents a commonly used environment. 

 The current hosting environment is set using an environment variable called  ASPNETCORE_ENVIRONMENT . 
To set the environment variable, select ConfiguringApps Options from the Visual Studio Project menu 
and switch to the Debug tab. Double-click the Value field for the environment variable, which is set to 
Development by default, and change it to Staging, as shown in Figure  14-11 . Save your changes to have the 
new environment name take effect.  

   Table 14-9.    The IHostingEnvironment Properties   

 Name  Description 

  ApplicationName   This property returns the name of the application, which is set by the 
hosting platform. 

  EnvironmentName   This property returns a  string  that describes the current environment, 
as described after this table. 

  ContentRootPath   This property returns the path that contains the application’s content 
files and configuration files. 

  WebRootPath   This property returns a string that specifies the directory that contains 
the static content for the application. This is usually the  wwwroot  folder. 

  ContentRootFileProvider   This property returns an object that implements the  Microsoft.
AspNetCore.FileProviders.IFileProvider  interface and that can 
be used to read files from the folder specified by the  ContentRootPath  
property. 

  WebRootFileProvider   This property returns an object that implements the  Microsoft.
AspNetCore.FileProviders.IFileProvider  interface and that can be 
used to read files from the folder specified by the  WebRootPath  property. 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

401

 ■   Tip   Environment names are not case-sensitive, so  Staging  and  staging  are treated as the same 
environment. Although  development ,  staging , and  production  are the conventional environments, you can use 
any name you like. This can be useful if there are multiple developers on a project and each requires different 
configuration settings, for example. See the “Dealing with Complex Configurations” section later in the chapter 
for details on how to deal with complex differences between environment configurations.  

 Within the  Configure  method, you can determine which hosting environment is being used by reading 
the  IHostingEnvironment.EnvironmentName  property or using one of the extension methods that operate 
on  IHostingEnvironment  objects, as described in Table  14-10 .  

 The extension methods are used to alter the set of middleware components in the pipeline to tailor the 
behavior of the application to different hosting environments. In Listing  14-24 , I use one of the extension 
methods to ensure that the custom middleware components created earlier in the chapter are only present 
in the pipeline in the  Development  hosting environment. 

   Table 14-10.    IHostingEnvironment Extension Methods   

  Name   Description 

  IsDevelopment()   This method returns  true  if the hosting environment name is  Development . 

  IsStaging()   This method returns  true  if the hosting environment name is  Staging . 

  IsProduction()   This method returns  true  if the hosting environment name is  Production . 

  IsEnvironment(env)   This method returns  true  if the hosting environment name matches the 
 env  argument. 

  Figure 14-11.    Setting the name of the hosting environment       

 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

402

     Listing 14-24.    Using the Hosting Environment in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using ConfiguringApps.Infrastructure; 

   namespace ConfiguringApps { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<UptimeService>(); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 
              if (env.IsDevelopment()) {  
                  app.UseMiddleware<ErrorMiddleware>();  
                  app.UseMiddleware<BrowserTypeMiddleware>();  
                  app.UseMiddleware<ShortCircuitMiddleware>();  
                  app.UseMiddleware<ContentMiddleware>();  
              }  
             app.UseMvc(routes => { 
                 routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}/{id?}"); 
             }); 
         } 
     } 
 } 

    The three custom middleware components won’t be added to the pipeline with the current configuration, 
which has set the hosting environment to  Staging . If you run the application and request the  /middleware  
URL, you will receive a  404 – Not Found  error because the only middleware components available are the 
ones set up by the  UseMvc  method, which have no controllers available that can process this URL. 

 ■   Note   Once you have tested the effect of changing the hosting environment, be sure to change it back to 
 Development ; otherwise, the examples in the rest of the chapter won’t work properly.   

   Using the Logging Factory 
       The  ILoggerFactory  interface is used to configure logging in the application so that individual components 
can provide diagnostic information. In the  Startup  class, the  Configure  method is used to specify where 
logging information will be sent and how much logging details is required. To provide access to the logging 
functionality, I added a new package to the project, as shown in Listing  14-25 . 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

403

     Listing 14-25.    Adding the Logging Packages in the project.json File   

 ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
   "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
    "Microsoft.Extensions.Logging.Debug": "1.0.0",  
   "Microsoft.AspNetCore.StaticFiles": "1.0.0", 
   "Microsoft.AspNetCore.Mvc": "1.0.0", 
   "Microsoft.VisualStudio.Web.BrowserLink.Loader": "14.0.0", 
   "Microsoft.AspNetCore.Razor.Tools": { 
     "version": "1.0.0-preview2-final", 
     "type": "build" 
   } 
 }, 
 ... 

   Listing  14-26  shows a basic logging configuration that is suitable for development projects. (What’s 
missing in this example is the fine-tuning provided by an external configuration file, which I demonstrate 
later in this chapter.) 

     Listing 14-26.    Configuring Logging in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using ConfiguringApps.Infrastructure; 

   namespace ConfiguringApps { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<UptimeService>(); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 

                loggerFactory.AddConsole(LogLevel.Debug);  
              loggerFactory.AddDebug(LogLevel.Debug);  

               if (env.IsDevelopment()) { 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

404

                 app.UseMiddleware<ErrorMiddleware>(); 
                 app.UseMiddleware<BrowserTypeMiddleware>(); 
                 app.UseMiddleware<ShortCircuitMiddleware>(); 
                 app.UseMiddleware<ContentMiddleware>(); 
             } 

               app.UseMvc(routes => { 
                 routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}/{id?}"); 
             }); 
         } 
     } 
 } 

    The  ILoggerFactory  argument to the  Configure  method provides the object needed to configure the 
logging system. The main task when setting up logging is to specify where logging messages are going to be 
sent, which is what the  AddConsole  and  AddDebug  methods are for. The  AddConsole  method sends logging 
messages to the console, which is useful if you are running the application from the command line using 
Kestrel, as described earlier in the chapter. The  AddDebug  method sends logging messages to the Visual 
Studio Output window when the application is running under the debugger. These two statements are useful 
for getting logging information during development. 

 ■   Tip   Sending debugging messages to the console or the Output window are not the only options. There are 
also options available for using the event log and for using third-party logging packages such as NLog. Add 
the  Microsoft.Extensions.Logging.EventLog  or  Microsoft.Extensions.Logging.NLog  package to the 
application and call the  AddEventLog  or  AddNLog  method, respectively, on the  ILoggerFactory  object in the 
 Configure  method.  

 The ASP.NET Core logging system defines six levels of debugging information, as described in Table  14-11  
in order of importance.  

    Table 14-11.    The ASP.NET Debugging Levels   

 Level  Description 

  Trace    This level is used for messages that are useful during development but that are 
not required in production. 

  Debug    This level is used for detailed messages required by developers to debug 
problems. 

  Information    This level is used for messages that describe the general operation of the 
application. 

  Warning    This level is used for messages that describe events that are unexpected but that 
do not interrupt the application. 

  Error    This level is used for messages that describe errors that interrupt the application. 

  Critical    This level is used for messages that describe catastrophic failures. 

  None    This level is used to disable logging messages. 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

405

 To enable all the messages, I specified the  LogLevel.Debug  value as the argument to the  AddConsole  
and  AddDebug  methods. To see the effect of enabling logging, start the application using the Visual Studio 
debugger and look in the Visual Studio Output window, where you will see logging messages that describe 
how each HTTP request is handled, like this: 

   Microsoft.AspNetCore.Hosting.Internal.WebHost:Information: Request starting HTTP/1.1 GET 
http://localhost:5000/   
 Microsoft.AspNetCore.Routing.RouteBase:Debug: Request successfully matched the route with 
name 'default' and template '{controller=Home}/{action=Index}/{id?}'. 
 Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker:Debug: Executing action 
ConfiguringApps.Controllers.HomeController.Index (ConfiguringApps) 
 Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker:Information: Executing action 
method ConfiguringApps.Controllers.HomeController.Index (ConfiguringApps) with arguments () 
- ModelState is Valid 
 Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker:Debug: Executed action method 
ConfiguringApps.Controllers.HomeController.Index (ConfiguringApps), returned result 
Microsoft.AspNetCore.Mvc.ViewResult. 
 Microsoft.AspNetCore.Mvc.Razor.RazorViewEngine:Debug: View lookup cache hit for view 'Index' 
in controller 'Home'. 
 Microsoft.AspNetCore.Mvc.ViewFeatures.Internal.ViewResultExecutor:Debug: The view 'Index' 
was found. 
 Microsoft.AspNetCore.Mvc.ViewFeatures.Internal.ViewResultExecutor:Information: Executing 
ViewResult, running view at path /Views/Home/Index.cshtml. 
 Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker:Information: Executed action 
ConfiguringApps.Controllers.HomeController.Index (ConfiguringApps) in 8.9685ms 
 Microsoft.AspNetCore.Hosting.Internal.WebHost:Information: Request finished in 16.886ms 200 
text/html; charset=utf-8 
 Microsoft.AspNetCore.Server.Kestrel:Debug: Connection id "0HKT5D0EU8D4U" completed keep 
alive response. 
 Microsoft.AspNetCore.Hosting.Internal.WebHost:Information: Request starting HTTP/1.1 GET 
http://localhost:5000/lib/bootstrap/dist/css/bootstrap-theme.min.css 
 Microsoft.AspNetCore.Builder.RouterMiddleware:Debug: Request did not match any routes. 
 Microsoft.AspNetCore.Hosting.Internal.WebHost:Information: Request starting HTTP/1.1 GET 
http://localhost:5000/lib/bootstrap/dist/css/bootstrap.min.css   
 Microsoft.AspNetCore.Hosting.Internal.WebHost:Information: Request finished in 48.4602ms 404 
 Microsoft.AspNetCore.Builder.RouterMiddleware:Debug: Request did not match any routes. 
 Microsoft.AspNetCore.Server.Kestrel:Debug: Connection id "0HKT5D0EU8D4V" completed keep 
alive response. 
 Microsoft.AspNetCore.Hosting.Internal.WebHost:Information: Request finished in 85.0848ms 404 
 Microsoft.AspNetCore.Server.Kestrel:Debug: Connection id "0HKT5D0EU8D50" completed keep 
alive response. 

     Creating Custom Log Entries 

 The log messages created by the built-in ASP.NET Core and MVC components are useful, but you can 
provide more tailored insights into how your application works by creating your own log entries. There are 
two steps to writing a log message: getting a logger object and writing the message. Listing  14-27  shows the 
 Home  controller with support for logging. 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

406

     Listing 14-27.    Creating Custom Log Entries in the HomeController.cs File   

  using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc; 
 using ConfiguringApps.Infrastructure; 
  using Microsoft.Extensions.Logging;  

   namespace ConfiguringApps.Controllers { 

       public class HomeController : Controller { 
         private UptimeService uptime; 
          private ILogger<HomeController> logger;  

            public HomeController(UptimeService up, ILogger<HomeController> log) {  
             uptime = up; 
              logger = log;  
         } 

            public ViewResult Index() {  

                logger.LogDebug($"Handled {Request.Path} at uptime {uptime.Uptime}");  

                return View(new Dictionary<string, string> {  
                 ["Message"] = "This is the Index action", 
                 ["Uptime"] = $"{uptime.Uptime}ms" 
             }); 
         } 
     } 
 } 

    The  ILogger  interface defines the functionality required to create log entries and to obtain an object 
that implements this interface, and the  HomeController  class has a constructor argument whose type is 
 ILogger<HomeController> . The type parameter allows the logging system to use the name of the class in the 
log messages, and the value for the constructor argument is provided automatically through the dependency 
injection feature that I describe in Chapter   18    . 

 Once you have an  ILogger , you can create log messages using extension methods defined in the 
 Microsoft.Extensions.Logging  namespace. There are methods for each of the logging levels described in 
Table  14-11 . The  HomeController  class uses the  LogDebug  method to create a message at the  Debug  level. To 
see the effect, run the application using the Visual Studio debugger and examine the Output window for the 
log message, like this: 

   ConfiguringApps.Controllers.HomeController:Debug: Handled / at uptime 19326 

   There are a lot of messages displayed when the application starts up, which can make it hard to pick 
out individual messages. It is easier to see single messages if you click the Clear All button at the top of the 
Output window and then reload the browser—this will ensure that only the log messages that relate to a 
single request are displayed.    

http://dx.doi.org/10.1007/978-1-4842-0397-2_18


CHAPTER 14 ■ CONFIGURING APPLICATIONS

407

     Adding the Remaining Middleware Components 
 There are a set of commonly used middleware components that are useful in most MVC projects and that I 
use in the examples in this book. In the sections that follow, I add these components to the request pipeline 
and explain how they work. 

   Enabling Exception Handling 
       Even the most carefully written application will encounter exceptions, and it is important to handle them 
appropriately. In Listing  14-28 , I have added middleware components that deal with exceptions to the 
request pipeline to the  Startup  class. 

     Listing 14-28.    Adding Exception-Handling Middleware in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using ConfiguringApps.Infrastructure; 

   namespace ConfiguringApps { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<UptimeService>(); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 

               loggerFactory.AddConsole(LogLevel.Debug); 
             loggerFactory.AddDebug(LogLevel.Debug); 

               if (env.IsDevelopment()) { 
                  app.UseDeveloperExceptionPage();  
                  app.UseStatusCodePages();  
             } else { 
                  app.UseExceptionHandler("/Home/Error");  
             } 

               app.UseMvc(routes => { 
                 routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}/{id?}"); 
             }); 
         } 
     } 
 } 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

408

    The  UseStatusCodePages  method adds descriptive messages to responses that contain no content, such as 
 404 - Not Found  responses, which can be useful since not all browsers show their own messages to the user. 

 The  UseDeveloperExceptionPage  methods sets up an error-handling middleware component that 
displays details of the exception in the response, including the exception trace. This isn’t information 
that should be displayed to users and so the call to  UseDeveloperExceptionPage  is made only in the 
development hosting environment, which is detected using the  IHostingEnvironmment  object. 

 For the staging or production environment, the  UseExceptionHandler  method is used instead. This 
method sets up an error handling that allows a custom error message to be displayed that won’t reveal the 
inner workings of the application. The argument to the  UseExceptionHandler  method is the URL that the 
client should be redirected to in order to receive the error message. This can be any URL provided by the 
application, but the convention is to use  /Home/Error . 

 In Listing  14-29 , I have added the ability to generate exceptions on demand to the  Index  action of 
the  Home  controller and have added an  Error  action so requests generated by the  UseExceptionHandler  
component can be processed. 

     Listing 14-29.    Generating and Handling Exceptions in the HomeController.cs File   

  using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc; 
 using ConfiguringApps.Infrastructure; 
 using Microsoft.Extensions.Logging; 

   namespace ConfiguringApps.Controllers { 

       public class HomeController : Controller { 
         private UptimeService uptime; 
         private ILogger<HomeController> logger; 

           public HomeController(UptimeService up, ILogger<HomeController> log) { 
             uptime = up; 
             logger = log; 
         } 

            public ViewResult Index(bool throwException = false) {  

                if (throwException) {  
                  throw new System.NullReferenceException();  
              }  

               logger.LogDebug($"Handled {Request.Path} at uptime {uptime.Uptime}"); 

               return View(new Dictionary<string, string> { 
                 ["Message"] = "This is the Index action", 
                 ["Uptime"] = $"{uptime.Uptime}ms" 
             }); 
         } 

            public ViewResult Error() {  
              return View("Index", new Dictionary<string, string> {  
                  ["Message"] = "This is the Error action"  
              });  
          }  
     } 
 } 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

409

    The changes to the  Index  action rely on the model binding feature, which I describe in Chapter   26    , 
to obtain a  throwException  value from the request. The action throws a  NullReferenceException  if 
 throwException  is  true  and executes normally if it is  false . 

 The  Error  action uses the  Index  view to display a simple message. You can see the effect of the different 
exception-handling middleware components by running the application and requesting the  /Home/
Index?throwException=true  URL. The query string provides the value for the  Index  action argument, 
and the response that you see will depend on the hosting environment name. Figure  14-12  shows the 
output produced by the  UseDeveloperExceptionPage  (for the  Development  hosting environment) and 
 UseExceptionHandler  middleware (for all other hosting environments).  

 The developer exception page provides details of the exception and options to explore its stack trace 
and the request that caused it. By contrast, the user exception page should be used simply to indicate that 
something has gone wrong.  

   Enabling Browser Link 
       I described the Browser Link feature in Chapter   6     and demonstrated how it can be used to manage browsers 
during development. The server-side part of Browser Link is implemented as a middleware component that 
must be added to the  Startup  class as part of the application configuration, without which the Visual Studio 
integration won’t work. Browser Link is useful only during development and should not be used in staging 
or production because it edits the responses generated by other middleware components to insert JavaScript 
code that opens HTTP connections back to the server side so that it can receive reload notifications. In 
Listing  14-30 , you can see how the  UseBrowserLink  method, which registers the middleware component, is 
called only for the  Development  hosting environment. 

     Listing 14-30.    Enabling Browser Link in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using ConfiguringApps.Infrastructure; 

   namespace ConfiguringApps { 

  Figure 14-12.    Handling exceptions in development and staging/production       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_26
http://dx.doi.org/10.1007/978-1-4842-0397-2_6


CHAPTER 14 ■ CONFIGURING APPLICATIONS

410

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<UptimeService>(); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 

               loggerFactory.AddConsole(LogLevel.Debug); 
             loggerFactory.AddDebug(LogLevel.Debug); 

               if (env.IsDevelopment()) { 
                 app.UseDeveloperExceptionPage(); 
                 app.UseStatusCodePages(); 
                  app.UseBrowserLink();  
             } else { 
                 app.UseExceptionHandler("/Home/Error"); 
             } 

               app.UseMvc(routes => { 
                 routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}/{id?}"); 
             }); 
         } 
     } 
 } 

       Enabling Static Content 
    The final middleware component that is useful for most projects provides access to the files in the  wwwroot  
folder so that applications can include images, JavaScript files, and CSS stylesheets. The  UseStaticFiles  
method adds a component that short-circuits the request pipeline for static files, as shown in Listing  14-31 . 

     Listing 14-31.    Enabling Static Content in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using ConfiguringApps.Infrastructure; 

   namespace ConfiguringApps { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<UptimeService>(); 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

411

             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 

               loggerFactory.AddConsole(LogLevel.Debug); 
             loggerFactory.AddDebug(LogLevel.Debug); 

               if (env.IsDevelopment()) { 
                 app.UseDeveloperExceptionPage(); 
                 app.UseStatusCodePages(); 
                 app.UseBrowserLink(); 
             } else { 
                 app.UseExceptionHandler("/Home/Error"); 
             } 
              app.UseStaticFiles();  
             app.UseMvc(routes => { 
                 routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}/{id?}"); 
             }); 
         } 
     } 
 } 

    Static content is typically required regardless of the hosting environment, which is why I call the 
 UseStaticFiles  section for all environments. This addition means that the  link  element in the  Index  view 
will work properly and allow the browser to load the Bootstrap CSS stylesheet. You can see the effect by 
starting the application, as shown in Figure  14-13 .    

  Figure 14-13.    Enabling static content       

 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

412

     Using Configuration Data 
    You can supplement the configuration in the  Startup  class with external configuration data, which allows 
the configuration to be changed without having to alter the code in the  Startup  class. The convention 
is to use the  Startup  class constructor to load the configuration data so that it can be accessed in the 
 ConfigureServices  and  Configure  methods when they are called. 

 Configuration data can be stored in JSON or XML files, read from the command line, or provided through 
environment variables. JSON is the preferred format for new ASP.NET Core projects, and the convention is 
to start with a file called  appsettings.json . To demonstrate, I added an  appsettings.json  file to the project 
using the ASP.NET Configuration File item template and added the settings shown in Listing  14-32 . 

 ■   Tip   The convention is to add configuration data to the  appsettings.json  file, but you can also create and 
use new configuration files if you have sufficient data that keeping it all in one file makes it difficult to manage.  

      Listing 14-32.    The Content of the appsettings.json File   

 { 
   "Logging": { 
     "IncludeScopes": false, 
     "LogLevel": { 
       "Default": "Debug", 
       "System": "Information", 
       "Microsoft": "Information" 
     } 
   }, 
   "ShortCircuitMiddleware": { 
     "EnableBrowserShortCircuit": true 
   } 
 } 

   ASP.NET Core configuration data consists of key/value pairs, which can be grouped into sections. In the 
 appsettings.json  file shown in the listing, there is a  Logging  section, which contains one key/value pair 
( IncludeScopes  is the key, and  false  is the value) and one section,  LogLevel . In turn, the  LogLevel  section 
contains three key/value pairs for which the keys are  Default ,  System , and  Microsoft . There is also a section 
called  ShortCircuitMiddleware  that contains a single key:  EnableBrowserShortCircuit . 

   Reading Configuration Data 
 ASP.NET Core provides a set of NuGet packages that are used to read configuration data from different 
sources, as described in Table  14-12 . Each package provides an extension method that I used to read 
configuration data.  



CHAPTER 14 ■ CONFIGURING APPLICATIONS

413

 To load the configuration data from the  appsetting.json  file, I need to add the core configuration 
package and the JSON package to the  project.json  file, as shown in Listing  14-33 . 

     Listing 14-33.    Adding Packages in the package.json File   

 ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
   "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
   "Microsoft.Extensions.Logging.Debug": "1.0.0", 
   "Microsoft.AspNetCore.StaticFiles": "1.0.0", 
   "Microsoft.AspNetCore.Mvc": "1.0.0", 
   "Microsoft.VisualStudio.Web.BrowserLink.Loader": "14.0.0", 
   "Microsoft.AspNetCore.Razor.Tools": { 
     "version": "1.0.0-preview2-final", 
     "type": "build" 
   }, 
    "Microsoft.Extensions.Configuration": "1.0.0",  
    "Microsoft.Extensions.Configuration.Json": "1.0.0"  
 }, 
 ... 

   To read the contents of the  appsettings.json  file, I added a constructor to the  Startup  class, as shown 
in Listing  14-34 , and used the  AddJsonFile  method to load the contents of the  appsettings.json  file. 

   Table 14-12.    The NuGet Packages for Reading Configuration Data   

 Name  Description 

  Microsoft.Extensions.Configuration   This package provides the core configuration data support 
and can be used to define settings programmatically, 
using the  AddInMemoryCollection  method. 

  Microsoft.Extensions.Configuration.Json   This package is used to read configuration data from JSON 
files using the  AddJsonFile  method. 

  Microsoft.Extensions.Configuration.
CommandLine  

 This package is used to read configuration data from the 
command line using the  AddCommandLine  method. 

  Microsoft.Extensions.Configuration.
EnvironmentVariables  

 This package is used to read configuration 
data from environment variables using the 
 AddEnvironmentVariables  method. 

  Microsoft.Extensions.Configuration.Ini   This package is used to read configuration data from INI 
files using the  AddIniFile  method. 

  Microsoft.Extensions.Configuration.Xml   This package is used to read configuration data from XML 
files using the  AddXmlFile  method. 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

414

     Listing 14-34.    Reading Configuration Data in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using ConfiguringApps.Infrastructure; 
  using Microsoft.Extensions.Configuration;  

   namespace ConfiguringApps { 

       public class Startup { 

            public Startup(IHostingEnvironment env) {  
              Configuration = new ConfigurationBuilder()  
                  .SetBasePath(env.ContentRootPath)  
                  .AddJsonFile("appsettings.json")  
                  .Build();  
          }  

            public IConfigurationRoot Configuration { get; set; }  

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<UptimeService>(); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                 ILoggerFactory loggerFactory) { 

               //  ...statements omitted for brevity...  
         } 
     } 
 } 

    The goal of the constructor is to set the value of the  Configuration  property, which returns an object 
that implements the  IConfigurationRoot  interface, through which configuration data can be accessed. The 
 IConfigurationRoot  interface represents the entry point into the configuration data and is derived from the 
 IConfiguration  interface, which is also used to represent individual configuration sections. 

 The  Startup  constructor can accept the special services described in Table  14-7 . The 
 IHostingEnvironment  service is required when loading configuration data because the  ContentRootPath  
property provides access to the directory that contains the  appsettings.json  file. 

 The process for loading configuration data requires three steps. The first step is to create a new 
 ConfigurationBuilder  object. The second step is to load the data from individual sources using extension 
methods, such as  AddJsonFile . The final step is to call the  Build  method on the  ConfigurationBuilder  
object, which creates the structure of key/value pairs and sections and assigns the result to the 
 Configuration  property. 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

415

 There are several versions of the  AddJsonFile  method available, as described in Table  14-13 . I used the 
simplest version of the  AddJsonFile  method, which will throw an exception if the file isn’t present and will 
ignore any changes to the file.  

 RELOADING CONFIGURATION DATA

 The ASP.NET Core configuration system supports reloading data when configuration files change. Some 
of the built-in middleware components, such as the logging system, support this feature, which means 
logging levels can be changed at runtime without restarting the application. You can incorporate similar 
capabilities in custom middleware components as well. 

 But just because a feature makes something possible doesn’t mean it’s sensible. Making changes 
to configuration files on production systems is a recipe for downtime. It is all too easy to mistype the 
changes you want and create a malfunctioning configuration. There can be unforeseen consequences 
even if you make the change successfully, such as logging data filling up disks or crippling 
performance. 

 My advice is to avoid live edits and make sure all changes are pushed through your standard 
development and staging testing before being deployed into production. It can be tempting to poke 
around a live system to diagnose a problem, but it rarely ends well. If you find yourself editing 
production configuration files, then you should ask yourself whether you are about to make a small 
problem into a much larger one.   

   Using Configuration Data 
 The data from the  appsettings.json  file is available through the  Configuration  property I added to the 
 Startup  class, which returns an object that implements the  IConfigurationRoot  interface. Data values are 
accessed through a combination of members defined by the interface and extensions methods, as described 
in Table  14-14 .  

   Table 14-13.    The Different Versions of the AddJsonFile Method   

 Method  Description 

  AddJsonFile(name, optional, reload)   This method loads the data from the specified file. An 
exception is thrown if the specified file doesn’t exist and the 
 optional  argument is  false . If the  reload  argument is  true , 
then the configuration data will be updated when the JSON file 
changes. 

  AddJsonFile(name, optional)   This is equivalent to calling  AddJsonFile(name, optional, 
false) . 

  AddJsonFile(name)   This is equivalent to calling  AddJsonFile(name, false, 
false) . 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

416

 To obtain a value, you navigate through the structure of the data to the configuration section you 
require, which is represented by an object that implements the  IConfiguration  interface, which provides a 
subset of members available for  IConfigurationRoot , as shown in Table  14-15 .  

 In Listing  14-35 , I navigate through the data to find the  ShortCircuitMiddleware  configuration section 
and get the value of the  EnableBrowserShortCircuit  setting in order to decide whether to add custom 
middleware components to the request pipeline. 

     Listing 14-35.    Using Configuration Data in the Startup.cs File   

  ... 
 public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
         ILoggerFactory loggerFactory) { 

        if (Configuration.GetSection("ShortCircuitMiddleware")  
              ?["EnableBrowserShortCircuit"] == "True") {  
          app.UseMiddleware<BrowserTypeMiddleware>();  
          app.UseMiddleware<ShortCircuitMiddleware>();  
      }  

       loggerFactory.AddConsole(LogLevel.Debug); 
     loggerFactory.AddDebug(LogLevel.Debug); 

       if (env.IsDevelopment()) { 

   Table 14-14.    The Members and Extension Methods for the IConfigurationRoot Interface   

 Name  Description 

  [key]   The indexer is used to obtain a  string  value for a specific key. 

  GetSection(name)   This method returns an  IConfiguration  object that represents a section of 
the configuration data. 

  GetChildren()   This method returns an enumeration of the  IConfiguration  objects that 
represent the subsections of the current configuration object. 

  GetReloadToken()   This method returns an  IChangeToken  object, which can be used to receive 
a notification when there is a change to the configuration data. 

  Reload()   This method forces the configuration data to be reloaded. 

  GetConnectionString(name)   This method is equivalent to calling  GetSection("ConnectionStrings")
[name] . 

   Table 14-15.    The Members Defined by the IConfiguration Interface   

 Name  Description 

  [key]   The indexer is used to obtain a  string  value for a specific key. 

  GetSection(name)   This method returns an  IConfiguration  object that represents a section of 
the configuration data. 

  GetChildren()   This method returns an enumeration of the  IConfiguration  objects that 
represent the subsections of the current configuration object. 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

417

         app.UseDeveloperExceptionPage(); 
         app.UseStatusCodePages(); 
         app.UseBrowserLink(); 
     } else { 
         app.UseExceptionHandler("/Home/Error"); 
     } 
     app.UseStaticFiles(); 
     app.UseMvc(routes => { 
         routes.MapRoute( 
             name: "default", 
             template: "{controller=Home}/{action=Index}/{id?}"); 
     }); 
 } 
 ... 

       Using Configuration Data for Built-in Middleware Components 
 Some of the built-in middleware components can be set up using configuration data. The most common 
example is the logging package, which allows the logging levels for different components to be provided 
through a configuration section. The  logging  section that I included in the  appsettings.json  file in 
Listing  14-32  can be used with the extension methods that set up destinations for logging messages, 
as shown in Listing  14-36 . 

     Listing 14-36.    Using Configuration Data to Configure Logging in the Startup.cs File   

 ... 
  loggerFactory.AddConsole(Configuration.GetSection("Logging"));  
 loggerFactory.AddDebug(LogLevel.Debug); 
 ... 

   The  AddConsole  method has been overloaded to accept an  IConfiguration  object that configures 
which output should be sent to the console. The  Logging/LogLevel  section of the  appsettings.json  file is 
used to filter log messages that are sent to the console. For example, Listing  14-37  shows how I can filter the 
messages logged by the  HomeController  class so that only  Critical  level messages are displayed. 

 ■   Note   This filtering takes effect only when running the application from the command line using Kestrel 
directly, as described in the “Using Kestrel Directly” sidebar.  

     Listing 14-37.    Filtering Console Log Messages in the appsettings.json File   

 { 
   "Logging": { 
     "IncludeScopes": false, 
     "LogLevel": { 
       "Default": "Debug", 
       "System": "Information", 
       "Microsoft": "Information", 
        "ConfiguringApps.Controllers.HomeController": "Critical"  
     } 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

418

   }, 
   "ShortCircuitMiddleware": { 
     "EnableBrowserShortCircuit": true 
   } 
 } 

          Configuring MVC Services 
 When you call  AddMvc  in the  ConfigureServices  method, it sets up all the services that are required for MVC 
applications. This has the advantage of convenience because it registers all of the MVC services in a single 
step but does mean that some additional work is required to reconfigure the services to change the default 
behavior. 

 The  AddMvc  method returns an object that implements the  IMvcBuilder  interface, and MVC provides 
a set of extension methods that can be used for advanced configuration, the most useful of which are 
described in Table  14-16 . Many of these configuration options relate to features that I describe in detail in 
later chapters.  

 The  AddMvcOptions  method configures the most important MVC services. It accepts a function that 
receives an  MvcOptions  object, which provides a set of configuration properties, the most useful of which are 
described in Table  14-17 .  

   Table 14-16.    Useful IMvcBuilder Extension Methods   

 Name  Description 

  AddMvcOptions   This method configures the services used by MVC, as described after the 
table. 

  AddFormatterMappings   This method is used to configure a feature that allows clients to specify the 
data format they receive, as described in Chapter   20    . 

  AddJsonOptions   This method is used to configure the way that JSON data is created, as 
described in Chapter   20    . 

  AddRazorOptions   This method is used to configure the Razor view engine, as described in 
Chapter   21    . 

  AddViewOptions   This method is used to configure how MVC handles views, including which 
view engines are used. See Chapter   21     for details. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_20
http://dx.doi.org/10.1007/978-1-4842-0397-2_20
http://dx.doi.org/10.1007/978-1-4842-0397-2_21
http://dx.doi.org/10.1007/978-1-4842-0397-2_21


CHAPTER 14 ■ CONFIGURING APPLICATIONS

419

 These configuration options are used to fine-tune the way that MVC operates, and you will find details 
descriptions of the features they relate to in the chapters specified in the table. As a quick demonstration, 
however, Listing  14-38  shows how the  AddMvcOptions  method can be used to change a configuration option. 

     Listing 14-38.    Changing a Configuration Option in the Startup.cs File   

 ... 
 public void ConfigureServices(IServiceCollection services) { 
     services.AddSingleton<UptimeService>(); 
      services.AddMvc().AddMvcOptions(options => {  
          options.RespectBrowserAcceptHeader = true;  
      });  
 } 
 ... 

   The lambda expression passed to the  AddMvcOptions  method receives an  MvcOptions  object, which 
I use to set the  RespectBrowserAcceptHeader  property to  true . This change allows clients to have more 
influence over the data format selected by the content negotiation process, as described in Chapter   20    .  

   Table 14-17.    Selected MvcOptions Properties   

 Name  Description 

  Conventions   This property returns a list of the model conventions that are used to 
customize how MVC creates controllers and actions, as described in 
Chapter   31    . 

  Filters   This property returns a list of the global filters, as described in 
Chapter   19    . 

  FormatterMappings   This property returns the mappings used to allow clients to specify 
the data format they receive, as described in Chapter   20    . 

  InputFormatters   This property returns a list of the objects used to parse request data, 
as described in Chapter   20    . 

  ModelBinders   This property returns a list of the model binders that are used to 
parse requests, as described in Chapter   26    . 

  ModelValidatorProviders   This property returns a list of the objects used to validate data, as 
described in Chapter   27    . 

  OutputFormatters   This property returns a list of the classes that format data sent from 
API controllers, as described in Chapter   20    . 

  RespectBrowserAcceptHeader   This property specifies whether the  Accept  header is taken into 
account when deciding what data format to use for a response, as 
described in Chapter   20    . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_20
http://dx.doi.org/10.1007/978-1-4842-0397-2_31
http://dx.doi.org/10.1007/978-1-4842-0397-2_19
http://dx.doi.org/10.1007/978-1-4842-0397-2_20
http://dx.doi.org/10.1007/978-1-4842-0397-2_20
http://dx.doi.org/10.1007/978-1-4842-0397-2_26
http://dx.doi.org/10.1007/978-1-4842-0397-2_27
http://dx.doi.org/10.1007/978-1-4842-0397-2_20
http://dx.doi.org/10.1007/978-1-4842-0397-2_20


CHAPTER 14 ■ CONFIGURING APPLICATIONS

420

     Dealing with Complex Configurations 
 If you need to support a large number of hosting environments or if there are a lot of differences between 
your hosting environments, then using  if  statements to branch configurations in the  Startup  class can 
result in a configuration that is hard to read and hard to edit without causing unexpected changes. In the 
sections that follow, I describe different ways that the  Startup  class can be used for complex configurations. 

     Creating Different External Configuration Files 
 When you load configuration data from an external source, such as a JSON file, the configuration settings 
and values override any existing data with the same names. This means that you combine multiple 
files to override parts of the configuration data for different hosting environments. As an example, I 
used the ASP.NET Configuration File item template to create a file called  appsettings.development.
json  with the configuration data shown in Listing  14-39 . The configuration data in this file sets the 
 EnableBrowserShortCircuit  value to  false . 

 ■   Tip   The  appsettings.development.json  file might seem to disappear after you create it. If you extend 
the arrow to the left of the  appsettings.json  entry in the Solution Explorer window, you will see that Visual 
Studio groups items with similar names together.  

     Listing 14-39.    The Contents of the appsettings.development.json File   

 { 
   "ShortCircuitMiddleware": { 
     "EnableBrowserShortCircuit": false 
   } 
 } 

   To load this data, I add a new call to the  AddJsonFile  method to the  Startup  constructor, including the 
name of the hosting environment in the file name and ensuring that the  optional  argument is set to  true , so 
that an exception isn’t thrown when there isn’t an environment-specific configuration file available. 
Listing  14-40  shows the required changes. 

     Listing 14-40.    Loading an Environment-Specific Configuration File in the Startup.cs File   

 ... 
 public Startup(IHostingEnvironment env) { 
     Configuration = new ConfigurationBuilder() 
         .SetBasePath(env.ContentRootPath) 
         .AddJsonFile("appsettings.json") 
          .AddJsonFile($"appsettings.{env.EnvironmentName}.json", true)  
         .Build(); 
 } 
 ... 

   The configuration files are loaded in the order they are specified, and the settings in later files override 
the earlier files. The result is that the  EnableBrowserShortCircuit  value will be  false  when the application 
is in the  development  environment and  true  when in  staging  and  production . 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

421

 ■   Caution   You must make sure that you include additional configuration files when you deploy an application. 
See Chapter   12     for an example of including a configuration file when deploying to Azure.   

     Creating Different Configuration Methods 
 Selecting different configuration data files can be useful but doesn’t provide a complete solution for 
complex configurations because data files don’t contain C# statements. If you want to vary the configuration 
statements used to create services or register middleware components, then you can use different methods, 
where the name of the method includes the hosting environment, as shown in Listing  14-41 . 

      Listing 14-41.    Using Different Method Names in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 
 using ConfiguringApps.Infrastructure; 
 using Microsoft.Extensions.Configuration; 

   namespace ConfiguringApps { 

       public class Startup { 

           public Startup(IHostingEnvironment env) { 
             Configuration = new ConfigurationBuilder() 
                 .SetBasePath(env.ContentRootPath) 
                 .AddJsonFile("appsettings.json") 
                 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", true) 
                 .Build(); 
         } 

           public IConfigurationRoot Configuration { get; set; } 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<UptimeService>(); 
             services.AddMvc().AddMvcOptions(options => { 
                 options.RespectBrowserAcceptHeader = true; 
             }); 
         } 

            public void ConfigureDevelopmentServices(IServiceCollection services) {  
              services.AddSingleton<UptimeService>();  
              services.AddMvc();  
          }  

            public void Configure(IApplicationBuilder app) {  

                app.UseExceptionHandler("/Home/Error");  

http://dx.doi.org/10.1007/978-1-4842-0397-2_12


CHAPTER 14 ■ CONFIGURING APPLICATIONS

422

              app.UseStaticFiles();  
              app.UseMvc(routes => {  
                  routes.MapRoute(  
                      name: "default",  
                      template: "{controller=Home}/{action=Index}/{id?}");  
              });  
          }  

            public void ConfigureDevelopment(IApplicationBuilder app,  
                          ILoggerFactory loggerFactory) {  

                loggerFactory.AddConsole(Configuration.GetSection("Logging"));  
              loggerFactory.AddDebug(LogLevel.Debug);  
              app.UseDeveloperExceptionPage();  
              app.UseStatusCodePages();  
              app.UseBrowserLink();  
              app.UseStaticFiles();  
              app.UseMvc(routes => {  
                  routes.MapRoute(  
                      name: "default",  
                      template: "{controller=Home}/{action=Index}/{id?}");  
              });  
          }  
     } 
 } 

    When ASP.NET Core looks for the  ConfigureServices  and  Configure  methods in the  Startup  
class, it first checks to see whether there are methods that include the name of the hosting environment. 
In the listing, I added a  ConfigureDevelopmentServices  method, which will be used instead of the 
 ConfigureServices  method in the  Development  environment, and a  ConfigureDevelopment  method, 
which will be used instead of the  Configure  method. You can define separate methods for each of the 
environments that you need to support and rely on the default methods being called if there are no 
environment-specific methods available. In the example, this means that the  ConfigureServices  and 
 Configure  methods will be used for the staging and production environments. 

 ■   Caution   The default methods are not called if there are environment-specific methods defined. In Listing  14-41 , 
for example, ASP.NET Core will not call the  Configure  method in the  Development  environment because there is a 
 ConfigureDevelopment  method. This means that each method is responsible for the complete configuration required 
for its environment.   

     Creating Different Configuration Classes 
 Using different methods means that you don’t have to use  if  statements to check the hosting environment 
name, but it can result in large classes, which is a problem in itself. For especially complex configurations, 
the final progression is to create a different configuration class for each hosting environment. When ASP.NET 
looks for the  Startup  class, it first checks to see whether there is a class whose name includes the current 
hosting environment. To this end, I added a class file called  StartupDevelopment.cs  to the project and used 
it to define the class shown in Listing  14-42 . 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

423

     Listing 14-42.    The Contents of the StartupDevelopment.cs File   

  using ConfiguringApps.Infrastructure; 
 using Microsoft.AspNetCore.Builder; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.Extensions.Configuration; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Logging; 

   namespace ConfiguringApps { 

       public class StartupDevelopment { 

           public StartupDevelopment(IHostingEnvironment env) { 
             Configuration = new ConfigurationBuilder() 
                 .SetBasePath(env.ContentRootPath) 
                 .AddJsonFile("appsettings.json") 
                 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", true) 
                 .Build(); 
         } 

           public IConfigurationRoot Configuration { get; set; } 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<UptimeService>(); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app, 
                     ILoggerFactory loggerFactory) { 

               loggerFactory.AddConsole(Configuration.GetSection("Logging")); 
             loggerFactory.AddDebug(LogLevel.Debug); 
             app.UseDeveloperExceptionPage(); 
             app.UseStatusCodePages(); 
             app.UseBrowserLink(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}/{id?}"); 
             }); 
         } 
     } 
 } 

    This class contains  ConfigureServices  and  Configure  methods that are specific to the development 
hosting environment. To enable ASP.NET to find the environment-specific  Startup  class, a change is 
required to the  Program  class, as shown in Listing  14-43 . 



CHAPTER 14 ■ CONFIGURING APPLICATIONS

424

     Listing 14-43.    Enabling Environment-Specific Startup in the Program.cs File   

  using System.IO; 
 using Microsoft.AspNetCore.Hosting; 

   namespace ConfiguringApps { 

       public class Program { 

           public static void Main(string[] args) { 
             var host = new WebHostBuilder() 
                 .UseKestrel() 
                 .UseContentRoot(Directory.GetCurrentDirectory()) 
                 .UseIISIntegration() 
                  .UseStartup("ConfiguringApps")  
                 .Build(); 

               host.Run(); 
         } 
     } 
 } 

    Rather than specifying a specific class, the  UseStartup  method is given the name of the assembly that 
it should use. When the application starts, ASP.NET will look for a class whose name includes the hosting 
environment, such as  StartupDevelopment  or  StartupProduction , and fall back to using the regular 
 Startup  class if one does not exist.   

     Summary 
 In this chapter, I explained how MVC applications are configured. I described the JSON configuration files, 
explained the use of the  Startup  class, and introduced you to services and middleware. I showed you how 
requests are processed using a pipeline and how different types of middleware are used to control the flow of 
requests and the responses they elicit. In the next chapter, I introduce the routing system, which is how MVC 
deals with mapping request URLs to controllers and actions.      



425© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_15

    CHAPTER 15   

 URL Routing                          

       Early versions of ASP.NET assumed that there was a direct relationship between requested URLs and the 
files on the server hard disk. The job of the server was to receive the request from the browser and deliver the 
output from the corresponding file. This approach worked just fine for Web Forms, where each ASPX page is 
both a file and a self-contained response to a request. 

 It  doesn’t  make sense for an MVC application, where requests are processed by action methods in 
controller classes and there is no one-to-one correlation to the files on the disk. 

 To handle MVC URLs, the ASP.NET platform uses the  routing system , which has been overhauled for 
ASP.NET Core. In this chapter, I will show you how to use the routing system to create powerful and flexible 
URL handling for your projects. As you will see, the routing system lets you create any pattern of URLs you 
desire and express them in a clear and concise manner. The routing system has two functions.

•    Examine an  incoming URL  and select the controller and action to handle the request.  

•   Generate  outgoing URLs . These are the URLs that appear in the HTML rendered 
from views so that a specific action will be invoked when the user clicks the link (at 
which point, it becomes an incoming URL again).    

 In this chapter, I will focus on defining routes and using them to process incoming URLs so that the 
user can reach the controllers and actions. There are two ways to create routes in an MVC application: 
 convention-based routing  and  attribute routing . I explain both approaches in this chapter. 

 Then, in the next chapter, I will show you how to use those same routes to generate the outgoing URLs 
you will need to include in your views, as well as show you how to customize the routing system and use a 
related feature called  areas . Table  15-1  puts routing into context.  



CHAPTER 15 ■ URL ROUTING

426

 Table  15-2  summarizes the chapter.  

   Table 15-1.    Putting Routing in Context   

 Question  Answer 

 What is it?  The routing system is responsible for processing incoming 
requests and selecting controllers and action methods to process 
them. The routing system is also used to generate routes in views, 
known as outgoing URLs. 

 Why is it useful?  The routing system allows requests to be handled flexibly without 
URLs being tied to the structure of classes in the Visual Studio 
project. 

 How is it used?  The mapping between URLs and the controllers and action 
methods is defined in the  Startup.cs  file or by applying the 
 Route  attribute to controllers. 

 Are there any pitfalls or limitations?  The routing configuration for a complex application can become 
hard to manage. 

 Are there any alternatives?  No. The routing system is an integral part of ASP.NET Core. 

 Has it changed since MVC 5?  The routing system works in largely the same way as with 
previous versions but with changes to reflect closer integration 
with the ASP.NET Core platform. 

 •     Convention-based routes are defined in the  Startup.cs  
file, rather than the now-obsolete  RouteConfig.cs  file. 

 •     The routing classes are now defined in the  Microsoft.
AspNetCore.Routing  namespace. 

 •     Routes no longer match URLs if there is no corresponding 
controller and action method in the application (in 
previous versions of MVC, routes could match a URL but 
still return a  404 – Not Found  error. 

 •     Convention-based default values, optional segments, and 
route constraints can now be expressed as part of the URL 
pattern, using the same syntax as with attribute-based 
routing. 

 •     Requests for static files (such as images, CSS, and 
JavaScript) are now handled by dedicated middleware (as 
described in Chapter   14    ). 

 Finally, changes to the way that the routing system is 
implemented make it difficult to unit test routes. This is a trend 
that started with the introduction of attribute-based routing in 
MVC 5, but it is no longer possible to isolate the routing system 
for unit testing. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_14


CHAPTER 15 ■ URL ROUTING

427

     Preparing the Example Project 
 For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new  Empty  
project called  UrlsAndRoutes . I added the NuGet packages I required to the  dependencies  section of the 
 project.json  file and set up the Razor tooling in the  tools  section, as shown in Listing  15-1 . I removed the 
sections that are not required for this chapter. 

     Listing 15-1.    Adding Packages in the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
      "Microsoft.AspNetCore.Mvc": "1.0.0",  
      "Microsoft.AspNetCore.StaticFiles": "1.0.0",  
      "Microsoft.AspNetCore.Razor.Tools": {  
        "version": "1.0.0-preview2-final",  
        "type": "build"  
      }  
   }, 

     "tools": { 
      "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final",  
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final" 
   }, 

     "frameworks": { 

   Table 15-2.    Chapter Summary   

 Problem  Solution  Listing 

 Map between URLs and action methods  Define a route  1–10 

 Allow URL segments to be omitted  Define default values for route segments  11–13 

 Match URL segments that don’t have 
corresponding routing variables 

 Define static segments  14–17 

 Pass URL segments to action methods  Define custom segment variables  18–20 

 Allow URL segments for which there are 
no default values to be omitted 

 Define optional segments  21–22 

 Define routes that match any number of 
URL segments 

 Use a catchall segment  23–24 

 Restrict the URLs that a route can match  Apply route constraints  25–34 

 Define a route within a controller  Use attribute routing  35–39 



CHAPTER 15 ■ URL ROUTING

428

     "netcoreapp1.0": { 
       "imports": ["dotnet5.6", "portable-net45+win8"] 
     } 
   }, 

     "buildOptions": { 
     "emitEntryPoint": true, "preserveCompilationContext": true 
   } 
 } 

    Listing  15-2  shows the  Startup  class, which configures the features provided by the NuGet packages. 

     Listing 15-2.    The Contents of the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app) { 
              app.UseStatusCodePages();  
              app.UseDeveloperExceptionPage();  
              app.UseStaticFiles();  
              app.UseMvc();  
         } 
     } 
 } 

        Creating the Model Class 
 All the effort in this chapter is about matching request URLs to actions. The only model class I need passes 
details about the controller and action method that has been selected to process a request. I created the 
 Models  folder and added a class file called  Result.cs , which I used to define the class shown in Listing  15-3 . 

     Listing 15-3.    The Contents of the Result.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace UrlsAndRoutes.Models { 
     public class Result { 
         public string Controller { get; set; } 
         public string Action { get; set; } 
         public IDictionary<string, object> Data { get; } 
             = new Dictionary<string, object>(); 
     } 
 } 



CHAPTER 15 ■ URL ROUTING

429

    The  Controller  and  Action  properties will be used to indicate how a request has been processed, and 
the  Data  dictionary will be used to store other details about the request produced by the routing system.  

     Creating the Example Controllers 
 I need some simple controllers to demonstrate how routing works. I created the  Controllers  folder and 
added a class file called  HomeController.cs , the contents of which are shown in Listing  15-4 . 

     Listing 15-4.    The Contents of the HomeController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 
 using UrlsAndRoutes.Models; 

   namespace UrlsAndRoutes.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() => View("Result", 
             new Result { 
                 Controller = nameof(HomeController), 
                 Action = nameof(Index) 
             }); 
     } 
 } 

    The  Index  action method defined by the  Home  controller calls the  View  method to render a view called 
 Result  (which I define in the next section) and provides a  Result  object as the model object. The properties 
of the model object are set using the  nameof  function and will be used to indicate which controller and 
action method have been used to service a request. 

 I followed the same pattern by adding a  CustomerController.cs  file to the  Controllers  folder and 
using it to define the  Customer  controller shown in Listing  15-5 . 

     Listing 15-5.    The Contents of the CustomerController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 
 using UrlsAndRoutes.Models; 

   namespace UrlsAndRoutes.Controllers { 
     public class CustomerController : Controller { 

           public ViewResult Index() => View("Result", 
             new Result { 
                 Controller = nameof(CustomerController), 
                 Action = nameof(Index) 
             }); 

           public ViewResult List() => View("Result", 
             new Result { 
                 Controller = nameof(CustomerController), 
                 Action = nameof(List) 
             }); 
     } 
 } 



CHAPTER 15 ■ URL ROUTING

430

    The third and final controller is defined in a file called  AdminController.cs , which I added to the 
 Controllers  folder, as shown in Listing  15-6 . It follows the same pattern as the other controllers. 

     Listing 15-6.    The Contents of the AdminController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 
 using UrlsAndRoutes.Models; 

   namespace UrlsAndRoutes.Controllers { 
     public class AdminController : Controller { 

           public ViewResult Index() => View("Result", 
             new Result { 
                 Controller = nameof(AdminController), 
                 Action = nameof(Index) 
             }); 
     } 
 } 

         Creating the View 
 I specified the  Result  view in all the action methods defined in the previous section, which allows me to 
create one view that will be shared by all of the controllers. I created the  Views/Shared  folder and added a 
new view called  Result.cshtml  to it, the contents of which are shown in Listing  15-7 . 

     Listing 15-7.    The Contents of the Result.cshtml File   

  @model Result 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Routing</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-bordered table-striped table-condensed"> 
         <tr><th>Controller:</th><td>@Model.Controller</td></tr> 
         <tr><th>Action:</th><td>@Model.Action</td></tr> 
         @foreach (string key in Model.Data.Keys) { 
             <tr><th>@key :</th><td>@Model.Data[key]</td></tr> 
         } 
     </table> 
 </body> 
 </html> 

    The view contains a table that displays the properties from the model object in a table that is styled 
using Bootstrap. To add Bootstrap to the project, I used the Bower Configuration File item template to create 
the  bower.json  file and added the Bootstrap package to the  dependencies  section, as shown in Listing  15-8 . 



CHAPTER 15 ■ URL ROUTING

431

     Listing 15-8.    Adding the Bootstrap Package in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6"  
   } 
 } 

   The final preparation is to create the  _ViewImports.cshtml  file in the  Views  folder, which sets up the 
built-in tag helpers for use in Razor views and imports the model namespace, as shown in Listing  15-9 . 

     Listing 15-9.    The Contents of the _ViewImports.cshtml File in the Views Folder   

  @using UrlsAndRoutes.Models 
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

    The configuration in the  Startup  class doesn’t contain any instructions for how MVC should map HTTP 
requests to controllers and actions. When you start the application, any URL that you request will result in a 
 404 - Not Found  response, as shown in Figure  15-1 .    

     Introducing URL Patterns 
       The routing system works its magic using a set of  routes . These routes collectively comprise the URL  schema  
or  scheme  for an application, which is the set of URLs that your application will recognize and respond to. 

 I do not need to manually type out all of the individual URLs I am willing to support in my application. 
Instead, each route contains a  URL pattern , which is compared to incoming URLs. If a URL matches the 
pattern, then it is used by the routing system to process that URL. Here is a simple URL to get started with: 

    http://mysite.com/Admin/Index      

 URLs can be broken down into  segments . These are the parts of the URL, excluding the hostname and 
query string, that are separated by the  /  character. In the example URL, there are two segments, as shown in 
Figure  15-2 .  

  Figure 15-1.    Running the example application       

 

http://mysite.com/Admin/Index


CHAPTER 15 ■ URL ROUTING

432

 The first segment contains the word  Admin , and the second segment contains the word  Index . To the 
human eye, it is obvious that the first segment relates to the controller and the second segment relates to the 
action. But, of course, I need to express this relationship using a URL pattern that can be understood by the 
routing system. Here is a URL pattern that matches the example URL: 

   {controller}/{action} 

   When processing an incoming HTTP request, the job of the routing system is to match the URL that has 
been requested to a pattern and extract values from the URL for the  segment variables  defined in the pattern. 

 The segment variables are expressed using braces (the  {  and  }  characters). The example pattern has two 
segment variables with the names  controller  and  action , so the value of the  controller  segment variable 
will be  Admin  and the value of the  action  segment variable will be  Index . 

 An MVC application will usually have several routes, and the routing system will compare the incoming 
URL to the URL pattern of each route until it finds a match. By default, a pattern will match any URL that has 
the correct number of segments. For example, the pattern  {controller}/{action}  will match any URL that 
has two segments, as described in Table  15-3 .  

 Table  15-3  highlights two key behaviors of URL patterns.

•    URL patterns are  conservative  about the number of segments they match. They will 
match only URLs that have the same number of segments as the pattern. You can see 
this in the second and third examples in the table.  

•   URL patterns are  liberal  about the contents of segments they match. If a URL  has  the 
correct number of segments, the pattern will extract the value of each segment for a 
segment variable, whatever it might be.    

 These are the default behaviors, which are the keys to understanding how URL patterns function. I show 
you how to change the defaults later in this chapter.  

    Table 15-3.    Matching URLs   

 Request URL  Segment Variables 

    http://mysite.com/  Admin/Index        controller  =  Admin action  =  Index  

    http://mysite.com/  Admin       No match—too few segments 

    http://mysite.com/  Admin/Index/Soccer       No match—too many segments 

  Figure 15-2.    The segments in an example URL       

 

http://mysite.com/Admin/Index
http://mysite.com/Admin
http://mysite.com/Admin/Index/Soccer


CHAPTER 15 ■ URL ROUTING

433

     Creating and Registering a Simple Route 
 Once you have a URL pattern in mind, you can use it to define a route. Routes are defined in the  Startup.cs  
file and are passed as arguments to the  UseMvc  method that is used to set up MVC in the  Configure  method. 
Listing  15-10  shows a basic route that maps requests to the controllers in the example application.     

     Listing 15-10.    Defining a Basic Route in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
              app.UseMvc(routes => {  
                  routes.MapRoute(name: "default", template: "{controller}/{action}");  
              });  
         } 
     } 
 } 

    Routes are created using a lambda expression passed as an argument to the  UseMvc  configuration 
method. The expression receives an object that implements the  IRouteBuilder  interface from the 
 Microsoft.AspNetCore.Routing  namespace, and routes are defined using the  MapRoute  extension method. 
To make routes easier to understand, the convention is to specify argument names when calling the 
 MapRoute  method, which is why I have explicitly named the  name  and  template  arguments in the listing. The 
 name  argument specified a name for a route, and the  template  argument is used to define the pattern. 

 ■   Tip    Naming your routes is optional, and there is a philosophical argument that doing so sacrifices some of 
the clean separation of concerns that otherwise comes from routing. I explain why this can be a problem in the 
“ Generating a URL from a Specific Route ” section in Chapter   16    .  

 You can see the effect of the changes I made to the routing by starting the example application. There is 
no change when the application first starts—you will still see a 404 error—but if you navigate to a URL that 
matches the  {controller}/{action}  pattern, you will see a result like the one shown in Figure  15-3 , which 
illustrates the effect of navigating to  /Admin/Index .  

http://dx.doi.org/10.1007/978-1-4842-0397-2_16


CHAPTER 15 ■ URL ROUTING

434

 The reason that the root URL for the application doesn’t work is because the route that I added to the 
 Startup.cs  file doesn’t tell MVC how to select a controller class and action method when the requested URL 
has no segments. I’ll fix this in the next section.  

     Defining Default Values 
    The example application returns a 404 message when the default URL is requested because it didn’t match 
the pattern of the route defined in the  Startup  class. Since there are no segments in the default URL that 
can be matched to the  controller  and  action  variables defined by the routing pattern, the routing system 
doesn’t make a match. 

 I explained earlier that URL patterns will match only URLs with the specified number of segments. One 
way to change this behavior is to use  default values . A default value is applied when the URL doesn’t contain 
a segment that can be matched by the routing pattern. Listing  15-11  defines a route that uses a default value. 

     Listing 15-11.    Providing a Default Value in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
              app.UseMvc(routes => {  
                  routes.MapRoute(  
                      name: "default",  

  Figure 15-3.    Navigating using a simple route       

 



CHAPTER 15 ■ URL ROUTING

435

                      template: "{controller}/{action}",  
                      defaults: new { action = "Index" });  
              });  
         } 
     } 
 } 

    Default values are supplied as properties in an anonymous type, passed to the  MapRoute  method as the 
 defaults  argument. In the listing, I provided a default value of  Index  for the  action  variable. 

 This route will match all two-segment URLs, as it did previously. For example, if the URL    http://
mydomain.com/Home/Index      is requested, the route will extract  Home  as the value for the  controller  and 
 Index  as the value for the  action . 

 But now that there is a default value for the  action  segment, the route will  also  match single-segment 
URLs. When processing a single-segment URL, the routing system will extract the  controller  value from 
the URL and use the default value for the  action  variable. In this way, the user request  /Home  and MVC will 
invoke the  Index  action method on the  Home  controller, as shown in Figure  15-4 .  

     Defining Inline Default Values 
 Default values can also be expressed as part of the URL pattern, which is a more concise way to express 
routes, as shown in Listing  15-12 . The inline syntax can be used only to provide defaults for variables that are 
part of the URL pattern, but, as you will learn, it is often useful to be able to provide defaults outside of that 
pattern. For this reason, it is useful to understand both ways of expressing defaults. 

     Listing 15-12.    Defining Inline Default Values in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 

  Figure 15-4.    Using a default action       

 

http://mydomain.com/Home/Index
http://mydomain.com/Home/Index


CHAPTER 15 ■ URL ROUTING

436

             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute( 
                     name: "default", 
                      template: "{controller}/{action=Index}");  
             }); 
         } 
     } 
 } 

    I can go further and match URLs that do not contain any segment variables at all, relying on just the 
default values to identify the action and controller. And as an example, Listing  15-13  shows how I have 
mapped the root URL for the application by providing default values for both segments. 

     Listing 15-13.    Providing Action and Controller Default Values in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute( 
                     name: "default", 
                      template: "{controller=Home}/{action=Index}");  
             }); 
         } 
     } 
 } 

    By providing default values for both the  controller  and  action  variables, the route will match URLs 
that have zero, one, or two segments, as shown in Table  15-4 .  



CHAPTER 15 ■ URL ROUTING

437

 The fewer segments received in the incoming URL, the more the route relies on the default values, up 
until the point where a URL with no segments is matched using only default values. 

 You can see the effect of the default values by starting the example app. When the browser requests the 
root URL for the application, the default values for the  controller  and  action  segment variables will be used, 
which will lead MVC to invoke the  Index  action method on the  Home  controller, as shown in Figure  15-5 .    

     Using Static URL Segments 
    Not all the segments in a URL pattern need to be variables. You can also create patterns that have  static 
segments . Suppose that the application needs to match URLs that are prefixed with  Public , like this: 

    http://mydomain.com/  Public  /Home/Index      

 This can be done by using a URL pattern like the one shown in Listing  15-14 . 

     Listing 15-14.    A URL Pattern with Static Segments in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace UrlsAndRoutes { 

       public class Startup { 

   Table 15-4.    Matching URLs   

 Segments  Example  Maps To 

 0  /   controller  =  Home action  =  Index  

 1   / Customer   controller  =  Customer action  =  Index  

 2   / Customer/List   controller  =  Customer action  =  List  

 3   / Customer/List/All  No match—too many segments 

  Figure 15-5.    Using default values to broaden the scope of a route       

 

http://mydomain.com/Public/Home/Index


CHAPTER 15 ■ URL ROUTING

438

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}"); 

                    routes.MapRoute(name: "",  
                      template: "Public/{controller=Home}/{action=Index}");  
             }); 
         } 
     } 
 } 

    This new pattern will match only URLs that contain three segments, the first of which  must  be  Public . 
The other two segments can contain any value and will be used for the  controller  and  action  variables. If 
the last two segments are omitted, then the default values will be used. 

 You can also create URL patterns that have segments containing both static and variable elements, such 
as the one shown in Listing  15-15 . 

       Listing 15-15.    A URL Pattern with a Mixed Segment in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                  routes.MapRoute("", "X{controller}/{action}");  

                   routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}"); 

                   routes.MapRoute(name: "", 
                     template: "Public/{controller=Home}/{action=Index}"); 



CHAPTER 15 ■ URL ROUTING

439

             }); 
         } 
     } 
 } 

    The pattern in this route matches any two-segment URL where the first segment starts with the letter 
 X . The value for  controller  is taken from the first segment, excluding the  X . The  action  value is taken from 
the second segment. You can see the effect of this route if you start the application and navigate to  /XHome/
Index , the result of which is illustrated by Figure  15-6 .  

 ROUTE ORDERING

    In Listing  15-15 , I defined a new route and placed it before all the others. I did this because routes are 
applied in the order in which they are defined. The  MapRoute  method adds a route to the end of the 
routing configuration, which means that routes are generally applied in the order in which they are 
defined. I say “generally” because there are methods that insert routes in specific locations. I tend not 
to use these methods, because having routes applied in the order in which they are defined makes 
understanding the routing for an application simpler. 

 The routing system tries to match an incoming URL against the URL pattern of the route that was 
defined first and proceeds to the next route only if there is no match. The routes are tried in sequence 
until a match is found or the set of routes has been exhausted. As a consequence, the most specific 
routes must be defined first. The route I added in Listing  15-15  is more specific than the route that 
follows. Suppose that I reversed the order of the routes, like this: 

   ... 
 routes.MapRoute("MyRoute", "{controller=Home}/{action=Index}"); 
 routes.MapRoute("", "X{controller}/{action}"); 
 ... 

   Then the first route, which matches  any  URL with zero, one, or two segments, will always be the one that 
is used. The more specific route, which is now second in the list, will never be reached. The new route 
excludes the leading  X  of a URL, but this won’t be done by the older route. Therefore, a URL such as this: 

  Figure 15-6.    Mixing static and variable elements in a single segment       

 



CHAPTER 15 ■ URL ROUTING

440

    http://mydomain.com/XHome/Index      

 will be targeted to a controller called  XHome , assuming that there is an  XHomeController  class in the 
application and it has an action method called  Index .  

 Static URL segments and default values can be combined to create an alias for a specific URL. The 
URL schema that you use forms a contract with your users when you deploy your application, and if you 
subsequently refactor an application, you need to preserve the previous URL format so that any URL 
favorites, macros, or scripts the user has created continue to work. 

 Imagine that there used to be a controller called  Shop , which has now been replaced by the  Home  
controller. Listing  15-16  shows how I can create a route to preserve the old URL schema. 

     Listing 15-16.    Mixing Static URL Segments and Default Values in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                  routes.MapRoute(name: "ShopSchema",  
                      template: "Shop/{action}",  
                      defaults: new { controller = "Home" });  

                   routes.MapRoute("", "X{controller}/{action}"); 

                   routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}"); 

                   routes.MapRoute(name: "", 
                     template: "Public/{controller=Home}/{action=Index}"); 
             }); 
         } 
     } 
 } 

    The route matches any two-segment URL where the first segment is  Shop . The  action  value is taken 
from the second URL segment. The URL pattern doesn’t contain a variable segment for  controller , so the 
default value is used. The  defaults  argument provides the  controller  value because there is no segment to 
which the value can be applied to as part of the URL pattern. 

http://mydomain.com/XHome/Index


CHAPTER 15 ■ URL ROUTING

441

 The result is that a request for an action on the  Shop  controller is translated to a request for the  Home  
controller. You can see the effect of this route by starting the app and navigating to the  /Shop/Index  URL. As 
Figure  15-7  shows, the new route causes MVC to target the  Index  action method in the  Home  controller.  

 I can go one step further and create aliases for action methods that have been refactored away as well 
and are no longer present in the controller. To do this, I create a static URL and provide the  controller  and 
 action  values as defaults, as shown in Listing  15-17 . 

     Listing 15-17.    Aliasing a Controller and an Action in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                  routes.MapRoute(name: "ShopSchema2",  
                      template: "Shop/OldAction",  
                      defaults: new { controller = "Home", action = "Index" });  

                   routes.MapRoute(name: "ShopSchema", 
                     template: "Shop/{action}", 
                     defaults: new { controller = "Home" }); 

                   routes.MapRoute("", "X{controller}/{action}"); 

  Figure 15-7.    Creating an alias to preserve URL schemas       

 



CHAPTER 15 ■ URL ROUTING

442

                   routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}"); 

                   routes.MapRoute(name: "", 
                     template: "Public/{controller=Home}/{action=Index}"); 
             }); 
         } 
     } 
 } 

    Notice that the new route is defined first because it is more specific than the routes that follow. If a 
request for  Shop/OldAction  were processed by the next defined route, for example, I may get a different 
result from the one I want if there is a controller with an  OldAction  action method.  

     Defining Custom Segment Variables 
    The  controller  and  action  segment variables have special meaning in MVC applications and correspond 
to the controller and action method that will be used to service the request. These are only the built-in 
segment variables, and custom segment variables can also be defined, as shown in Listing  15-18 . 
(I have removed the existing routes from the previous section so I can start over.) 

       Listing 15-18.    Defining Additional Variables in a URL Pattern in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                  routes.MapRoute(name: "MyRoute",  
                      template: "{controller=Home}/{action=Index}/{id=DefaultId}");  
             }); 
         } 
     } 
 } 

    The URL pattern defines the standard  controller  and  action  variables, as well as a custom variable 
called  id . This route will match any zero-to-three-segment URL. The contents of the third segment will be 
assigned to the  id  variable, and if there is no third segment, the default value will be used. 



CHAPTER 15 ■ URL ROUTING

443

 ■   Caution    Some names are reserved and not available for custom segment variable names. These are 
 controller ,  action , and  area . The meaning of the first two is obvious, and I will explain  areas  in the next chapter.  

 The  Controller  class, which is the base for controllers, defines a  RouteData  property that returns a 
 Microsoft.AspNetCore.Routing.RouteData  object that provides details about the routing system and the 
way that the current request has been routed. Within a controller, I can access any of the segment variables 
in an action method by using the  RouteData.Values  property, which returns a dictionary containing 
the segment variables. To demonstrate, I have added an action method to the  Home  controller called 
 CustomVariable , as shown in Listing  15-19 . 

      Listing 15-19.    Accessing a Custom Segment Variable in an Action Method in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using UrlsAndRoutes.Models; 

   namespace UrlsAndRoutes.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() => View("Result", 
             new Result { 
                 Controller = nameof(HomeController), 
                 Action = nameof(Index) 
             }); 

            public ViewResult CustomVariable() {  
              Result r = new Result {  
                  Controller = nameof(HomeController),  
                  Action = nameof(CustomVariable),  
              };  
              r.Data["id"] = RouteData.Values["id"];  
              return View("Result", r);  
          }  
     } 
 } 

    This action method obtains the value of the custom  id  variable in the route URL pattern using the 
 RouteData.Values  property, which returns a dictionary of the variables produced by the routing system. 
The custom variable is added to the view model object and can be seen by running the application and 
requesting the following URL: 

   /Home/CustomVariable/Hello 

   The routing template matches the third segment in this URL as the value for the  id  variable, producing 
the results shown in Figure  15-8 .  



CHAPTER 15 ■ URL ROUTING

444

 The URL pattern in Listing  15-19  defines a default value for the  id  segment, which means that the route 
can also match URLs that have two segments. You can see the use of the default value by requesting this URL: 

   /Home/CustomVariable 

   The routing system uses the default value for the custom variable, as shown in Figure  15-9 .  

     Using Custom Variables as Action Method Parameters 
 Using the  RouteData.Values  collection is only one way to access custom route variables, and the other way 
can be much more elegant. If an action method defines parameters with names that match the URL pattern 
variables, MVC will automatically pass the values obtained from the URL as arguments to the action method. 

 The custom variable defined in the route in Listing  15-18  is called  id . I can modify the  CustomVariable  
action method in the  Home  controller so that it has a parameter of the same name, as shown in Listing  15-20 . 

  Figure 15-8.    Displaying the value of a custom segment variable       

  Figure 15-9.    The default value for a custom segment variable       

 

 



CHAPTER 15 ■ URL ROUTING

445

     Listing 15-20.    Adding an Action Method Parameter in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using UrlsAndRoutes.Models; 

   namespace UrlsAndRoutes.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() => View("Result", 
             new Result { 
                 Controller = nameof(HomeController), 
                 Action = nameof(Index) 
             }); 

            public ViewResult CustomVariable(string id) {  
             Result r = new Result { 
                 Controller = nameof(HomeController), 
                 Action = nameof(CustomVariable), 
             }; 
              r.Data["id"] = id;  
             return View("Result", r); 
         } 
     } 
 } 

    When the routing system matches a URL against the route defined in Listing  15-18 , the value of the third 
segment in the URL is assigned to the custom variable  id . MVC compares the list of segment variables with 
the list of action method parameters and, if the names match, passes the values from the URL to the method. 

 The type of the  id  parameter is a  string , but MVC will try to convert the URL value to whatever 
parameter type is used. If the action method declared the  id  parameter as an  int  or a  DateTime , then it 
would receive the value from the URL parsed to an instance of that type. This is an elegant and useful feature 
that removes the need for me to handle the conversion myself. You can see the effect of the action method 
parameter by starting the application and requesting  /Home/CustomVariable/Hello , which produces the 
result shown in Figure  15-10 . If you omit the third segment, then the action method will be provided with the 
default segment value, which is also shown in the figure.  

 ■   Note    MVC uses the  model binding  feature to convert the values contained in the URL to .NET types, and 
model binding can handle much more complex situations than shown in this example. I describe model binding 
in Chapter   26    .   

http://dx.doi.org/10.1007/978-1-4842-0397-2_26


CHAPTER 15 ■ URL ROUTING

446

     Defining Optional URL Segments 
    An  optional  URL segment is one that the user does not need to specify and for which no default value is 
specified. An optional segment is denoted by a question mark (the  ?  character) after the segment name, as 
shown in Listing  15-21 . 

     Listing 15-21.    Specifying an Optional URL Segment in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute(name: "MyRoute", 
                      template: "{controller=Home}/{action=Index}/{id?}");  
             }); 
         } 
     } 
 } 

    This route will match URLs whether or not the  id  segment has been supplied. Table  15-5  shows how 
this works for different URLs.  

  Figure 15-10.    Accessing segment variables using action method parameters       

 



CHAPTER 15 ■ URL ROUTING

447

 As you can see from the table, the  id  variable is added to the set of variables only when there is a 
corresponding segment in the incoming URL. This feature is useful if you need to know whether the user 
supplied a value for a segment variable. When no value has been supplied for an optional segment variable, 
the value of the corresponding parameter will be  null . I have updated the  Home  controller to respond when 
no value is provided for the  id  segment variable in Listing  15-22 . 

     Listing 15-22.    Checking for an Optional Segment Variable in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using UrlsAndRoutes.Models; 

   namespace UrlsAndRoutes.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() => View("Result", 
             new Result { 
                 Controller = nameof(HomeController), 
                 Action = nameof(Index) 
             }); 

           public ViewResult CustomVariable(string id) { 
             Result r = new Result { 
                 Controller = nameof(HomeController), 
                 Action = nameof(CustomVariable), 
             }; 
              r.Data["id"] = id ?? "<no value>";  
             return View("Result", r); 
         } 
     } 
 } 

    Figure  15-11  shows the result of starting the application and navigating to the  /Home/CustomVariable  
URL, which doesn’t include a value for the  id  segment variable.  

   Table 15-5.    Matching URLs with an Optional Segment Variable   

 Segments  Example URL  Maps To 

 0   /    controller  =  Home action  =  Index  

 1   /Customer    controller  =  Customer action  =  Index  

 2   /Customer/List    controller  =  Customer action  =  List  

 3   /Customer/List/All    controller  =  Customer action  =  List id  =  All  

 4   /Customer/List/All/Delete   No match—too many segments 



CHAPTER 15 ■ URL ROUTING

448

 UNDERSTANDING THE DEFAULT ROUTING CONFIGURATION

 When you add MVC to the  Startup  class, you can do so using the  UseMvcWithDefaultRoute  method. 
This is just a convenience method for setting up the most common routing configuration and is 
equivalent to the following code: 

   ... 
 app.UseMvc(routes => { 
     routes.MapRoute( 
         name: "default", 
         template: "{controller=Home}/{action=Index}/{id?}"); 
 }); 
 ... 

   This default configuration matches URLs that target controller classes and action method by name, with 
an optional  id  segment. If the  controller  or  action  segments are missing, then default values are 
used to target the  Home  controller and the  Index  action method, respectively.   

     Defining Variable-Length Routes 
    Another way of changing the default conservatism of URL patterns is to accept a variable number of URL 
segments. This allows you to route URLs of arbitrary lengths in a single route. You define support for variable 
segments by designating one of the segment variables as a  catchall , done by prefixing it with an asterisk 
(the  *  character), as shown in Listing  15-23 . 

     Listing 15-23.    Designating a Catchall Variable in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

  Figure 15-11.    Detecting when a URL doesn’t contain a value for an optional segment variable       

 



CHAPTER 15 ■ URL ROUTING

449

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute(name: "MyRoute", 
                      template: "{controller=Home}/{action=Index}/{id?}/{*catchall}");  
             }); 
         } 
     } 
 } 

    I have extended the route from the previous example to add a catchall segment variable, which I 
imaginatively called  catchall . This route will now match  any  URL, irrespective of the number of segments 
it contains or the value of any of those segments. The first three segments are used to set values for the 
 controller ,  action , and  id  variables, respectively. If the URL contains additional segments, they are all 
assigned to the  catchall  variable, as shown in Table  15-6 .  

 In Listing  15-24 , I have updated the  Customer  controller so that the  List  action passes the value of the 
 catchall  variable to the view via the model object. 

     Listing 15-24.    Updating an Action Method in the CustomerController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using UrlsAndRoutes.Models; 

   namespace UrlsAndRoutes.Controllers { 
     public class CustomerController : Controller { 

   Table 15-6.    Matching URLs with a Catchall Segment Variable   

 Segments  Example URL  Maps To 

 0   /    controller  =  Home action  =  Index  

 1   /Customer    controller  =  Customer action  =  Index  

 2   /Customer/List    controller  =  Customer action  =  List  

 3   /Customer/List/All    controller  =  Customer action  =  List 
id  =  All  

 4   /Customer/List/All/Delete    controller  =  Customer action  =  List 
id  =  All catchall  =  Delete  

 5   /Customer/List/All/Delete/Perm    controller  =  Customer action  =  List 
id  =  All catchall  =  Delete/Perm  



CHAPTER 15 ■ URL ROUTING

450

           public ViewResult Index() => View("Result", 
             new Result { 
                 Controller = nameof(CustomerController), 
                 Action = nameof(Index) 
             }); 

            public ViewResult List(string id) {  
              Result r = new Result {  
                  Controller = nameof(HomeController),  
                  Action = nameof(List),  
              };  
              r.Data["id"] = id ?? "<no value>";  
              r.Data["catchall"] = RouteData.Values["catchall"];  
              return View("Result", r);  
          }  
     } 
 } 

    To test the catchall segment, run the application and request the following URL: 

   /Customer/List/Hello/1/2/3 

   There is no upper limit to the number of segments that the URL pattern in this route will match. 
Figure  15-12  shows the effect of the catchall segment. Notice that the segments captured by the catchall are 
presented in the form  segment  /  segment  /  segment  and that I am responsible for processing the string to break 
out the individual segments.    

  Figure 15-12.    Using a catchall segment       

 



CHAPTER 15 ■ URL ROUTING

451

     Constraining Routes 
    At the start of the chapter, I described how URL patterns are conservative when they match the number of 
segments in the URL and liberal when they match the content of segments. The previous few sections have 
explained different techniques for controlling the degree of conservatism: making a route match more or 
fewer segments using default values, optional variables, and so on. 

 It is now time to look at how to control the liberalism in matching the  content  of URL segments, namely, 
how to restrict the set of URLs that a route will match against. Listing  15-25  demonstrates the use of a simple 
constraint that limits the URLs that a route will match. 

      Listing 15-25.    Constraining a Route in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute(name: "MyRoute", 
                      template: "{controller=Home}/{action=Index}/{id:int?}");  
             }); 
         } 
     } 
 } 

    Constraints are separated from the segment variable name with a colon (the  :  character). The 
constraint in the listing is  int , and it has been applied to the  id  segment. This is an example of an  inline 
constraint , which is defined as part of the URL pattern applied to a single segment: 

   ... 
 template: "{controller}/{action}/{id: int ?}", 
 ... 

   The  int  constraint only allows the URL pattern to match segments whose value can be parsed to an 
 integer  value. The  id  segment is optional, so the route will match segments that omit the  id  segment, but if 
the segment is present, then it must be an integer value, as summarized in Table  15-7 .  



CHAPTER 15 ■ URL ROUTING

452

 Constraints can also be specified outside of the URL pattern, using the  constraints  argument to the 
 MapRoute  method when defining a route. This technique is useful if you prefer to keep the URL pattern 
separate from its constraints or if you prefer to follow the routing style used by earlier versions of MVC, 
which did not support inline constraints. Listing  15-26  shows the same  integer  constraint on the  id  
segment variable, expressed using a separate constraint. When using this format, the default values are also 
expressed externally. 

      Listing 15-26.    Expressing a Constraint Outside of the URL Pattern in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
  using Microsoft.AspNetCore.Routing.Constraints;  

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute(name: "MyRoute", 
                      template: "{controller}/{action}/{id?}",  
                      defaults: new { controller = "Home", action = "Index" },  
                      constraints: new { id = new IntRouteConstraint() });  
             }); 
         } 
     } 
 } 

    The  constraints  argument to the  MapRoute  method is defined using an anonymous type whose 
property names correspond to the segment variable being constrained. The  Microsoft.AspNetCore.
Routing.Constraints  namespace contains a set of classes that can be used to define individual constraints. 
In Listing  15-26 , the  constraints  argument is configured to use an  IntRouteConstraint  object for the  id  
segment, creating the same effect as the inline constraint shown in Listing  15-25 . 

   Table 15-7.    Matching URLs with a Constraint   

 Example URL  Maps To 

  /    controller  =  Home action  =  Index id = null  

  /Home/CustomVariable/Hello   No match— id  segment cannot be parsed to an  int  value. 

  /Home/CustomVariable/1    controller  =  Home action  =  CustomVariable id = 1  

  /Home/CustomVariable/1/2   No match—too many segments 



CHAPTER 15 ■ URL ROUTING

453

 Table  15-8  describes the complete set of constraint classes in the  Microsoft.AspNetCore.Routing.
Constraints  namespace and their inline equivalents for the constraints that can be applied to single 
segments in the URL pattern, some of which I describe in the sections that follow.  

 ■   Tip    You can restrict access to action methods to requests made with specific HTTP verbs, such as  GET  or 
 POST , using a set of attributes provided by MVC, such as the  HttpGet  and  HttpPost  attributes. See Chapter   17     
for details of using these attributes to handle forms in controllers, and see Chapter   20     for a full list of the 
attributes available.  

    Table 15-8.    Segment-Level Route Constraints   

 Inline Constraint  Description  Class Name 

  alpha   Matches alphabet characters, irrespective 
of case (A–Z, a–z) 

  AlphaRouteConstraint()  

  bool   Matches a value that can be parsed into a 
 bool  

  BoolRouteConstraint()  

  datetime   Matches a value that can be parsed into a 
 DateTime  

  DateTimeRouteConstraint()  

  decimal   Matches a value that can be parsed into a 
 decimal  

  DecimalRouteConstraint()  

  double   Matches a value that can be parsed into a 
 double  

  DoubleRouteConstraint()  

  float   Matches a value that can be parsed into a 
 float  

  FloatRouteConstraint()  

  guid   Matches a value to a globally unique 
identifier 

  GuidRouteConstraint()  

  int   Matches a value that can be parsed into an 
 int  

  IntRouteConstraint()  

  length(len) 
length(min, max)  

 Matches a value with the specified number 
of characters or that is between  min  and 
 max  characters in length (inclusive) 

  LengthRouteConstraint(len) 
LengthRouteConstraint(min, 
max)  

  long   Matches a value that can be parsed into a 
 long  

  LongRouteConstraint()  

  maxlength(len)   Matches a string with no more than  len  
characters 

  MaxLengthRouteConstraint(len)  

  max(val)   Matches an  int  value if the value is less 
than  val  

  MaxRouteConstraint(val)  

  minlength(len)   Matches a string with at least  len  
characters 

  MinLengthRouteConstraint(len)  

  min(val)   Matches an  int  value if the value is more 
than  val  

  MinRouteConstraint(val)  

  range(min, max)   Matches an  int  value if the value is 
between  min  and  max  (inclusive) 

  RangeRouteConstraint(min, max)  

  regex(expr)   Matches a regular expression   RegexRouteConstraint(expr)  

http://dx.doi.org/10.1007/978-1-4842-0397-2_17
http://dx.doi.org/10.1007/978-1-4842-0397-2_20


CHAPTER 15 ■ URL ROUTING

454

     Constraining a Route Using a Regular Expression 
    The constraint that offers the most flexibility is  regex , which matches a segment using a regular expression. 
In Listing  15-27 , I have constrained the controller segment to limit the range of URLs that it will match. 

     Listing 15-27.    Using a Regular Expression to Constrain a Route in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute(name: "MyRoute", 
                      template: "{controller:regex(^H.*)=Home}/{action=Index}/{id?}");  
             }); 
         } 
     } 
 } 

    The constraint I used restricts the route so that it will only match URLs where the  controller  segment 
starts with the letter  H . 

 ■   Note    Default values are applied before constraints are checked. So, for example, if I request the URL  / , 
the default value for  controller , which is  Home , is applied. The constraints are then checked, and since the 
 controller  value begins with  H , the default URL will match the route.  

 Regular expressions can constrain a route so that only specific values for a URL segment will cause a 
match. This is done using the bar ( | ) character, as shown in Listing  15-28 . (I split the URL pattern into two so 
that it will fit onto the page, which you won’t need to worry about in a real project.) 

      Listing 15-28.    Constraining a Route to a Specific Set of Segment Variable Values in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 

   namespace UrlsAndRoutes { 

       public class Startup { 



CHAPTER 15 ■ URL ROUTING

455

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute(name: "MyRoute", 
                    template: "{controller:regex(^H.*)=Home}/"  
                      + "{action:regex(^Index$|^About$)=Index}/{id?}");  
             }); 
         } 
     } 
 } 

    This constraint will allow the route to match only URLs where the value of the action segment is  Index  
or  About . Constraints are applied together, so the restrictions imposed on the value of the  action  variable are 
combined with those imposed on the  controller  variable. This means that the route in Listing  15-28  will match 
URLs only when the  controller  variable begins with the letter  H  and the  action  variable is  Index  or  About .  

     Using Type and Value Constraints 
       Most of the constraints are used to restrict routes so they only match URLs with segments that can be 
converted to specified types or have a specific format. The  int  constraint I used at the start of this section 
is a good example: it will match routes only when the value of the constrained segment can be parsed to a 
.NET  int  value. Listing  15-29  demonstrates the use of the  range  constraint, which restricts a route so that it 
matches URLs only when a segment value can be converted to an  int  and falls between specified values. 

     Listing 15-29.    Constraining a Segment Based on Type and Value in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute(name: "MyRoute", 
                      template: "{controller=Home}/{action=Index}/{id:range(10,20)?}");  



CHAPTER 15 ■ URL ROUTING

456

             }); 
         } 
     } 
 } 

    The constraint in this example has been applied to the optional  id  segment. The constraint will be 
ignored if the request URL doesn’t have at least three segments. If the  id  segment is present, the route will 
match the URL only if the segment value can be converted to an  int  and the value is between 10 and 20. The 
range constraint is inclusive, meaning that values of 10 and 20 are considered to be within the range.  

     Combining Constraints 
    If you need to apply multiple constraints to a single segment, then you chain them together so that each 
constraint is separated by a colon, as shown in Listing  15-30 . 

      Listing 15-30.    Combining Inline Constraints in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute(name: "MyRoute", 
                      template: "{controller=Home}/{action=Index}"  
                          + "/{id:alpha:minlength(6)?}");  
             }); 
         } 
     } 
 } 

    In this listing, I have applied both the  alpha  and  minlength  constraints to the  id  segment. The question 
mark that denotes an optional segment is applied after all of the constraints. The effect of combining these 
constraints is that the route will match URLs only where the  id  segment is omitted (because it is optional) or 
when it is present and contains at least six alphabet characters. 

 If you are not using inline constraints, then you must use the  Microsoft.AspNetCore.Routing.
CompositeRouteConstraint  class, which allows multiple constraints to be associated with a single property 
in an anonymously typed object. Listing  15-31  shows the combination of constraints that I used in 
Listing  15-30 . 



CHAPTER 15 ■ URL ROUTING

457

     Listing 15-31.    Combining Separate Constraints in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 
  using Microsoft.AspNetCore.Routing;  

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute(name: "MyRoute", 
                      template: "{controller}/{action}/{id?}",  
                      defaults: new { controller = "Home", action = "Index" },  
                      constraints: new {  
                          id = new CompositeRouteConstraint(  
                              new IRouteConstraint[] {  
                                  new AlphaRouteConstraint(),  
                                  new MinLengthRouteConstraint(6)  
                              })  
                      });  
             }); 
         } 
     } 
 } 

    The constructor for the  CompositeRouteConstraint  class accepts an enumeration of objects that 
implement the  IRouteConstraint  objects, which is the interface that defines route constraints. The routing 
system will allow the route to match a URL only if all the constraints are satisfied.  

     Defining a Custom Constraint 
    If the standard constraints are not sufficient for your needs, you can define your own custom constraints by 
implementing the  IRouteConstraint  interface, which is defined in the  Microsoft.AspNetCore.Routing  
namespace. To demonstrate this feature, I added an  Infrastructure  folder to the example project and 
created a new class file called  WeekDayConstraint.cs , the contents of which are shown in Listing  15-32 . 

     Listing 15-32.    The Contents of the WeekDayConstraint.cs File in the Infrastructure Folder   

  using Microsoft.AspNetCore.Http; 
 using Microsoft.AspNetCore.Routing; 
 using System.Linq; 



CHAPTER 15 ■ URL ROUTING

458

   namespace UrlsAndRoutes.Infrastructure { 
     public class WeekDayConstraint : IRouteConstraint { 
         private static string[] Days = new[] { "mon", "tue", "wed", "thu", 
                                                "fri", "sat", "sun" }; 

           public bool Match(HttpContext httpContext, IRouter route, 
             string routeKey, RouteValueDictionary values, 
             RouteDirection routeDirection) { 

               return Days.Contains(values[routeKey]?.ToString().ToLowerInvariant()); 
         } 
     } 
 } 

    The  IRouteConstraint  interface defines the  Match  method, which is called to allow a constraint to 
decide whether a request should be matched by the route. The parameters for the  Match  method provide 
access to the request from the client, the route, the name of the segment that is being constrained, the 
segment variables that have been extracted from the URL, and whether the request is to check for an 
incoming or outgoing URL (I explain outgoing URLs in Chapter   16    ). 

 In the example, I use the  routeKey  parameter to get the value of the segment variable to which the 
constraint has been applied from the  values  parameter, convert it to a lowercase string, and see whether it 
matches one of the days of the week that are defined in the static  Days  field. Listing  15-33  applies the new 
constraint to the example route using the separate technique. 

     Listing 15-33.    Applying a Custom Constraint in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 
 using Microsoft.AspNetCore.Routing; 
  using UrlsAndRoutes.Infrastructure;  

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute(name: "MyRoute", 
                     template: "{controller}/{action}/{id?}", 
                     defaults: new { controller = "Home", action = "Index" }, 
                      constraints: new { id = new WeekDayConstraint() });  
             }); 
         } 
     } 
 } 

http://dx.doi.org/10.1007/978-1-4842-0397-2_16


CHAPTER 15 ■ URL ROUTING

459

    This route will match a URL only if the  id  segment is absent (such as  /Customer/List ) or if it matches 
one of the days of the week defined in the constraint class (such as  /Customer/List/Fri ). 

   Defining an Inline Custom Constraint 
 Setting up a custom constraint so that it can be used inline requires an additional configuration step, as 
shown in Listing  15-34 . 

     Listing 15-34.    Using a Custom Constraint Inline in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 
 using Microsoft.AspNetCore.Routing; 
 using UrlsAndRoutes.Infrastructure; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.Configure<RouteOptions>(options =>  
                  options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint)));  
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute(name: "MyRoute", 
                      template: "{controller=Home}/{action=Index}/{id:weekday?}");  
             }); 
         } 
     } 
 } 

    In the  ConfigureService  method I configure the  RouteOptions  object, which controls some of the 
behaviors of the routing system. The  ConstraintMap  property returns the dictionary that is used to translate 
the names of inline constraints to the  IRouteConstraint  implementation classes that provide the constraint 
logic. I add a new mapping to the dictionary so that I can refer to the  WeekDayConstraint  class inline as 
 weekday , like this: 

   ... 
 template: "{controller=Home}/{action=Index}/{id: weekday ?}", 
 ... 

   The effect of the constraint is the same, but setting up the mapping allows custom classes to be used 
inline.    



CHAPTER 15 ■ URL ROUTING

460

     Using Attribute Routing 
       All the examples so far in this chapter have been defined using a technique known as  convention-based 
routing . MVC also supports for a technique known as  attribute routing , in which routes are defined by C# 
attributes that are applied directly to the controller classes. In the sections that follow, I show you how to 
create and configure routes using attributes, which can be mixed freely with the convention-based routes 
shown in earlier examples. 

     Preparing for Attribute Routing 
 Attribute routing is enabled when you call the  UseMvc  method in the  Startup.cs  file. MVC examines the 
controller classes in the application, finds any that have routing attributes, and creates routes for them. 

 For this section of the chapter, I have returned the example application to the default routing 
configuration described in the “Understanding the Default Routing Configuration” sidebar, as shown in 
Listing  15-35 . 

     Listing 15-35.    Using the Default Routing Configuration in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 
 using Microsoft.AspNetCore.Routing; 
 using UrlsAndRoutes.Infrastructure; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.Configure<RouteOptions>(options => 
                 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint))); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

    The default route will match URLs using the following pattern: 

   {controller}/{action}/{id?} 



CHAPTER 15 ■ URL ROUTING

461

        Applying Attribute Routing 
 The  Route  attribute is used to specify routes for individual controllers and actions. In Listing  15-36 , I have 
applied the  Route  attribute to the  CustomerController  class.     

     Listing 15-36.    Applying the Route Attribute in the CustomerController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using UrlsAndRoutes.Models; 

   namespace UrlsAndRoutes.Controllers { 
     public class CustomerController : Controller { 

            [Route("myroute")]  
         public ViewResult Index() => View("Result", 
             new Result { 
                 Controller = nameof(CustomerController), 
                 Action = nameof(Index) 
             }); 

           public ViewResult List(string id) { 
             Result r = new Result { 
                 Controller = nameof(HomeController), 
                 Action = nameof(List), 
             }; 
             r.Data["id"] = id ?? "<no value>"; 
             r.Data["catchall"] = RouteData.Values["catchall"]; 
             return View("Result", r); 
         } 
     } 
 } 

    The  Route  attribute works by defining a route to the action method or controller it is applied to. In the 
listing, I applied the attribute to the  Index  action method and specified  myroute  as the route that should 
be used. The effect is to change the set of routes that are used to reach the action methods defined by the 
 Customer  controller, as described in Table  15-9 .  

 There are two important points to note. The first is that when you use the  Route  attribute, the value you 
provide to configure the attribute is used to define a complete route so that  myroute  becomes the complete 
URL to reach the  Index  action method. The second point to note is that using the  Route  attribute prevents 
the default routing configuration from being used so that the  Index  action method can no longer be reached 
by using the  /Customer/Index  URL. 

   Table 15-9.    The Routes for the Customer Controller   

 Route  Description 

  /Customer/List   This URL targets the  List  action method, relying on the default route in the 
 Startup.cs  file. 

  /myroute   This URL targets the  Index  action method. 



CHAPTER 15 ■ URL ROUTING

462

   Changing the Name of an Action Method 
 Defining a unique route for a single action method isn’t useful in most applications, but the  Route  attribute 
can also be used more flexibly. In Listing  15-37 , I have used the special  [controller]  token in the route to 
refer to the controller and set up the base section of the route. 

 ■   Tip    You can also change the name of an action using the  ActionName  attribute, which I describe in 
Chapter   31    .  

      Listing 15-37.    Using the Route Attribute to Rename an Action in the CustomerController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using UrlsAndRoutes.Models; 

   namespace UrlsAndRoutes.Controllers { 
     public class CustomerController : Controller { 

            [Route("[controller]/MyAction")]  
         public ViewResult Index() => View("Result", 
             new Result { 
                 Controller = nameof(CustomerController), 
                 Action = nameof(Index) 
             }); 

           public ViewResult List(string id) { 
             Result r = new Result { 
                 Controller = nameof(HomeController), 
                 Action = nameof(List), 
             }; 
             r.Data["id"] = id ?? "<no value>"; 
             r.Data["catchall"] = RouteData.Values["catchall"]; 
             return View("Result", r); 
         } 
     } 
 } 

    Using  [controller]  token in the argument for the  Route  attribute is rather like using a  nameof  
expression and allows for the route to the controller to be specified without hard-coding the class name. 
Table  15-10  describes the effect of the attribute in Listing  15-37 .   

   Table 15-10.    The Routes for the Customer Controller   

 Route  Description 

  /Customer/List   This URL targets the  List  action method. 

  /Customer/MyAction   This URL targets the  Index  action method. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_31


CHAPTER 15 ■ URL ROUTING

463

   Creating a More Complex Route 
 The  Route  attribute can also be applied to the controller class, allowing for the structure of the route to be 
defined, as shown in Listing  15-38 . 

     Listing 15-38.    Applying the Route Attribute to the Controller in the CustomerController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using UrlsAndRoutes.Models; 

   namespace UrlsAndRoutes.Controllers { 

        [Route("app/[controller]/actions/[action]/{id?}")]  
     public class CustomerController : Controller { 

           public ViewResult Index() => View("Result", 
             new Result { 
                 Controller = nameof(CustomerController), 
                 Action = nameof(Index) 
             }); 

           public ViewResult List(string id) { 
             Result r = new Result { 
                 Controller = nameof(HomeController), 
                 Action = nameof(List), 
             }; 
             r.Data["id"] = id ?? "<no value>"; 
             r.Data["catchall"] = RouteData.Values["catchall"]; 
             return View("Result", r); 
         } 
     } 
 } 

    This route defines mixes static segments and variable segments and uses the  [controller]  and 
 [action]  tokens to refer to the names of the controller class and the action methods. Table  15-11  shows the 
effect of the route.    

   Table 15-11.    The Routes for the Customer Controller   

 Route  Description 

  app/customer/actions/index   This URL targets the  Index  action method. 

  app/customer/actions/index/myid   This URL targets the  Index  action method with the optional  id  
segment set to  myid . 

  app/customer/actions/list   This URL targets the  List  action method. 

  app/customer/actions/list/myid   This URL targets the  List  action method with the optional  id  
segment set to  myid . 



CHAPTER 15 ■ URL ROUTING

464

     Applying Route Constraints 
 Routes defined using attributes can be constrained just like those defined in the  Startup.cs  file, using 
the same inline technique used for convention-based routes. In Listing  15-39 , I have applied the custom 
constraint created earlier in the chapter to the optional  id  segment defined with the  Route  attribute. 

     Listing 15-39.    Constraining a Route in the CustomerController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using UrlsAndRoutes.Models; 

   namespace UrlsAndRoutes.Controllers { 

        [Route("app/[controller]/actions/[action]/{id:weekday?}")]  
     public class CustomerController : Controller { 

           public ViewResult Index() => View("Result", 
             new Result { 
                 Controller = nameof(CustomerController), 
                 Action = nameof(Index) 
             }); 

           public ViewResult List(string id) { 
             Result r = new Result { 
                 Controller = nameof(HomeController), 
                 Action = nameof(List), 
             }; 
             r.Data["id"] = id ?? "<no value>"; 
             r.Data["catchall"] = RouteData.Values["catchall"]; 
             return View("Result", r); 
         } 
     } 
 } 

    You can use all the constraints described in Table  15-8  or, as shown in the listing, use custom 
constraints that have been registered with the  RouteOptions  service. Multiple constraints can be applied by 
chaining them together and separating them with colons.   

     Summary 
 In this chapter, I took an in-depth look at the routing system. You have seen how routes are defined by 
convention or with attributes. You have seen how incoming URLs are matched and handled and how to 
customize routes by changing the way that they match URL segments and by using default values and 
optional segments. I also showed you how to constrain routes to narrow the range of requests that they will 
match, both using built-in constraints and using custom constraint classes. 

 In the next chapter, I show you how to generate outgoing URLs from routes in your views and how to use 
the  areas  feature, which relies on the routing system and which can be used to manage large and complex 
MVC applications.     



465© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_16

    CHAPTER 16   

 Advanced Routing Features                          

 In the previous chapter, I showed you how to use the routing system to handle incoming URLs, but this is 
only part of the story. You also need to be able use your URL schema to generate  outgoing URLs  you can 
embed in your views so that users can click links and submit forms back to your application in a way that will 
target the correct controller and action. 

 In this chapter, I show you different techniques for generating outgoing URLs, how to customize the 
routing system by replacing the standard MVC routing implementation classes, and how to use the MVC 
 areas  feature, which allows you to break a large and complex MVC application into manageable chunks. I 
finish this chapter with some best-practice advice about URL schemas in MVC applications. Table  16-1  puts 
advanced routing features in context.  

   Table 16-1.    Putting Advanced Routing Features in Context   

 Question  Answer 

 What is it?  The routing system provides features that go beyond 
matching the URLs for HTTP requests. There is also support 
for generating URLs in views, replacing the built-in routing 
functionality with custom classes, and structuring the 
application into isolated sections. 

 Why is it useful?  Each feature is useful for a different reason. Being able to 
generate URLs makes it easy to change the URL schema without 
having to update all of your views, being able to use custom 
classes allows the routing system to be tailored to your needs, 
and being able to structure the application makes it easier to 
build complex projects. 

 How is it used?  See the sections in this chapter for details. 

 Are there any pitfalls or limitations?  The routing configuration for a complex application can 
become hard to manage. 

 Are there any alternatives?  No. The routing system is an integral part of ASP.NET. 

(continued)



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

466

 Table  16-2  summarizes the chapter.  

   Table 16-2.    Chapter Summary   

 Problem  Solution  Listing 

 Generate an anchor element with a URL  Use the  asp-action  and  asp-controller  
attributes 

 1–5 

 Provide values for routing segments  Use attributes with the  asp-route-  prefix  6–7 

 Generate fully qualified URLs  Use the  asp-procotol ,  asp-host , and 
 asp-fragment  attributes 

 8 

 Select a route to generate a URL  Use the  asp-route  attribute  9–10 

 Generate a URL without an HTML element  Use the  Url.Action  helper method in a view or 
in an action method 

 11–12 

 Customize the routing system  Use the  Configure  method in the  Startup  class  13 

 Create a custom routing class  Implement the  IRouter  interface  14–21 

 Break an application into functional sections  Create areas and use the  Area  attribute  22–28 

 Question  Answer 

 Has it changed since MVC 5?  In addition to the basic changes described in Chapter   15    , the 
more advanced features have changed in the following ways: 

 •    Custom routing classes implement the  IRouter  interface, 
rather than derive from the  RouteBase  classes used in 
earlier MVC versions. 

 •    The classes that implement routing are now responsible 
for providing delegates for handling requests in order to 
produce a response and not just for matching URLs. 

 •    When using areas, controllers are assumed to be in 
the main part of the application unless they have been 
decorated with the  Area  attribute, even when the class file 
is created in the area’s  Controllers  folder. 

Table 16-1. (continued)

     Preparing the Example Project 
 I am going to continue to use the UrlsAndRoutes project from the previous chapter. The only change 
required is in the  Startup  class, where I have replaced the  UseMvcWithDefaultRoute  method with an explicit 
route that has the same effect, as shown in Listing  16-1 . 

 ■   Tip   If you don’t want to re-create the examples, you can download the Visual Studio projects for each 
chapter from Apress.com.  

http://dx.doi.org/10.1007/978-1-4842-0397-2_15


CHAPTER 16 ■ ADVANCED ROUTING FEATURES

467

     Listing 16-1.    Changing the Routing Configuration in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 
 using Microsoft.AspNetCore.Routing; 
 using UrlsAndRoutes.Infrastructure; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.Configure<RouteOptions>(options => 
                 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint))); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
              app.UseMvc(routes => {  
                  routes.MapRoute(  
                      name: "default",  
                      template: "{controller=Home}/{action=Index}/{id?}");  
              });  
         } 
     } 
 } 

    If you start the application, the browser will request the default URL, which will be sent to the  Index  
action on the  Home  controller, as shown in Figure  16-1 .   

  Figure 16-1.    Running the example application       

 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

468

     Generating Outgoing URLs in Views 
    In almost every MVC application, you will want to allow the user to navigate from one view to another, which 
will usually rely on including a link in the first view that targets the action method that generates the second 
view. It is tempting to just add a static  a  element (known as an  anchor element ) whose  href  attribute targets 
the action method, like this: 

   <a href=" /Home/CustomVariable ">This is an outgoing URL</a> 

   Assuming that the application is using the default routing configuration, this HTML element creates a 
link that will target the  CustomVariable  action method on the  Home  controller. Manually defined URLs like 
this one are quick and simple to create. They are also extremely dangerous, and you will break all the URLs 
you have hard-coded when you change the URL schema for your application. You then must trawl through 
all the views in your application and update all the references to your controllers and action methods, a 
process that is tedious, error-prone, and difficult to test. A better alternative is to use the routing system to 
generate outgoing URLs, which ensures that the URL scheme is used to produce the URLs dynamically and 
in a way that is guaranteed to reflect the URL schema of the application. 

     Generating Outgoing Links 
    The simplest way to generate an outgoing URL in a view is to use the anchor tag helper, which will generate 
the  href  attribute for an HTML  a  element, as illustrated by Listing  16-2 , which shows an addition I made to 
the  /Views/Shared/Result.cshtml  view. 

 ■   Tip   I explain how tag helpers work in detail in Chapter   23    .  

     Listing 16-2.    Using the Anchor Tag Helper in the Result.cshtml File   

  @model Result 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Routing</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-bordered table-striped table-condensed"> 
         <tr><th>Controller:</th><td>@Model.Controller</td></tr> 
         <tr><th>Action:</th><td>@Model.Action</td></tr> 
         @foreach (string key in Model.Data.Keys) { 
             <tr><th>@key :</th><td>@Model.Data[key]</td></tr> 
         } 
     </table> 
      <a asp-action="CustomVariable">This is an outgoing URL</a>  
 </body> 
 </html> 

http://dx.doi.org/10.1007/978-1-4842-0397-2_23


CHAPTER 16 ■ ADVANCED ROUTING FEATURES

469

    The  asp-action  attribute is used to specify the name of the action method that the URL in the  href  
attribute should target. You can see the result by starting the application, as shown in Figure  16-2 .  

  Figure 16-2.    Using a tag helper to generate a link       

 The tag helper sets the  href  attribute on the  a  element using the current routing configuration. If you 
inspect the HTML sent to the browser, you will see that it contains the following element: 

   <a href=" /Home/CustomVariable ">This is an outgoing URL</a> 

   This may seem like a lot of additional effort to re-create the manually defined URL I showed you earlier, 
but the benefit of this approach is that it automatically responds to changes in the routing configuration. To 
demonstrate, I have added a new route to the  Startup.cs  file, as shown in Listing  16-3 . 

      Listing 16-3.    Adding a Route to the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 
 using Microsoft.AspNetCore.Routing; 
 using UrlsAndRoutes.Infrastructure; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.Configure<RouteOptions>(options => 
                 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint))); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 

 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

470

             app.UseStaticFiles(); 
             app.UseMvc(routes => { 

                    routes.MapRoute(  
                      name: "NewRoute",  
                      template: "App/Do{action}",  
                      defaults: new { controller = "Home" });  

                   routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}/{id?}"); 
             }); 
         } 
     } 
 } 

    The new route changes the URL schema for requests that target the  Home  controller. If you start the app, 
you will see that this change is reflected in the HTML that is generated by the  ActionLink  HTML helper 
method, as follows: 

   <a href=" /App/DoCustomVariable ">This is an outgoing URL</a> 

   Generating links using a tag helper addresses an important maintenance issue. I am able to change the 
routing schema and have the outgoing links in the views reflect the change automatically without having to 
manually edit the views in the application. 

 When you click the link, the outgoing URL is used to create an incoming HTTP request, and the 
same route is then used to target the action method and controller that will handle the request, as 
shown in Figure  16-3 .  

  Figure 16-3.    The effect of clicking a link is to make an outgoing URL into an incoming request.       

 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

471

 UNDERSTANDING OUTBOUND URL ROUTE MATCHING

 You have seen how changing the routes that define your URL schema changes the way that outgoing 
URLs are generated. Applications will usually define several routes, and it is important to understand 
how they are selected for URL generation. The routing system processes the routes in the order that 
they were defined, and each route is inspected in turn to see whether it is a match, which requires 
these three conditions to be met:

•    A value must be available for every segment variable defined in the URL pattern. To find 
values for each segment variable, the routing system looks first at the values you have 
provided (using the properties of an anonymous type), then at the variable values for 
the current request, and finally at the default values defined in the route. (I return to the 
second source of these values later in this chapter.)  

•   None of the values provided for the segment variables may disagree with the default-
only variables defined in the route. These are variables for which default values have 
been provided but which do not occur in the URL pattern. For example, in this route 
definition,  myVar  is a default-only variable:    

             routes.MapRoute("MyRoute", "{controller}/{action}", 
               new { myVar = "true" }); 

   For this route to be a match, I must take care to not supply a value for  myVar  or to make sure that the 
value I do supply matches the default value.

•    The values for all the segment variables must satisfy the route constraints. See the 
“Constraining Routes” section in the previous chapter for examples of different kinds of 
constraints.    

 To be clear, the routing system doesn’t try to find the route that provides the  best  matching route. It 
finds only the  first  match, at which point it uses the route to generate the URL; any subsequent routes 
are ignored. For this reason, you should define your most specific routes first. It is important to check 
your outgoing URL generation. If you try to generate a URL for which no matching route can be found, 
you will create a link that contains an empty  href  attribute, like this: 

      <a href="">This is an outgoing URL</a> 

   The link will render in the view properly but won’t function as intended when the user clicks it. If you 
are generating just the URL (which I show you how to do later in the chapter), then the result will be 
 null , which renders as the empty string in views. You can exert some control over route matching by 
using named routes. See the “Generating a URL from a Specific Route” section later in this chapter 
for details.  



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

472

   Targeting Other Controllers 
 When you specify the  asp-action  attribute on an  a  element, the tag helper assumes you want to target an 
action in the same controller that has caused the view to be rendered. To create an outgoing URL that targets 
a  different  controller, you can use the  asp-controller  attribute, as shown in Listing  16-4 . 

     Listing 16-4.    Targeting a Different Controllers in the Result.cshtml File   

  @model Result 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Routing</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-bordered table-striped table-condensed"> 
         <tr><th>Controller:</th><td>@Model.Controller</td></tr> 
         <tr><th>Action:</th><td>@Model.Action</td></tr> 
         @foreach (string key in Model.Data.Keys) { 
             <tr><th>@key :</th><td>@Model.Data[key]</td></tr> 
         } 
     </table> 
      <a asp-controller="Admin" asp-action="Index">This is an outgoing URL</a>  
 </body> 
 </html> 

    When you render the view, you will see the following HTML generated: 

   <a href=" /Admin ">This targets another controller</a> 

   The request for a URL that targets the  Index  action method on the  Admin  controller has been expressed 
as  /Admin  by the tag helper. The routing system knows that the route defined in the application will use the 
 Index  action method by default, allowing it to omit unneeded segments. 

 The routing system includes routes that have been defined using the  Route  attribute when determining 
how to target a given action method. In Listing  16-5 , the  asp-controller  attribute targets the  Index  action in 
the  Customer  controller, to which the  Route  attribute was applied in Chapter   15    . 

     Listing 16-5.    Targeting an Action Decorated with the Route Attribute in the Result.cshtml File   

  @model Result 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Routing</title> 

http://dx.doi.org/10.1007/978-1-4842-0397-2_15


CHAPTER 16 ■ ADVANCED ROUTING FEATURES

473

     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-bordered table-striped table-condensed"> 
         <tr><th>Controller:</th><td>@Model.Controller</td></tr> 
         <tr><th>Action:</th><td>@Model.Action</td></tr> 
         @foreach (string key in Model.Data.Keys) { 
             <tr><th>@key :</th><td>@Model.Data[key]</td></tr> 
         } 
     </table> 
      <a asp-controller="Customer" asp-action="Index">This is an outgoing URL</a>  
 </body> 
 </html> 

    The link that is generated is as follows: 

   <a href=" /app/Customer/actions/Index ">This is an outgoing URL</a> 

   This corresponds to the  Route  attribute I applied to the  Customer  controller in Chapter   15    : 

   ... 
  [Route("app/[controller]/actions/[action]/{id:weekday?}")]  
 public class CustomerController : Controller { 
 ... 

      Passing Extra Values 
 You can pass values for segment variables to the routing system by defining attributes whose name starts 
with  asp-route-  followed by the segment name so that  asp-route-id  is used to set the value of the  id  
segment, as shown in Listing  16-6 . 

     Listing 16-6.    Supplying Values for Segment Variables in the Result.cshtml File   

  @model Result 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Routing</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-bordered table-striped table-condensed"> 
         <tr><th>Controller:</th><td>@Model.Controller</td></tr> 
         <tr><th>Action:</th><td>@Model.Action</td></tr> 
         @foreach (string key in Model.Data.Keys) { 
             <tr><th>@key :</th><td>@Model.Data[key]</td></tr> 
         } 

http://dx.doi.org/10.1007/978-1-4842-0397-2_15


CHAPTER 16 ■ ADVANCED ROUTING FEATURES

474

     </table> 
      <a asp-controller="Home" asp-action="Index" asp-route-id="Hello">  
         This is an outgoing URL 
     </a> 
 </body> 
 </html> 

    I have supplied a value for a segment variable called  id . If the application uses the route shown in 
Listing  16-3 , then the following HTML will be rendered in the view: 

   <a href=" /App/DoIndex?id=Hello ">This is an outgoing URL</a> 

   Notice that the segment value has been added as part of the query string to fit into the URL pattern 
described by the route. This is because there is no segment variable that corresponds to  id  in that route. To 
address this, I edited the routes in the  Startup.cs  file to leave only a route that  does  have an  id  segment, as 
shown in Listing  16-7 . 

     Listing 16-7.    Editing the Routes in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 
 using Microsoft.AspNetCore.Routing; 
 using UrlsAndRoutes.Infrastructure; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.Configure<RouteOptions>(options => 
                 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint))); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 

                    //routes.MapRoute(  
                  //    name: "NewRoute",  
                  //    template: "App/Do{action}",  
                  //    defaults: new { controller = "Home" });  

                   routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}/{id?}"); 
             }); 
         } 
     } 
 } 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

475

    Run the application again and you will see that tag helper produces the following HTML element, in 
which the value of the  id  property is included as a URL segment: 

   <a href=" /Home/Index/Hello ">This is an outgoing URL</a> 

   UNDERSTANDING SEGMENT VARIABLE REUSE

    When I described the way that routes are matched for outbound URLs, I explained that when trying to 
find values for each of the segment variables in a route’s URL pattern, the routing system will look at the 
values from the current request. This is a behavior that confuses many programmers and can lead to a 
lengthy debugging session. 

 Imagine the application has a single route, as follows: 

    ... 
 app.UseMvc(routes => { 
     routes.MapRoute(name: "MyRoute", 
         template: "{controller}/{action}/{color}/{page}"); 

   }); 
 ... 

    Now imagine that a user is currently at the URL  /Home/Index/Red/100 , and I render a link as follows: 

   ... 
 <a asp-controller="Home" asp-action="Index" asp-route-page="789"> 
     This is an outgoing URL 
 </a> 
 ... 

   You might expect that the routing system would be unable to match the route because I have not 
supplied a value for the  color  segment variable and there is no default value defined. You would, 
however, be wrong. The routing system  will  match against the route I defined. It will generate the 
following HTML: 

   ... 
 <a href="/Home/Index/Red/789">This is an outgoing URL</a> 
 ... 

   The routing system is keen to make a match against a route, to the extent that it will reuse segment 
variable values from the  incoming  URL when generating an  outgoing  URL. In this case, I end up with the 
value  Red  for the  color  variable because of the URL from which my imaginary user started. 

 This is  not  a behavior of last resort. The routing system will apply this technique as part of its regular 
assessment of routes, even if there is a subsequent route that would match without requiring values 
from the current request to be reused. 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

476

 I strongly recommend that you do not rely on this behavior and that you supply values for all of the 
segment variables in a URL pattern. Relying on this behavior will not only make your code harder to 
read, but you end up making assumptions about the order in which your users make requests, which is 
something that will ultimately bite you as your application enters maintenance.   

   Generating Fully Qualified URLs 
 All of the links that have been generated so far contained relative URLs, but the anchor element tag helper 
can also generate fully qualified URLs, as shown in Listing  16-8 . 

     Listing 16-8.    Generating a Fully Qualified URL  in the Result.cshtml File   

  @model Result 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Routing</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-bordered table-striped table-condensed"> 
         <tr><th>Controller:</th><td>@Model.Controller</td></tr> 
         <tr><th>Action:</th><td>@Model.Action</td></tr> 
         @foreach (string key in Model.Data.Keys) { 
             <tr><th>@key :</th><td>@Model.Data[key]</td></tr> 
         } 
     </table> 
      <a asp-controller="Home" asp-action="Index" asp-route-id="Hello"  
             asp-protocol="https" asp-host="myserver.mydomain.com"  
             asp-fragment="myFragment">  
          This is an outgoing URL  
      </a>  
 </body> 
 </html> 

    The  asp-protocol ,  asp-host , and  asp- fragment attributes are used to specify the protocol (https in the 
listing), the name of the server ( myserver.mydomain.com ), and the URL fragment ( myFragment ). These values 
are combined with the output from the routing system to create a fully qualified URL, which you can see if 
you run the application and examine the HTML sent to the browser. 

   <a href="https://myserver.mydomain.com/Home/Index/Hello#myFragment"> 
     This is an outgoing URL 
 </a> 

   Be careful when you use fully qualified URLs because they create dependencies on the application 
infrastructure and, when the infrastructure changes, you will have to remember to make corresponding 
changes to the MVC views.  



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

477

   Generating a URL from a Specific Route 
 In the previous examples, the routing system selected the route that will be used to generate a URL. If it is 
important to generate a URL in a specific format, then you can specify the route that will be used to generate 
an outgoing URL. To demonstrate how this works, I added a new route to the  Startup.cs  file so that there 
are two routes in the example application, as shown in Listing  16-9 . 

     Listing 16-9.    Adding a Route in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 
 using Microsoft.AspNetCore.Routing; 
 using UrlsAndRoutes.Infrastructure; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.Configure<RouteOptions>(options => 
                 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint))); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}/{id?}"); 

                    routes.MapRoute(  
                      name: "out",  
                      template: "outbound/{controller=Home}/{action=Index}");  
             }); 
         } 
     } 
 } 

    The view shown in Listing  16-10  contains two anchor elements, each of which specifies the same 
controller and action. The difference is that the second element uses the  asp-route  tag helper attribute to 
specify that the  out  route should be used to generate the URL for the  href  attribute. 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

478

     Listing 16-10.    Generating URLs in the Result.cshtml File   

  @model Result 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Routing</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-bordered table-striped table-condensed"> 
         <tr><th>Controller:</th><td>@Model.Controller</td></tr> 
         <tr><th>Action:</th><td>@Model.Action</td></tr> 
         @foreach (string key in Model.Data.Keys) { 
             <tr><th>@key :</th><td>@Model.Data[key]</td></tr> 
         } 
     </table> 
      <a asp-controller="Home" asp-action="CustomVariable">This is an outgoing URL</a>  
      <a asp-route="out">This is an outgoing URL</a>  
 </body> 
 </html> 

    The  asp-route  attribute can be used only when the  asp-controller  and  asp-action  attributes are 
absent, which means that you can only select a specific route for the controller and action that caused the 
view to be rendered. If you run the example and request the  /Home/CustomVariable  URL, you will see the 
two different URLs that the routes generate. 

   <a href="/Home/CustomVariable">This is an outgoing URL</a> 
 <a href="/outbound">This is an outgoing URL</a> 

   THE CASE AGAINST NAMED ROUTES

 The problem with relying on route names to generate outgoing URLs is that doing so breaks through the 
separation of concerns that is so central to the MVC design pattern. When generating a link or a URL in 
a view or action method, I want to focus on the action and controller that the user will be directed to, 
not the format of the URL that will be used. By bringing knowledge of the different routes into the views 
or controllers, I am creating dependencies that could be avoided. In my own projects, I tend to avoid 
naming my routes (by specifying  null  for the  name  argument) and prefer to use code comments to 
remind myself of what each route is intended to do.    



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

479

     Generating URLs (and Not Links) 
 The limitation of tag helpers is that they transform HTML elements and cannot be readily repurposed if you 
need to generate a URL for your application without the surrounding HTML. 

 MVC provides a helper class that can be used to create URLs directly, available through the  Url.Action  
method, as shown in Listing  16-11 . 

      Listing 16-11.    Generating a URL in the Result.cshtml File   

  @model Result 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Routing</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-bordered table-striped table-condensed"> 
         <tr><th>Controller:</th><td>@Model.Controller</td></tr> 
         <tr><th>Action:</th><td>@Model.Action</td></tr> 
         @foreach (string key in Model.Data.Keys) { 
             <tr><th>@key :</th><td>@Model.Data[key]</td></tr> 
         } 
     </table> 
      <p>URL: @Url.Action("CustomVariable", "Home", new { id = 100 })</p>  
 </body> 
 </html> 

    The arguments to the  Url.Action  method specify the action method, the controller, and the values for 
any segment variables. The result of the addition in Listing  16-11  generates the following output: 

   <p>URL: /Home/CustomVariable/100</p> 

     Generating URLs in Action Methods 
 The  Url.Action  method can also be used in action methods to create URLs in C# code. In Listing  16-12 , I 
have modified one of the action methods of the  Home  controller to generate a URL using  Url.Action . 

     Listing 16-12.    Generating a URL in an Action Method in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using UrlsAndRoutes.Models; 

   namespace UrlsAndRoutes.Controllers { 

       public class HomeController : Controller { 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

480

           public ViewResult Index() => View("Result", 
             new Result { 
                 Controller = nameof(HomeController), 
                 Action = nameof(Index) 
             }); 

           public ViewResult CustomVariable(string id) { 
             Result r = new Result { 
                 Controller = nameof(HomeController), 
                 Action = nameof(CustomVariable), 
             }; 
             r.Data["id"] = id ?? "<no value>"; 
              r.Data["url"] = Url.Action("CustomVariable", "Home", new { id = 100 });  
             return View("Result", r); 
         } 
     } 
 } 

    If you run the example and request the  /Home/CustomVariable  URL, you will see that there is a row in 
the table that displays the URL, as shown in Figure  16-4 .     

  Figure 16-4.    Generating a URL in an action method       

     Customizing the Routing System 
    You have seen how flexible and configurable the routing system is, but if it does not meet your requirements, 
you can customize the behavior. In this section, I will show you the different ways this can be done. 

 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

481

     Changing the Routing System Configuration 
 In Chapter   15    , I showed you how to configure the  RouteOptions  object in the  Startup.cs  file to set up a 
custom route constraint. The  RouteOptions  object is also used to configure some routing features, using the 
properties described in Table  16-3 .  

    Table 16-3.    The RouteOptions Configuration Properties   

 Name  Description 

  AppendTrailingSlash   When  true , this  bool  property appends a trailing slash to the URLs 
generated by the routing system. The default value is  false . 

  LowercaseUrls   When true, this  bool  property converts URLs to lowercase when the 
controller, action, or segment values contain uppercase characters. The 
default value is  false . 

 In Listing  16-13 , I have added statements to the  Startup.cs  file to set both of the configuration 
properties described in Table  16-3 . 

     Listing 16-13.    Configuring the Routing System in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 
 using Microsoft.AspNetCore.Routing; 
 using UrlsAndRoutes.Infrastructure; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.Configure<RouteOptions>(options => {  
                 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint)); 
                  options.LowercaseUrls = true;  
                  options.AppendTrailingSlash = true;  
              });  
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                 routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}/{id?}"); 

http://dx.doi.org/10.1007/978-1-4842-0397-2_15


CHAPTER 16 ■ ADVANCED ROUTING FEATURES

482

                   routes.MapRoute( 
                     name: "out", 
                     template: "outbound/{controller=Home}/{action=Index}"); 
             }); 
         } 
     } 
 } 

    If you run the application and examine the URLs that are generated by the routing system, you will see 
that changing the configuration properties has made the URLs all lowercase and appended a trailing slash, 
as shown in Figure  16-5 .   

  Figure 16-5.    Configuring the routing system       

     Creating a Custom Route Class 
 If you don’t like the way that the routing system matches URLs or you need to implement something 
specific for your application, you can create your own routing classes and use them to handle URLs. ASP.
NET provides the  Microsoft.AspNetCore.Routing.IRouter  interface, which you can implement to create a 
custom route. Here is the definition of the  IRouter  interface: 

    using System.Threading.Tasks; 

   namespace Microsoft.AspNetCore.Routing { 

       public interface IRouter { 

           Task RouteAsync(RouteContext context); 

           VirtualPathData GetVirtualPath(VirtualPathContext context); 
     } 
 } 

 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

483

    To create a custom route, you implement the  RouteAsync  method to handle incoming requests and 
implement the  GetVirtualPath  method if you want to generate outgoing URLs. 

 To demonstrate, I am going to create a custom routing class that will handle legacy URL requests. 
Imagine that I have migrated an existing application to MVC, but some users have bookmarked the pre-MVC 
URLs or hard-coded them into scripts. I still want to support those old URLs. I could handle this using the 
regular routing system, but this problem provides a nice example for this section. 

   Routing Incoming URLs 
 To understand how custom routes work, I am going to begin by creating one that handles every aspect of 
the request itself, without using a controller and view. I created a class file called  LegacyRoute.cs  in the 
 Infrastructure  folder and used it to implement the  IRouter  interface, as shown in Listing  16-14 . 

     Listing 16-14.    The Contents of the LegacyRoute.cs File in the Infrastructure Folder   

  using Microsoft.AspNetCore.Http; 
 using Microsoft.AspNetCore.Routing; 
 using System; 
 using System.Linq; 
 using System.Text; 
 using System.Threading.Tasks; 

   namespace UrlsAndRoutes.Infrastructure { 
     public class LegacyRoute : IRouter { 
         private string[] urls; 

           public LegacyRoute(params string[] targetUrls) { 
             this.urls = targetUrls; 
         } 

           public Task RouteAsync(RouteContext context) { 

               string requestedUrl = context.HttpContext.Request.Path 
                 .Value.TrimEnd('/'); 

               if (urls.Contains(requestedUrl, StringComparer.OrdinalIgnoreCase)) { 
                 context.Handler = async ctx => { 
                     HttpResponse response = ctx.Response; 
                     byte[] bytes = Encoding.ASCII.GetBytes($"URL: {requestedUrl}"); 
                     await response.Body.WriteAsync(bytes, 0, bytes.Length); 
                 }; 
             } 
             return Task.CompletedTask; 
         } 

           public VirtualPathData GetVirtualPath(VirtualPathContext context) { 
             return null; 
         } 
     } 
 } 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

484

    The  LecagyRoute  class implements the IRouter interface but only defines code for the  RouteAsync  
method, which is used to handle incoming requests; I add support for outgoing URLs shortly. 

 There are only a few statements in the  RouteAsync  method, but they rely on a number of important ASP.
NET types to do their work. The best place to start is with the method signature. 

   ... 
 public async Task RouteAsync( RouteContext context ) { 
 ... 

   The  RouteAsync  method is responsible for assessing whether a request can be handled and, if it can, 
managing the process through to generating the response sent back to the client. This process is performed 
asynchronously, which is why the  RouteAsync  method returns a  Task . 

 The  RouteAsync  method is invoked with a  RouteContext  argument, which provides access to everything 
that is known about the request and provides the features required to send the response back to the client. 
The  RouteContext  class is defined in the  Microsoft.AspNetCore.Routing  namespace and defines the three 
properties shown in Table  16-4 .  

   Table 16-4.    The Properties Defined in by the RouteContext Class   

 Name  Description 

  RouteData   This property returns a  Microsoft.AspNetCore.Routing.RouteData  object. When 
writing a custom route that relies on MVC features (as described in the next section), 
this object is used to define the controller, the action method, and the arguments that 
will be used to handle the request. 

  HttpContext   This property returns a  Microsoft.AspNetCore.Http.HttpContext  object, which 
provides access to details of the HTTP request and the means to produce the HTTP 
response. 

  Handler   This property is used to provide the routing system with a  RequestDelegate  that 
will handle the request. If the  RouteAsync  method doesn’t set this property, then 
the routing system will continue working its way through the set of routes in the 
application configuration. 

 The routing system calls the  RouteAsync  method of each of the routes in the application and examines 
the value of the  Handler  property after each call. If the property has been set to a  RequestDelegate , then 
the route has provided the routing system with a delegate that can handle the request and the delegate is 
invoked to generate the response. Here is the signature of the  RequestDelegate , which is defined in the 
 Microsoft.AspNetCore.Http  namespace: 

    using System.Threading.Tasks; 

   namespace Microsoft.AspNetCore.Http { 
     public delegate Task RequestDelegate(HttpContext context); 
 } 

    The delegate accepts an  HttpContext  object and returns a  Task  that will generate the response. If none 
of the routes sets the  Handler  property, then the routing system knows that the application cannot handle 
the request and will generate a  404 - Not Found  response. 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

485

 With this in mind, the implementation of the  RouteAsync  method has to establish whether it can handle 
the request, for which the  HttpContext  is usually required. In the example, I use the  HttpContext.Request  
property, which returns a  Microsoft.AspNetCore.Http.HttpRequest  object that describes the request. The 
 HttpRequest  object provides access to all the information available about the request, including the headers, 
the body, and the details of where the request originated, but it is the  Path  property that I am interested 
in because it provides details of the URL requested by the client. The  Path  property returns a  PathString  
object, which provides useful methods for composing and comparing URL paths, but I use the  Value  
property because it gives me the entire path section of the URL as a string, which I can compare with the set 
of supported URLs that are received by the  LegacyRoute  constructor. 

   ... 
 string requestedUrl =  context.HttpContext.Request.Path.Value .TrimEnd('/'); 
 if (urls.Contains( requestedUrl , StringComparer.OrdinalIgnoreCase)) { 
 ... 

   I use the  TrimEnd  method on the URL to remove the trailing slash, if there is one, which can either be 
added by the user or by the  AppendTrailingSlash  configuration option described in the “Changing the 
Routing System” configuration section. 

 If the requested path is one that the  LegacyRoute  has been configured to support, then I set the  Handler  
property using a lambda function that will generate the response, like this: 

   ... 
 context.Handler = async ctx => { 
     HttpResponse response = ctx.Response; 
     byte[] bytes = Encoding.ASCII.GetBytes($"URL: {requestedUrl}"); 
     await response.Body.WriteAsync(bytes, 0, bytes.Length); 
 }; 
 ... 

   The  HttpContext.Response  property returns an  HttpResponse  object, which can be used to create the 
response to the client, providing access to the headers and content that will be sent to the client. I use the 
 HttpResponse.Body.WriteAsync  method to asynchronously write a simple ASCII string as the response. 
This isn’t something you would do in a real project, but it allows me to produce a response without having to 
select and render views (although I show you how to get MVC to do this for you in the next section). 

 When the  Handler  property is set, then the routing system knows that its search for a route is complete 
and that it can invoke the delegate to generate the response to the client. 

   Applying a Custom Route Class 

 The  MapRoute  extension method that I have been using to create routes so far doesn’t support the use of custom 
routing classes. To apply my  LegacyRoute  class, I have to take a different approach, as shown in Listing  16-15 . 

     Listing 16-15.    Applying a Custom Routing Class in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 
 using Microsoft.AspNetCore.Routing; 
 using UrlsAndRoutes.Infrastructure; 

   namespace UrlsAndRoutes { 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

486

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.Configure<RouteOptions>(options => { 
                 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint)); 
                 options.LowercaseUrls = true; 
                 options.AppendTrailingSlash = true; 
             }); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                  routes.Routes.Add(new LegacyRoute(  
                      "/articles/Windows_3.1_Overview.html",  
                      "/old/.NET_1.0_Class_Library"));  

                   routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}/{id?}"); 

                   routes.MapRoute( 
                     name: "out", 
                     template: "outbound/{controller=Home}/{action=Index}"); 
             }); 
         } 
     } 
 } 

    When using custom classes, you have to use the  Add  method on the route collection to register the 
 IRouter  implementation class. In the example, the arguments to the  LegacyRoute  constructor are the 
legacy URLs that I want the custom route to support. You can see the effect by starting the application and 
requesting  /articles/Windows_3.1_Overview.html . The custom route displays the requested URL, as 
shown in Figure  16-6 .   

  Figure 16-6.    Using a custom route       

 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

487

   Routing to MVC Controllers 

 There is a big gap between matching simple URL strings and using the MVC system of controllers, actions, 
and Razor views. Fortunately, you don’t have to implement this functionality yourself when creating custom 
routes because the class that MVC uses behind the scenes can be used to do all the heavy lifting. To prepare 
for using the MVC infrastructure, I added a class file called  LegacyController.cs  in the  Controllers  folder 
and used it to define the controller shown in Listing  16-16 . 

      Listing 16-16.    The Contents of the LegacyController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 

   namespace UrlsAndRoutes.Controllers { 

       public class LegacyController : Controller { 

           public ViewResult GetLegacyUrl(string legacyUrl) 
             => View((object)legacyUrl); 
     } 
 } 

    In this controller, the  GetLegacyUrl  action method accepts a parameter that contains the legacy URL 
requested by the client. If I were implementing this controller in a real project, I would use this method to 
retrieve the files that were requested. But as it is, I am simply going to display the URL in a view. 

 ■   Tip   Notice that I cast the argument to the  View  method in Listing  16-16  to  object . One of the overloaded 
versions of the  View  method takes a  string  specifying the name of the view to render, and without the 
cast, this would be the overload that the C# compiler thinks I want. To avoid this, I cast to  object  so that I 
unambiguously call the overload that passes a view model and uses the default view. I could also have solved 
this by using the overload that takes both the view name and the view model, but I prefer not to make explicit 
associations between action methods and views if I can help it. See Chapter   17     for more details.  

 I created the  Views/Legacy  folder and added a view called  GetLegacyUrl.cshtml , as shown in Listing  16-17 . 
The view displays the model value, which will show the URL the client asked for. 

     Listing 16-17.    The Contents of the GetLegacyUrl.cshtml File in the Views/Legacy Folder   

  @model string 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Routing</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <h2>GetLegacyURL</h2> 

http://dx.doi.org/10.1007/978-1-4842-0397-2_17


CHAPTER 16 ■ ADVANCED ROUTING FEATURES

488

     The URL requested was: @Model 
 </body> 
 </html> 

    In Listing  16-18 , I have updated the  LegacyRoute  class so that URLs it handles are routed to the 
 GetLegacyUrl  action on the  Legacy  controller. 

       Listing 16-18.    Routing to a Controller in the LegacyRoute.cs File   

  using Microsoft.AspNetCore.Http; 
 using Microsoft.AspNetCore.Routing; 
 using System; 
 using System.Linq; 
 using System.Text; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Mvc.Internal; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace UrlsAndRoutes.Infrastructure { 
     public class LegacyRoute : IRouter { 
         private string[] urls; 
          private IRouter mvcRoute;  

            public LegacyRoute(IServiceProvider services, params string[] targetUrls) {  
             this.urls = targetUrls; 
              mvcRoute = services.GetRequiredService<MvcRouteHandler>();  
         } 

            public async Task RouteAsync(RouteContext context) {  

               string requestedUrl = context.HttpContext.Request.Path 
                 .Value.TrimEnd('/'); 

               if (urls.Contains(requestedUrl, StringComparer.OrdinalIgnoreCase)) { 
                  context.RouteData.Values["controller"] = "Legacy";  
                  context.RouteData.Values["action"] = "GetLegacyUrl";  
                  context.RouteData.Values["legacyUrl"] = requestedUrl;  
                  await mvcRoute.RouteAsync(context);  
             } 
         } 

           public VirtualPathData GetVirtualPath(VirtualPathContext context) { 
             return null; 
         } 
     } 
 } 

    The  Microsoft.AspNetCore.Mvc.Internal.MvcRouteHandler  class provides the mechanism by which 
the  controller  and  action  segment variables are used to locate a controller class, execute the action 
method, and return the result to the client. This class has been written so that it can be called by a custom 
 IRouter  implementation that provides the  controller  and  action  values, as well as any other values that 
are required, such as for action method arguments. 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

489

 In Listing  16-18 , I create a new instance of the  MvcRouteHandler  class, to which the task of locating a 
controller class is delegated. To do this, I need to provide routing data, as follows: 

   ... 
 context.RouteData.Values[" controller "] = "Legacy"; 
 context.RouteData.Values[" action "] = "GetLegacyUrl"; 
 context.RouteData.Values[" legacyUrl "] = requestedUrl; 
 ... 

   The  RouteContext.RouteData.Vales  property returns a dictionary that is used to provide data values 
to the  MvcRouteHandler  class. In the default routing system, the data values are created by applying the URL 
pattern to the request, but in my custom route class, I have hard-coded the values so that the  GetLegacyUrl  
action on the  Legacy  controller is always targeted. The only thing that changes between requests is the 
 legacyUrl  data value, which is set to the request URL and which will be used as the argument of the same 
name received by the action method. 

 The final change in Listing  16-18  delegates the responsibility of finding and using the controller class to 
handle the request. 

   ... 
 await  mvcRoute.RouteAsync (context); 
 ... 

   The  RouteContext  object, which now contains the  controller ,  action , and  legacyUrl  values is 
passed to the  RouteAsync  method of the  MvcRouteHandler  object, which takes responsibility for any further 
processing of the request, including setting the  Handler  property. The result is that the  LegacyRoute  class 
can focus on deciding which URLs it will handle without getting bogged down in the detail of working with 
controllers directly. 

 The  MvcRouteHandler  object that is doing the work in this example has to be requested as a service, 
which I explain in Chapter   18    . In order to provide the  LegacyRoute  constructor with the  IServiceProvider  
object it needs to create the  MvcRouteHandler , I have updated the stateament that defines the route to 
provide it with access to the application’s services in the  Startup  class, as shown in Listing  16-19 . 

     Listing 16-19.    Providing Access to the Application’s Services in the Startup Class   

  ... 
 public void Configure(IApplicationBuilder app) { 
     app.UseStatusCodePages(); 
     app.UseDeveloperExceptionPage(); 
     app.UseStaticFiles(); 
     app.UseMvc(routes => { 

           routes.Routes.Add(new LegacyRoute( 
              app.ApplicationServices,  
             "/articles/Windows_3.1_Overview.html", 
             "/old/.NET_1.0_Class_Library")); 

           routes.MapRoute( 
             name: "default", 
             template: "{controller=Home}/{action=Index}/{id?}"); 

http://dx.doi.org/10.1007/978-1-4842-0397-2_18


CHAPTER 16 ■ ADVANCED ROUTING FEATURES

490

           routes.MapRoute( 
             name: "out", 
             template: "outbound/{controller=Home}/{action=Index}"); 
     }); 
 } 

    If you start the application and request  /articles/Windows_3.1_Overview.html  again, you will see that 
the simple text response is now replaced with the output from the view, as shown in Figure  16-7 .    

   Generating Outgoing URLs 
 To support outgoing URL generation, I need to implement the  GetVirtualPath  method in the  LegacyRoute  
class, as shown in Listing  16-20 . 

     Listing 16-20.    Generating Outgoing URLs in the LegacyRoute.cs File   

  using Microsoft.AspNetCore.Http; 
 using Microsoft.AspNetCore.Routing; 
 using System; 
 using System.Linq; 
 using System.Text; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Mvc.Internal; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace UrlsAndRoutes.Infrastructure { 
     public class LegacyRoute : IRouter { 
         private string[] urls; 
         private IRouter mvcRoute; 

           public LegacyRoute(IServiceProvider services, params string[] targetUrls) { 
             this.urls = targetUrls; 
             mvcRoute = services.GetRequiredService<MvcRouteHandler>(); 
         } 

  Figure 16-7.    Delegating dealing with controllers and actions       

 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

491

           public async Task RouteAsync(RouteContext context) { 

               string requestedUrl = context.HttpContext.Request.Path 
                 .Value.TrimEnd('/'); 

               if (urls.Contains(requestedUrl, StringComparer.OrdinalIgnoreCase)) { 
                 context.RouteData.Values["controller"] = "Legacy"; 
                 context.RouteData.Values["action"] = "GetLegacyUrl"; 
                 context.RouteData.Values["legacyUrl"] = requestedUrl; 
                 await mvcRoute.RouteAsync(context); 
             } 
         } 

           public VirtualPathData GetVirtualPath(VirtualPathContext context) { 
              if (context.Values.ContainsKey("legacyUrl")) {  
                  string url = context.Values["legacyUrl"] as string;  
                  if (urls.Contains(url)) {  
                      return new VirtualPathData(this, url);  
                  }  
              }  
              return null;  
         } 
     } 
 } 

    The routing system calls the  GetVirtualPath  method of each route that has been defined in the 
 Startup  class, giving each a chance to generate the outgoing URL that the application requires. The 
argument to the  GetVirtualPath  method is a  VirtualPathContext  object, which provides information 
about the URL that is needed. Table  16-5  describes the properties of the  VirtualPathContext  class.  

 In the example, I use the  Values  property to get a value called  legacyUrl , and if it matches one of the 
URLs the route has been configured to support, I return a  VirtualPathData  object, which provides the 
routing system with details of the URL. The constructor arguments for the  VirtualPathData  class are the 
 IRouter  that generates the URL and the URL itself. 

   ... 
 return new VirtualPathData( this, url ); 
 ... 

   Table 16-5.    The Properties Defined in by the VirtualPath Context Class   

 Name  Description 

  RouteName   This property returns the name of the route. 

  Values   This property returns a dictionary of all the values that can be used for segment 
variables, indexed by name. 

  AmbientValues   This property returns a dictionary of the values that are helpful for generating the 
URL but that will not be incorporated into the result. This dictionary is usually empty 
when you implement your own routing class. 

  HttpContext   This property returns an  HttpContext  object that provides information about the 
request and the response that is being prepared for it. 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

492

   In Listing  16-21 , I have changed the  Result.cshtml  view to require outgoing URLs that target the 
custom view. 

      Listing 16-21.    Generating Outgoing URLs from a Custom Route Class in the Result.cshtml File   

  @model Result 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Routing</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-bordered table-striped table-condensed"> 
         <tr><th>Controller:</th><td>@Model.Controller</td></tr> 
         <tr><th>Action:</th><td>@Model.Action</td></tr> 
         @foreach (string key in Model.Data.Keys) { 
             <tr><th>@key :</th><td>@Model.Data[key]</td></tr> 
         } 
     </table> 
      <a asp-route-legacyurl="/articles/Windows_3.1_Overview.html"  
              class="btn btn-primary">  
          This is an outgoing URL  
      </a>      
      <p>URL: @Url.Action(null, null,  
             new { legacyurl = "/articles/Windows_3.1_Overview.html"})</p>  
 </body> 
 </html> 

    In this example, I don’t need to specify the controller and action for the outgoing route for the tag helper 
because they are not used in the URL generation. With that in mind, I have omitted the  asp-controller  
and  asp-action  tag helper attributes from the  a  element. When generating just the URL, I set the first two 
arguments for the  Url.Action  helper to  null  for the same reason. 

 If you run the application and examine the HTML in the response for the default URL, you will see that 
the custom route class has been used to create the URLs, like this: 

   <a class="btn btn-primary" href=" /articles/windows_3.1_overview.html/ "> 
     This is an outgoing URL 
 </a> 
 <p>URL:  /articles/windows_3.1_overview.html/ </p> 

   The trailing slashes that are appended to the URLs are the result of setting the  AppendTrailingSlash  
configuration option to true in the  Startup.cs  file, and it is important that the incoming route matching is 
able to match URLs to which the slash character has been added. 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

493

 ■   Tip   If the URL that you see in the HTML response has a different format, such as  /?legacyurl=%2Farti
cles%2FWindows_3.1_Overview.html , then your custom route has not been used to generate the URL, and 
one of the other routes in the application has been called upon instead. Since there is no controller or action 
specified, the  Index  action on the  Home  controller will be targeted, and the  legacyUrl  value is added to the 
URL query string. If this happens, ensure that you have remembered to set the  IsBound  property to  true  in the 
 GetVirtualPath  method and check that the configuration in the  Startup.cs  file specifies the correct URLs for 
the  LegacyRoute  constructor and that the custom route is defined before any other routes.     

     Working with Areas 
       ASP.NET Core MVC supports organizing a web application into  areas , where each area represents a 
functional segment of the application, such as administration, billing, customer support, and so on. This is 
useful in a large project, where having a single set of folders for all of the controllers, views, and models can 
become difficult to manage. 

 Each MVC area has its own folder structure, allowing you to keep everything separate. This makes it 
more obvious which project elements relate to each functional area of the application, helping multiple 
developers to work on the project without colliding with one another. Areas are supported largely through 
the routing system, which is why I have described this feature alongside URLs and routes. In this section, I 
will show you how to set up and use areas in your MVC projects. 

     Creating an Area 
 Creating an area requires adding folders to the project. The top-level folder is called  Areas  and within it is a 
folder for each of the areas that you require, each of which contains its own  Controllers ,  Views , and  Models  
folders. For this chapter, I am going to create an area called  Admin , which means creating the set of folders 
described in Table  16-6 . To prepare the example project, create all of the folders shown in the table.  

   Table 16-6.    Folders Required to Prepare for Areas   

 Name  Description 

  Areas   This folder will contain all the areas in the MVC application. 

  Areas/Admin   This folder will contain the classes and views for the  Admin  area. 

  Areas/Admin/Controllers   This folder will contain the controllers for the  Admin  area. 

  Areas/Admin/Views   This folder will contain the views for the  Admin  area. 

  Areas/Admin/Views/Home   The folder will contain the views for the  Home  controller in the  Admin  area. 

  Areas/Admin/Models   This folder will contain the models for the  Admin  area. 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

494

 Although each area is used separately, many MVC features rely on standard C# or .NET features such as 
namespaces. To make an area easier to use, the first addition that I made is a view imports file, which allows 
me to use the models in an area in views without having to include namespaces and to take advantage of 
tag helpers. I created a view imports file called  _ViewImports.cshtml  in the  Areas/Admin/Views  folder and 
added the statements shown in Listing  16-22 . 

     Listing 16-22.    The Contents of the _ViewImports.cshtml File in the Areas/Admin/Views Folder   

 @using UrlsAndRoutes.Areas.Admin.Models 
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

        Creating an Area Route 
 To take advantage of areas, you must add a route to the  Startup.cs  file that includes an  area  segment 
variable, as shown in Listing  16-23 . 

     Listing 16-23.    Adding a Route for Areas in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Routing.Constraints; 
 using Microsoft.AspNetCore.Routing; 
 using UrlsAndRoutes.Infrastructure; 

   namespace UrlsAndRoutes { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.Configure<RouteOptions>(options => { 
                 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint)); 
                 options.LowercaseUrls = true; 
                 options.AppendTrailingSlash = true; 
             }); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvc(routes => { 
                  routes.MapRoute(  
                      name: "areas",  
                      template: "{area:exists}/{controller=Home}/{action=Index}");  

                   routes.Routes.Add(new LegacyRoute( 
                     app.ApplicationServices, 
                     "/articles/Windows_3.1_Overview.html", 
                     "/old/.NET_1.0_Class_Library")); 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

495

                   routes.MapRoute( 
                     name: "default", 
                     template: "{controller=Home}/{action=Index}/{id?}"); 

                   routes.MapRoute( 
                     name: "out", 
                     template: "outbound/{controller=Home}/{action=Index}"); 
             }); 
         } 
     } 
 } 

    The  area  segment variable is used to match URLs that target controllers in specific areas. I have 
followed the standard URL pattern in the listing, but you can add the  area  segment to any pattern you 
require. The route that adds support for areas should appear before less specific routes to ensure that URLs 
are correctly matched. The  exists  constraint is used to ensure that requests are matched only to areas that 
have been defined in the application.  

     Populating an Area 
 You can create controllers, views, and models in an area just as you would in the main part of an MVC 
application. To create a model, I right-clicked the  Areas/Admin/Models  folder, selected Add ➤ Class from the 
pop-up menu, and created a class file called  Person.cs , the contents of which are shown in Listing  16-24 . 

     Listing 16-24.    The Contents of the Person.cs File in the Areas/Admin/Models Folder   

 namespace UrlsAndRoutes.Areas.Admin.Models { 
     public class Person { 
         public string Name { get; set; } 
         public string City { get; set; } 
     } 
 } 

   To create a controller, I right-clicked the  Areas/Admin/Controllers  folder, selected Add ➤ Class from 
the pop-up menu, and created a class file called  HomeController.cs , which I used to define the controller 
shown in Listing  16-25 . 

     Listing 16-25.    The Contents of the HomeController.cs File in the Areas/Admin/Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 
 using UrlsAndRoutes.Areas.Admin.Models; 

   namespace UrlsAndRoutes.Areas.Admin.Controllers { 

       [Area("Admin")] 
     public class HomeController : Controller { 
         private Person[] data = new Person[] { 
             new Person { Name = "Alice", City = "London" }, 
             new Person { Name = "Bob", City = "Paris" }, 
             new Person { Name = "Joe", City = "New York" } 
         }; 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

496

           public ViewResult Index() => View(data); 

       } 
 } 

    The new controller is entirely standard, except in one regard. To associate a controller with an area, the 
 Area  attribute must be applied to the class.     

   ... 
  [Area("Admin")]  
 public class HomeController : Controller { 
 ... 

   Without the  Area  attribute, controllers are not part of an area even if they are defined in the main part 
of the application. Omitting the  Area  attribute can cause odd results. This is the first thing to check if you are 
not getting the results you expect when working with areas. 

 ■   Tip   If you are using attributes to set up routes, as described in Chapter   15    , then you can use the 
 [area]  token in the argument for the  Route  attribute to refer to the area specified by the  Area  attribute: 
 [Route("[area]/app/[controller]/actions/[action]/{id:weekday?}")] .  

 The final item I added was a Razor view called  Index.cshtml  in the  Areas/Admin/Views/Home  folder. I 
used this file to define the view shown in Listing  16-26 . 

     Listing 16-26.    The Contents of the Index.cshtml File in the Areas/Admin/Views/Home Folder   

  @model Person[] 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Areas</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-bordered table-striped table-condensed"> 
         <tr><th>Name</th><th>City</th></tr> 
         @foreach (Person p in Model) { 
             <tr><td>@p.Name</td><td>@p.City</td></tr> 
         } 
     </table> 
 </body> 
 </html> 

    The model for this view is an array of  Person  objects. I am able to refer to the  Person  type without 
needing a namespace because of the view imports file that I created in Listing  16-21 . Run the application 
and request the  /Admin  URL to test the area, which will produce the result shown in Figure  16-8 .  

http://dx.doi.org/10.1007/978-1-4842-0397-2_15


CHAPTER 16 ■ ADVANCED ROUTING FEATURES

497

 

UNDERSTANDING THE EFFECT OF AN AREA ON AN MVC 

APPLICATION

 It is important to understand the effect that areas have on the rest of the application. I created an area 
called  Admin , but there is also an  Admin  controller in the main part of the application. Before the area 
was created, a request for  /Admin  would target the  Index  action on the  Admin  controller in the main 
part of the application; now it will target the  Index  action on the  Home  controller in the  Admin  area 
(the area root provides default values for the  controller  and  action  segment variables). This kind 
of change can cause unexpected behavior, and the best way to use areas is to incorporate their use 
into the initial controller naming scheme for the project. If you do have to go back and add areas to an 
established application, then you must consider the effect on your routes carefully.   

     Generating Links to Actions in Areas 
 You do not need to take any special steps to create links that refer to actions in the same MVC area that the 
current request relates to. MVC detects that a request relates to a particular area and ensures that outbound 
URL generation will find a match only among routes defined for that area. As an example, Listing  16-27  
shows the addition of an  a  element to the  Index.cshtml  file in the Areas/Admin/Views/Home folder. 

     Listing 16-27.    Adding an Anchor in the Index.cshtml File in the Areas/Admin/Views/Home Folder   

  @model Person[] 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 

  Figure 16-8.    Using an area       

 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

498

     <meta name="viewport" content="width=device-width" /> 
     <title>Areas</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-bordered table-striped table-condensed"> 
         <tr><th>Name</th><th>City</th></tr> 
         @foreach (Person p in Model) { 
             <tr><td>@p.Name</td><td>@p.City</td></tr> 
         } 
     </table> 
      <a asp-action="Index" asp-controller="Home">Link</a>  
 </body> 
 </html> 

    If you run the application and request the  /admin  URL, you will see that the response contains the 
following element: 

   <a href="/admin/">Link</a> 

   The routing system has selected the area route to generate the outgoing link and taken into account the 
default values that are available for the  controller  and  action  segment variables. 

 You must provide the routing system with a value for the  area  segment in order to create a link to an 
action in a  different  area or the main part of the application, as shown in Listing  16-28 . 

     Listing 16-28.    Targetting a Different Area in the Index.cshtml File in the Areas/Admin/Views/Home Folder   

  @model Person[] 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Areas</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-bordered table-striped table-condensed"> 
         <tr><th>Name</th><th>City</th></tr> 
         @foreach (Person p in Model) { 
             <tr><td>@p.Name</td><td>@p.City</td></tr> 
         } 
     </table> 
     <a asp-action="Index" asp-controller="Home">Link</a> 
      <a asp-action="Index" asp-controller="Home" asp-route-area="">Link</a>  
 </body> 
 </html> 



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

499

    The  asp-route-area  attribute sets the value for the area segment variable. In this case, the attribute 
is set to the empty string, which specifies the main part of the application and produces the following 
HTML element: 

   <a href="/">Link</a> 

   If you have multiple areas in your controllers and want to route to them, then use the area name in 
place of the empty string.   

     URL Schema Best Practices 
    After all of this, you may be left wondering where to start in designing your own URL schema. You could just 
accept the default schema, but there are benefits in giving your schema some thought. In recent years, the 
design of an application’s URLs has been taken increasingly seriously, and a few important design principles 
have emerged. If you follow these design patterns, you will improve the usability, compatibility, and search-
engine rankings of your applications. 

     Make Your URLs Clean and Human-Friendly 
 Users notice the URLs in your applications. Just think back to the last time you tried to send someone an 
Amazon URL. Here is the URL for an earlier edition of this book: 

   http://www.amazon.com/Pro-ASP-NET-Experts-Voice-ASP-Net/dp/1430265299 

   It is bad enough sending someone such a URL by e-mail, but try reading this over the phone. When 
I needed to do this recently, I ended up quoting the ISBN number and asking the caller to look it up for 
himself. It would be nice if I could access the book with a URL like this: 

   http://www.amazon.com/books/pro-aspnet-mvc6-framework 

   That is the kind of URL that I  could  read over the phone and it doesn’t look like I dropped something on 
the keyboard while composing an e-mail message. 

 ■   Note   To be clear, I have only the highest respect for Amazon, which sells more of my books than everyone 
else combined. I know for a fact that each and every member of the Amazon team is a strikingly intelligent and 
beautiful person. Not one of them would be so petty as to stop selling my books over something so minor as 
criticism of their URL format. I love Amazon. I adore Amazon. I just wish they would fix their URLs.  

 Here are some simple guidelines to make friendly URLs:

•    Design URLs to describe their content, not the implementation details of 
your application. Use  /Articles/AnnualReport  rather than  /Website_v2/
CachedContentServer/FromCache/AnnualReport .  



CHAPTER 16 ■ ADVANCED ROUTING FEATURES

500

•   Prefer content titles over ID numbers. Use  /Articles/AnnualReport  rather than  /
Articles/2392 . If you must use an ID number (to distinguish items with identical 
titles or to avoid the extra database query needed to find an item by its title), then 
use both ( /Articles/2392/AnnualReport ). It takes longer to type, but it makes more 
sense to a human and improves search-engine rankings. Your application can just 
ignore the title and display the item matching that ID.  

•   Do  not  use file name extensions for HTML pages (for example,  .aspx  or  .mvc ), but 
 do  use them for specialized file types (such as  .jpg ,  .pdf , and  .zip ). Web browsers 
do not care about file name extensions if you set the MIME type appropriately, but 
humans still expect PDF files to end with  .pdf .  

•   Create a sense of hierarchy (for example,  /Products/Menswear/Shirts/Red ) so your 
visitor can guess the parent category’s URL.  

•   Be case-insensitive. (Someone might want to type in the URL from a printed page.) 
The ASP.NET Core routing system is case-insensitive by default.  

•   Avoid symbols, codes, and character sequences. If you want a word separator, use 
a dash (as in  /my-great-article ). Underscores are unfriendly, and URL-encoded 
spaces are bizarre ( /my+great+article ) or disgusting ( /my%20great%20article ).  

•   Do not change URLs. Broken links equal lost business. When you do change URLs, 
continue to support the old URL schema for as long as possible via redirections.  

•   Be consistent. Adopt one URL format across your entire application.    

 URLs should be short, easy to type, hackable (human-editable), and persistent, and they should 
visualize site structure. Jakob Nielsen, usability guru, expands on this topic at    www.useit.com/
alertbox/990321.html     . Tim Berners-Lee, inventor of the Web, offers similar advice (see    www.w3.org/
Provider/Style/URI     ).  

     GET and POST: Pick the Right One 
 The rule of thumb is that  GET  requests should be used for all read-only information retrieval, while  POST  
requests should be used for any operation that changes the application state. In standards-compliance 
terms,  GET  requests are for  safe  interactions (having no side effects besides information retrieval), and  POST  
requests are for  unsafe  interactions (making a decision or changing something). These conventions are set 
by the World Wide Web Consortium (W3C), at    www.w3.org/Protocols/rfc2616/rfc2616-sec9.html     . 

  GET  requests are  addressable : all the information is contained in the URL, so it’s possible to bookmark 
and link to these addresses. 

 Do not use  GET  requests for operations that change state. Many web developers learned this the hard 
way in 2005, when Google Web Accelerator was released to the public. This application prefetched all 
the content linked from each page, which is legal within the HTTP because  GET  requests should be safe. 
Unfortunately, many web developers had ignored the HTTP conventions and placed simple links to “delete 
item” or “add to shopping cart” in their applications. Chaos ensued. 

 One company believed its content management system was the target of repeated hostile attacks 
because all their content kept getting deleted. The company later discovered that a search-engine crawler 
had hit upon the URL of an administrative page and was crawling all the delete links. Authentication might 
protect you from this, but it wouldn’t protect you from web accelerators.   

http://www.useit.com/alertbox/990321.html
http://www.useit.com/alertbox/990321.html
http://www.w3.org/Provider/Style/URI
http://www.w3.org/Provider/Style/URI
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html


CHAPTER 16 ■ ADVANCED ROUTING FEATURES

501

     Summary 
 In this chapter, I showed you the advanced features of routing system, showing you how to generate 
outgoing links and URLs and how to customize the routing system. Along the way, I introduced the 
concept of areas and set out my views on how to create a useful and meaningful URL schema. In the next 
chapter, I turn to controllers and actions, which are the heart of ASP.NET Core MVC. I explain how these 
work in detail and show you how to use them to get the best results in your application.     



503© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_17

    CHAPTER 17   

 Controllers and Actions                          

       Every request that comes to your application is handled by a controller. In the ASP.NET Core MVC, 
controllers are .NET classes that contain the logic required to handle a request. In Chapter   3    , I explained that 
the role of the controller is to encapsulate your application logic. This means that controllers are responsible 
for processing incoming requests, performing operations on the domain model, and selecting views to 
render to the user. 

 The controller is free to handle the request any way it sees fit as long as it doesn’t stray into the areas of 
responsibility that belong to the model and view. This means that controllers do not contain or store data, 
nor do they generate user interfaces. 

 In this chapter, I show you how controllers are implemented and the different ways that you can use 
controllers to receive and generate output. Table  17-1  puts controllers in context.  

   Table 17-1.    Putting Controllers in Context   

 Question  Answer 

 What are they?  Controllers contain the logic for receiving requests, updating the 
application state or model, and selecting the response that will be 
sent to the client. 

 Why are they useful?  Controllers are the heart of MVC projects and contain the domain 
logic for a web application. 

 How are they used?  Controllers are C# classes whose public methods are invoked 
to handle an HTTP request. Methods can take responsibility for 
producing the response to the client directly, but a more common 
approach is to return an action result, which tells MVC how the 
response should be prepared. 

 Are there any pitfalls or limitations?  When you are new to MVC development, it can be easy to create 
controllers that contain functionality that is better suited to the 
model or in views. A more specific issue is that any public class 
whose name ends with  Controller  is assumed to be a controller by 
MVC; this means it is possible to accidentally handle HTTP requests 
in classes that are not intended to be controllers. 

 Are there any alternatives?  No, controllers are a core part of MVC applications. 

 Have they changed since MVC 5?  The way that controllers are defined and used has been simplified, 
with unification of Web API and regular controllers (see Chapter   20     
for details of API controllers). In addition, any public class whose 
name ends with  Controller  is assumed to be a controller unless it is 
decorated with the  NonController  attribute. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_3
http://dx.doi.org/10.1007/978-1-4842-0397-2_20


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

504

 Table  17-2  summarizes the chapter.  

     Preparing the Example Project 
 For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty 
project called ControllersAndActions. I added the NuGet packages I required to the  dependencies  section of 
the  project.json  file and set up the Razor tooling in the  tools  section, as shown in Listing  17-1 . I removed 
the sections that are not required for this chapter. 

 ■   Note   This chapter includes unit tests for key features. For brevity, I have not included the unit test project 
in the instructions for creating the example project. You can create the test project by following the process 
described in Chapter   7     or download the project from the Apress.com page for this book.  

     Listing 17-1.    Adding Packages in the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
      "Microsoft.AspNetCore.Mvc": "1.0.0",  
      "Microsoft.AspNetCore.StaticFiles": "1.0.0",  
      "Microsoft.AspNetCore.Session": "1.0.0",  
      "Microsoft.Extensions.Caching.Memory": "1.0.0",  
      "Microsoft.AspNetCore.Razor.Tools": {  
        "version": "1.0.0-preview2-final",  

   Table 17-2.    Chapter Summary   

 Problem  Solution  Listing 

 Define a controller  Create a public class whose name ends with 
Controller or derive from the Controller class 

 1–10 

 Get details of the HTTP request  Use the context objects or define action 
methods parameters 

 11–14 

 Produce a result from an action 
method 

 Work directly with the result context object 
or create an action result object 

 15–17 

 Produce an HTML result  Create a view result  18–25 

 Redirect the client  Create a redirection result  26–31 

 Return content to the client  Create a content result  32–36 

 Return an HTTP status code  Create an HTTP result  37–38 

http://dx.doi.org/10.1007/978-1-4842-0397-2_7


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

505

        "type": "build"  
      }  
   }, 

     "tools": { 
      "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final",  
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final" 
   }, 

     "frameworks": { 
     "netcoreapp1.0": { 
       "imports": [ "dotnet5.6", "portable-net45+win8" ] 
     } 
   }, 

     "buildOptions": { 
     "emitEntryPoint": true, 
     "preserveCompilationContext": true 
   } 
 } 

    In addition to the basic MVC packages, I have added the packages required for session storage. 
Listing  17-2  shows the  Startup  class, which configures the application provided by the NuGet packages. 

     Listing 17-2.    The Contents of the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace ControllersAndActions { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddMvc();  
              services.AddMemoryCache();  
              services.AddSession();  
         } 

           public void Configure(IApplicationBuilder app) { 
              app.UseStatusCodePages();  
              app.UseDeveloperExceptionPage();  
              app.UseStaticFiles();  
              app.UseSession();  
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

506

    The  AddMemoryCache  and  AddSession  methods create services that are required for session 
management. The  UseSession  method adds a middleware component to the pipeline that associates session 
data with requests and adds cookies to responses to ensure that future requests can be identified. The 
 UseSession  method must be called before the  UseMvc  method so that the session component can intercept 
requests before they reach MVC middleware and can modify responses after they have been generated. The 
other methods set up the standard packages that I described in Chapter   14    . 

     Preparing the Views 
 The focus of this chapter is controllers and their action methods, and I will be defining controller classes 
throughout the chapter. To prepare for this, I will define some views that will help me demonstrate how they 
work. The views I created in this section are defined in the  Views/Shared  folder so that I can use them from 
any of the controllers that I create later in the chapter. I created the  Views/Shared  folder, added to it a Razor 
view file called  Result.cshtml , and applied the markup shown in Listing  17-3 . 

     Listing 17-3.    The Contents of the Result.cshtml File in the Views/Shared Folder   

  @model string 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Controllers and Actions</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     Model Data: @Model 
 </body> 
 </html> 

    The model for this view is a  string , which will allow me to display simple messages. Next, I created a file 
called  DictionaryResult.cshtml , also in the  Views/Shared  folder, and added the markup shown in Listing  17-4 . 
This model for this view is a dictionary, which displays more complex data than the previous view. 

     Listing 17-4.    The Contents of the DictionaryResult.cshtml File in the Views/Shared Folder   

  @model IDictionary<string, string> 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Controllers and Actions</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-bordered table-condensed table-striped"> 
         <tr><th>Name</th><th>Value</th></tr> 

http://dx.doi.org/10.1007/978-1-4842-0397-2_14


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

507

         @foreach (string key in Model.Keys) { 
             <tr><td>@key</td><td>@Model[key]</td></tr> 
         } 
     </table> 
 </body> 
 </html> 

    Next, I created a file called  SimpleForm.cshtml , also in the  Views/Shared  folder, and used it to define 
the view shown in Listing  17-5 . As its name suggests, this view contains a simple HTML form that will collect 
data from the user. 

     Listing 17-5.    The Contents of the SimpleForm.cshtml File in the Views/Shared Folder   

  @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Controllers and Actions</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     <form method="post" asp-action="ReceiveForm"> 
         <div class="form-group"> 
             <label for="name">Name:</label> 
             <input class="form-control" name="name" /> 
         </div> 
         <div class="form-group"> 
             <label for="name">City:</label> 
             <input class="form-control" name="city" /> 
         </div> 
         <button class="btn btn-primary center-block" type="submit">Submit</button> 
     </form> 
 </body> 
 </html> 

    The views use built-in tag helpers to generate URLs from the routing system. To enable the tag helpers, I 
created a view imports file called  _ViewImports.cshtml  in the  Views  folder and added the expression shown 
in Listing  17-6 . 

     Listing 17-6.    The Contents of the _ViewImports.cshtml File in the Views Folder   

 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

   The views I created in the  Views/Shared  folder all depend on the Bootstrap CSS package. To add 
Bootstrap to the project, I used the Bower Configuration File template to create the  bower.json  file and 
added the package shown in Listing  17-7 . 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

508

     Listing 17-7.    Adding a Package in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6"  
   } 
 } 

         Understanding Controllers 
 Controllers are C# classes whose public methods (known as  actions  or  action methods ) are responsible for 
handling an HTTP request and preparing the response that will be returned to the client. MVC uses the 
routing system, described in Chapters   15     and   16    , to work out which controller class and action method it 
needs to handle a request. It then creates a new instance of the controller class, invokes the action method, 
and uses the method’s result to produce the response to the client. 

 MVC provides action methods with  context data  so they can figure out how to handle a request. There 
is a wide range of context data available, and it describes everything about the current request, the response 
that is being prepared, the data extracted by the routing system, and details of the user’s identity. 

 When MVC invokes an action method, the method’s response describes the response that should be 
sent to the client. The most common kind of response is created by rendering a Razor view, so the action 
method uses its response to tell MVC which view to use and what view model data it should be provided 
with. But there are other kinds of responses available as well, and action methods can do everything from 
ask MVC to send an HTTP redirection to the client to sending complex data objects. 

 This means that there are three areas of functionality that are important to understanding controllers. 
The first is understanding how to define controllers so that MVC can use them to handle requests. 
Controllers are just C# classes, but there are different ways to create them, and understanding the differences 
is important. I explain how to controllers are defined in the “Creating Controllers” section. 

 Second, it is important to understand how MVC provides action methods with context data. Getting the 
context data that you need is important for effective web application development, but MVC makes it easy 
by defining a set of classes that are used to describe everything that an action method requires. I explain how 
MVC describes requests and responses in the “Receiving Context Data” section. 

 Finally, it is important to understand how action methods produce a response. Action methods rarely 
need to produce an HTTP response themselves, and you need to know how to instruct MVC to produce the 
responses you need, which I explain in the “Producing a Response” section.  

     Creating Controllers 
 You have seen the use of controllers in almost all the chapters so far. Now it is time to take a step back and 
look behind the scenes to see how they are defined. In the sections that follow, I describe the different ways 
that controllers can be created and explain the differences between them. 

     Creating POCO Controllers 
    MVC favors convention over configuration, which means the controllers in an MVC application are 
discovered automatically, rather than being defined in a configuration file. The basic discovery process 
is simple: any  public  class whose name ends with  Controller  is a controller, and any  public  method it 
defines is an action. To demonstrate how this works, I added a  Controllers  folder to the project and added 
to it a class file called  PocoController.cs , which I used to define the class shown in Listing  17-8 . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_15
http://dx.doi.org/10.1007/978-1-4842-0397-2_16


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

509

 ■   Tip    Although the convention is to put controllers in the  Controllers  folder, you can put them anywhere in 
the project and MVC will still find them.  

     Listing 17-8.    The Contents of the PocoController.cs File in the Controllers Folder   

  namespace ControllersAndActions.Controllers { 

       public class PocoController { 

           public string Index() => "This is a POCO controller"; 
     } 
 } 

    The  PocoController  class meets the simple criteria that MVC looks for in a controller. It defines a single 
 public  method called  Index , which will be used as an action method and which returns a  string . 

 The  PocoController  class is an example of a  POCO controller , where POCO means “plain old CLR 
object” and refers to the fact the controller is implemented using standard .NET features without any direct 
dependency on the API provided by the ASP.NET Core MVC. 

 To test the POCO controller, start the application and request the URL  /Poco/Index/ . The routing 
system will match the request using the default URL pattern and direct the request to the  Index  method of 
the  PocoController  class, producing the results shown in Figure  17-1 .  

 USING ATTRIBUTES TO ADJUST CONTROLLER IDENTIFICATION

 The support for POCO controllers doesn’t always work the way you want. A common problem is that 
MVC will identify fake classes created for unit testing as controllers. The simplest way to avoid this 
problem is to pay attention to the names of your classes and avoid names like  FakeController . If that 
isn’t possible, then you can apply the  NonController  attribute, defined in the  Microsoft.AspNetCore.
Mvc  namespace, to a class to tell MVC that it is not a controller. There is also a  NonAction  attribute that 
can be applied to methods to stop them from being used as action methods. 

 In some projects, you might not be able to follow the naming convention on a class that should be 
used as a POCO controller. You can tell MVC that a class is a controller even when it doesn’t meet the 
POCO selection criteria by applying the  Controller  attribute, which is also defined in the  Microsoft.
AspNetCore.Mvc  namespace.  

  Figure 17-1.    Using a POCO controller       

 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

510

   Using the MVC Controller API 
 The  PocoController  class is a useful demonstration of the way MVC identifies controllers and how simple 
controllers can be. But  pure  POCO controllers, which have no dependencies on the  Microsoft.AspnetCore  
namespaces, are not especially useful because they don’t have access to the features that MVC provides for 
processing requests. 

 Some parts of the MVC API can be accessed by creating new instances of classes from the  Microsoft.
AspnetCore  namespaces. As a simple example, a POCO class can ask MVC to render a Razor view by 
returning a  ViewResult  object from its action methods, as shown in Listing  17-9 . (I come back to the 
 ViewResult  class in the “Producing a Result” section.) 

      Listing 17-9.    Using the ASP.NET API in the PocoController.cs File   

   using Microsoft.AspNetCore.Mvc;  
  using Microsoft.AspNetCore.Mvc.ModelBinding;  
  using Microsoft.AspNetCore.Mvc.ViewFeatures;  

   namespace ControllersAndActions.Controllers { 

       public class PocoController { 

            public ViewResult Index() => new ViewResult() {  
                  ViewName = "Result",  
                  ViewData = new ViewDataDictionary(  
                      new EmptyModelMetadataProvider(),  
                      new ModelStateDictionary()) {  
                          Model = $"This is a POCO controller"  
                      }  
              };  
     } 
 } 

    This is no longer a pure POCO controller because it has direct dependencies on the MVC API. But 
purity aside, it is a lot more useful than the previous example because it asks MVC to render a Razor view. 
Unfortunately, the code is complex. In order to create a  ViewResult  object, I need to create  ViewDataDictionary , 
 EmptyModelMetadataProvider , and  ModelStateDictionary  objects, which requires access to three different 
namespaces. (I describe the features that these types relate to in later chapters.) The point of this example is to 
demonstrate that the features provided by MVC can be accessed directly, even if the result is a bit of a mess. 

 The changes in the listing render the  Result.cshtml  view using a  string  as the view model. If you run 
the application and request the  /Poco/Index  URL, you will see the response shown in Figure  17-2 .    

  Figure 17-2.    Using the MVC API directly       

 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

511

     Using the Controller Base Class 
    The previous examples show how you can start with a POCO controller and build on it to access MVC 
features. This approach sheds light on how MVC works, which is useful knowledge if you find yourself 
inadvertently creating controllers, but POCO controllers are awkward to write, read, and maintain. 

 An easier way to create controllers is to derive classes from the  Microsoft.AspNetCore.Mvc.Controller  
class, which defines methods and properties that provide access to MVC features in a more concise and 
useful manner. To demonstrate, I added a class file called  DerivedController.cs  to the  Controllers  folder 
and used it to define the controller shown in Listing  17-10 . 

      Listing 17-10.    Deriving from the Controller Class in the DerivedController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 

   namespace ControllersAndActions.Controllers { 

        public class DerivedController : Controller {  

           public ViewResult Index() => 
              View("Result", $"This is a derived controller");  
     } 
 } 

    If you run the application and request the  /Derived/Index  URL, you will see the results shown in 
Figure  17-3 .  

 The controller in Listing  17-10  does the same thing as the one in Listing  17-9  (it asks MVC to render a 
view with a  string  view model), but using the  Controller  base class means that the result can be achieved 
more simply. 

 The key change is that I can create the  ViewResult  object required to render the Razor view using 
the  View  method, rather than having to instantiate it (and the other types it requires) directly in the action 
method. The  View  method is inherited from the  Controller  base class, and the  ViewResult  object is still 
being created in the same way, just without the code cluttering up my action method. Deriving from the 
 Controller  class doesn’t change the way that your controllers work; it just simplifies the code that you write 
to get common tasks done. 

  Figure 17-3.    Using the Controller base class       

 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

512

 ■   Note    MVC creates a new instance of a controller class for each request that it is asked to handle. This 
means that you don’t need to synchronize access to your action methods or instance properties and fields. 
Shared objects, including databases and singleton services, which I describe in Chapter   18    , can be used 
concurrently and must be written accordingly.    

     Receiving Context Data 
    Regardless of how you define your controllers, they will rarely exist in isolation and usually need to access data 
from the incoming request, such as query string values, form values, and parameters parsed from the URL by 
the routing system, collectively known as  context data . There are three main ways to access context data.

•    Extract it from a set of  context objects   

•   Receive the data as a  parameter  to an action method  

•   Explicitly invoke the framework’s  model binding  feature    

 Here, I look at the approaches for getting input for your action methods, focusing on using context 
objects and action method parameters. I cover model binding in Chapter   26    . 

     Getting Data from Context Objects 
 One of the main advantages of using the  Controller  base class to create controllers is convenient access to a 
set of context objects that describe the current request, the response that is being prepared, and the state of 
the application. In Table  17-3  I have described the most useful  Controller  context properties.  

     Table 17-3.    Useful Controller Class Properties for Context Data   

 Name  Description 

  Request   This property returns an  HttpRequest  object that describes the 
request received from the client, as described in Table  17-4 . 

  Response   This property returns an  HttpResponse  object that is used to create the 
response to the client, as described in Table  17-7 . 

  HttpContext   This property returns an  HttpContext  object, which is the source of 
many of the objects returned by other properties, such as  Request  
and  Response . It also provides information about the HTTP features 
available and access to lower-level features like web sockets. 

  RouteData   This property returns the  RouteData  object produced by the routing 
system when it matched the request, as described in Chapters   15     
and   16    . 

  ModelState   This property returns a  ModelStateDictionary  object, which is used 
to validate data sent by the client, as described in Chapter   27    . 

  User   This property returns a  ClaimsPrincipal  object that describes the 
user that has made the request, as described in Chapters   29     and   30    . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_18
http://dx.doi.org/10.1007/978-1-4842-0397-2_26
http://dx.doi.org/10.1007/978-1-4842-0397-2_15
http://dx.doi.org/10.1007/978-1-4842-0397-2_16
http://dx.doi.org/10.1007/978-1-4842-0397-2_27
http://dx.doi.org/10.1007/978-1-4842-0397-2_29
http://dx.doi.org/10.1007/978-1-4842-0397-2_30


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

513

 Many controllers are written without needing to use the properties shown in Table  17-3  because the 
context data is also available through features that I describe in later chapters, which are more in keeping 
with the MVC development style. For example, most controllers don’t need to use the  Request  property to 
get details of the HTTP request that is being processed because the same information is available through 
the model binding process that I describe in Chapter   26    . 

 But it can still be useful to understand and use the context objects, and they are useful for debugging. In 
Listing  17-11 , I have used the  Request  property to access the headers in the HTTP request. 

     Listing 17-11.    Using Context Data in the DerivedController.cs File   

  using Microsoft.AspNetCore.Mvc; 
  using System.Linq;  

   namespace ControllersAndActions.Controllers { 

       public class DerivedController : Controller { 

           public ViewResult Index() => 
             View("Result", $"This is a derived controller"); 

            public ViewResult Headers() => View("DictionaryResult",  
                  Request.Headers.ToDictionary(kvp => kvp.Key,  
                      kvp => kvp.Value.First()));          
     } 
 } 

    Using the context objects means navigating through a range of different types and namespaces. The 
 Controller.Request  property that I used to get context data about the HTTP request in the listing returns 
an  HttpRequest  object. Table  17-4  describes the  HttpRequest  properties that are most useful when writing 
controllers.  

 I used the  Request.Headers  property to get a dictionary of the headers, which I processed using LINQ. 

     Table 17-4.    Commonly Used HttpRequest Properties   

 Name  Description 

  Path   This property returns the path section of the request URL. 

  QueryString   This property returns the query string section of the request 
URL. 

  Headers   This property returns a dictionary of the request headers, 
indexed by name. 

  Body   This property returns a stream that can be used to read the 
request body. 

  Form   This property returns a dictionary of the form data in the 
request, indexed by name. 

  Cookies   This property returns a dictionary of the request cookies, 
indexed by name. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_26


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

514

   ... 
 View("DictionaryResult", Request.Headers. ToDictionary(kvp => kvp.Key,  
      kvp => kvp.Value.First() )); 
 ... 

   The dictionary that is returned by the  Request.Headers  property stores the value of each header using 
the  StringValues  struct, which is used in ASP.NET to represent a sequence of string values. An HTTP 
client can send several values for HTTP headers, but I want to display only the first value. I used the LINQ 
 ToDictionary  method to receive a  KeyValuePair<string, StringValues  > object for each header and 
selected the first value. The result is a dictionary containing  string  values, which can be displayed by the 
 DictionaryResult  view. If you run the application and request the  /Derived/Headers  URL, you will see 
output similar to that shown in Figure  17-4 . (The set of headers and their values will differ based on the 
browser you use.)  

   Getting Context Data in a POCO Controller 
 Even if they are not especially useful in regular projects, POCO controllers let us peek behind the curtain 
to see how MVC does things. Getting context data in a POCO controller is a problem because you can’t just 
instantiate your own  HttpRequest  or  HttpResponse  objects; you need the ones that have been created by 
ASP.NET and updated by all of the middleware components that have populated their data fields as the 
request has been processed. 

 To get context data, a POCO controller has to ask MVC to provide it. In Listing  17-12 , I have updated the 
 PocoController  class to add an action method that displays the HTTP request headers. 

  Figure 17-4.    Displaying context data       

 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

515

      Listing 17-12.    Displaying Context Data in the PocoController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.ModelBinding; 
 using Microsoft.AspNetCore.Mvc.ViewFeatures; 
  using System.Linq;  

   namespace ControllersAndActions.Controllers { 

       public class PocoController { 

            [ControllerContext]  
          public ControllerContext ControllerContext { get; set; }  

           public ViewResult Index() => new ViewResult() { 
             ViewName = "Result", 
             ViewData = new ViewDataDictionary(new EmptyModelMetadataProvider(), 
                            new ModelStateDictionary()) { 
                 Model = $"This is a POCO controller" 
             } 
         }; 

            public ViewResult Headers() =>  
              new ViewResult() {  
                  ViewName = "DictionaryResult",  
                  ViewData = new ViewDataDictionary(  
                      new EmptyModelMetadataProvider(),  
                      new ModelStateDictionary()) {  
                          Model = ControllerContext.HttpContext.Request.Headers  
                          .ToDictionary(kvp => kvp.Key, kvp => kvp.Value.First())  
                  }  
              };  
     } 
 } 

    To get the context data, I defined a property called  ControllerContext  whose type is 
 ControllerContext , which has been decorated with an attribute that is also called  ControllerContext . 

 It is worth unpacking these three different uses of the term  ControllerContext . First, the 
 ControllerContext  class, which is defined in the  Microsoft.AspNetCore.Mvc  namespace, is a class 
that brings together all of the context objects that are required by a controller’s action method, using the 
properties described in Table  17-5 .  

    Table 17-5.    The Most Important ControllerContext Properties   

 Name  Description 

  ActionDescriptor   This property returns an  ActionDescriptor  object, which describes the action method. 

  HttpContext   This property returns an  HttpContext  object, which provides details of the HTTP 
request and the HTTP response that will be sent in return. See Table  17-6  for details. 

  ModelState   This property returns a  ModelStateDictionary  object, which is used to validate data 
sent by the client, as described in Chapter   27    . 

  RouteData   This property returns a  RouteData  object that describes the way that the routing 
system has processed the request, as described in Chapter   15    . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_27
http://dx.doi.org/10.1007/978-1-4842-0397-2_15


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

516

 HTTP-related data is accessed through the  ControllerContext.HttpContext  property, which returns a 
 Microsoft.AspNetCore.Http.HttpContext  object. The  HttpContext  class consolidates several objects that 
describe different aspects of the request, accessed through the properties shown in Table  17-6 .  

 The  ControllerContext  attribute is used to decorate the property in Listing  17-12  and tells MVC to 
set the property value with a  ControllerContext  object that describes the current request. This uses a 
technique known as  dependency injection , which I describe in Chapter   18    , and MVC will use this property to 
provide the controller with context data before using an action method to handle a request. 

 Finally, the third use of the term  ControllerContext  is the name of the property. You can use any legal 
C# property name in your own POCO controllers, but I chose this name because it is the one used by the 
 Controller  class. Behind the scenes, the  Controller  class relies on the same  ControllerContext  class 
for its context data, which is decorated with the same  ControllerContext  attribute. All of the  Controller  
properties that I described in Table  17-3  are just more convenient and concise alternatives to using the 
 ControllerContext  properties directly, which is exactly what’s happening in the properties provided by the 
 Controller  class. As an example, here is the definition of the  HttpContext  property from the  Controller  class: 

    ... 
 public HttpContext HttpContext { 
     get { 
         return ControllerContext.HttpContext; 
     } 
 } 
 ... 

    The  HttpContext  property is just a more convenient way to get the value of the  ControllerContext.
HttpContext  property. There is no magic in the  Controller  base class: it results in simpler and clearer 
controllers because it consolidates common tasks into convenience methods and properties, all of which 
you could re-create yourself in a POCO controller if you needed. A lot of the functionality in ASP.NET Core 
MVC is surprisingly simple when you dig into the detail, and there is no special sauce—just well-thought-out 
functionality provided in a carefully designed set of NuGet packages. If you have the time, I recommend that 
you confirm this yourself by downloading the MVC source code from    http://github.com/aspnet      and explore.   

    Table 17-6.    Commonly Used HttpContext Properties   

 Name  Description 

  Connection   This property returns a  ConnectionInfo  object that describes the low-level 
connection to the client. 

  Request   This property returns an  HttpRequest  object that describes the HTTP request 
received from the client, as described earlier in this chapter. 

  Response   This property returns an  HttpResponse  object that is used to create the response 
that will be returned to the client, as described in the “Producing a Response” 
section. 

  Session   This property returns an  ISession  object that describes the session with which the 
request is associated. 

  User   This property returns a  ClaimsPrincipal  object that describes the user associated 
with the request, as described in Chapter   28    . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_18
http://github.com/aspnet
http://dx.doi.org/10.1007/978-1-4842-0397-2_28


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

517

     Using Action Method Parameters 
    Some context data can also be received through action method parameters, which can produce more 
natural and elegant code. A common example is when an action method needs to receive form data values 
submitted by the user. For comparison, I will demonstrate how to get form data through context objects and 
then through action method parameters. 

 Form data values are accessed through the  Controller  class’s  Request.Form  property. To demonstrate, 
I added a class file called  HomeController.cs  and used it to define the derived controller shown in Listing  17-13 . 

      Listing 17-13.    The Contents of the HomeController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 

   namespace ControllersAndActions.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() => View("SimpleForm"); 

           public ViewResult ReceiveForm() { 
             var name = Request.Form["name"]; 
             var city = Request.Form["city"]; 
             return View("Result", $"{name} lives in {city}"); 
         } 
     } 
 } 

    The  Index  action method in this controller renders the  SimpleForm  view that I created in the  Views/
Shared  folder at the start of the chapter. It is the  ReceiveForm  method that is of interest because it uses the 
 HttpRequest  context object to get form data values from the request. 

 As described in Table  17-4 , the  Form  property defined by the  HttpRequest  class returns a collection 
containing the form data values, indexed by the name of the associated HTML element. There are two  input  
elements in the  SimpleForm  view,  name  and  city , and I extract their values from the context object and use 
them to create a string that is passed to the  Result  view as its model. 

 If you run the application and request the  /Home  URL, you will be presented with a form. If you fill out 
the fields and click the Submit button, the browser will send the form data as part of an HTTP  POST  request 
that will be handled by the  ReceiveForm  method, producing the result shown in Figure  17-5 .  



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

518

 This approach shown in Listing  17-13  works perfectly well, but there is a more elegant alternative. 
Action methods can define parameters that are used by MVC to pass context data to a controller, including 
details of the HTTP request. This is neater than extracting it from the context objects directly, and it produces 
action methods that are easier to read. To receive the form data, declare parameters on the action method 
whose names correspond to the form data values, as shown in Listing  17-14 . 

     Listing 17-14.    Receiving Context Data as Parameters in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 

   namespace ControllersAndActions.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() => View("SimpleForm"); 

            public ViewResult ReceiveForm(string name, string city)  
              => View("Result", $"{name} lives in {city}");  
     } 
 } 

    The revised action method produces the same result, but it is easier to read and understand. MVC will 
provide values for action method parameters by checking context objects automatically, including  Request.
QueryString ,  Request.Form , and  RouteData.Values . The names of the parameters are treated case-
insensitively so that an action method parameter called  city  can be populated by a value from  Request.
Form["City"] , for example. This approach also produces action methods that are easier to unit test because 
the values that the action method operates on are received as regular C# parameters and don’t require 
context objects to be mocked.   

  Figure 17-5.    Getting form data from the context objects       

 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

519

     Producing a Response 
       After an action method has finished processing a request, it needs to generate a response. There are many 
features available for generating output from action methods, which I describe in the sections that follow. 

     Producing a Response Using the Context Object 
 The lowest-level way to generate output is to use the  HttpResponse  context object, which is how ASP.NET Core 
provides access to the HTTP response that will be sent to the client. Table  17-7  describes the basic features 
provided by the  HttpResponse  class, which is defined in the  Microsoft.AspNetCore.Http  namespace.  

 In Listing  17-15 , I have updated the  Home  controller so that its  ReceivedForm  action generates a response 
using the  HttpResponse  object returned by the  Controller.Request  property. 

     Listing 17-15.    Producing a Response in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
  using System.Text;  

   namespace ControllersAndActions.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() => View("SimpleForm"); 

            public void ReceiveForm(string name, string city) {  
              Response.StatusCode = 200;  
              Response.ContentType = "text/html";  
              byte[] content = Encoding.ASCII  
                  .GetBytes($"<html><body>{name} lives in {city}</body>");  
              Response.Body.WriteAsync(content, 0, content.Length);  
          }  
     } 
 } 

    Table 17-7.    Commonly Used HttpResponse Properties   

 Name  Description 

  StatusCode   This property is used to set the HTTP status code for the response. 

  ContentType   This property is used to set the  Content-Type  header of the response. 

  Headers   This property returns a dictionary of the HTTP headers that will be included in the response. 

  Cookies   This property returns a collection that is used to add cookies to the response. 

  Body   This property returns a  System.IO.Stream  object that is used to write the body data for the 
response. 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

520

    This is a terrible way to generate a response because it hard-codes HTML in the action method using C# 
strings, which is error-prone and hard to unit test. But it does provide a starting point for understanding how 
responses are created behind the scenes. 

 There are better alternatives than working directly with the  HttpResponse  object. MVC builds on the low-
level response with a much more useful feature that is at the heart of how controllers work: the  action result .  

     Understanding Action Results 
       MVC uses action results to separate  stating intentions  from  executing intentions . The concept is simple once 
you have mastered it, but it can take a while to get your head around the approach at first because there is a 
bit of indirection going on. 

 Instead of working directly with the  HttpResponse  object, action methods return an object that implements 
the  IActionResult  interface from the  Microsoft.AspNetCore.Mvc  namespace. The  IActionResult  object—
known as the  action result —describes what the response from the controller should be, such as rendering a view 
or redirecting the client to another URL. But—and this is where the indirection comes in—you don’t generate 
the response directly. Instead, MVC processes the action result to produce the result for you. 

 ■   Note    The system of action results is an example of the  command pattern . This pattern describes 
scenarios where you store and pass around objects that describe operations to be performed. See    http://
en.wikipedia.org/wiki/Command_pattern      for more details.  

 Here is the definition of the  IActionResult  interface from MVC source code: 

    using System.Threading.Tasks; 

   namespace Microsoft.AspNetCore.Mvc { 
     public interface IActionResult { 
         Task ExecuteResultAsync(ActionContext context); 
     } 
 } 

    This interface may seem simple, but that’s because MVC doesn’t dictate what kinds of response 
an action result can produce. When an action method returns an action result, MVC calls its 
 ExecuteResultAsync  method, which is responsible generating the response on behalf of the action 
method. The  ActionContext  argument provides context data for generating the response, including the 
 HttpResponse  object. (The  ActionContext  class is the superclass of  ControllerContext  and defines all the 
properties described in Table  17-5 .) 

 To demonstrate how action results work, I added an  Infrastructure  folder to the project and added a 
class file to it called  CustomHtmlResult.cs , which I used to define the action result shown in Listing  17-16 . 

     Listing 17-16.    The Contents of the CustomHtmlResult.cs File in the Infrastructure Folder   

  using Microsoft.AspNetCore.Mvc; 
 using System.Text; 
 using System.Threading.Tasks; 

   namespace ControllersAndActions.Infrastructure { 

       public class CustomHtmlResult : IActionResult { 

http://en.wikipedia.org/wiki/Command_pattern
http://en.wikipedia.org/wiki/Command_pattern


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

521

           public string Content { get; set; } 

           public Task ExecuteResultAsync(ActionContext context) { 
             context.HttpContext.Response.StatusCode = 200; 
             context.HttpContext.Response.ContentType = "text/html"; 
             byte[] content = Encoding.ASCII.GetBytes(Content); 
             return context.HttpContext.Response.Body.WriteAsync(content, 
                 0, content.Length); 
         } 
     } 
 } 

    The  CustomHtmlResult  class implements the  IActionResult  interface, and its  ExecuteResultAsync  
method uses the  HttpResponse  object to write an HTML response that contains the value of a property 
called  Content . The  ExecuteResultAsync  method must return a  Task  so that the response can be produced 
asynchronously; this fits nicely with the implementation in the  CustomHtmlResult  class, which relies on 
the  WriteAsync  method of the  Stream  object that represents the response body and which returns a  Task  
method that I can use as the method result. 

 In Listing  17-17 , I have applied the action result class to the  Home  controller, simplifying the  ReceiveForm  
action method of the  Home  controller. 

     Listing 17-17.    Using an Action Result in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Text; 
  using ControllersAndActions.Infrastructure;  

   namespace ControllersAndActions.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() => View("SimpleForm"); 

            public IActionResult ReceiveForm(string name, string city)  
              => new CustomHtmlResult {  
                  Content = $"{name} lives in {city}"  
              };  
          }  
 } 

    The code that sends the response is now defined separately from the data that the response contains, 
which simplifies the action method and allows the same type of response to be produced in other action 
methods without duplicating the same code. 

 UNIT TESTING CONTROLLERS AND ACTIONS

       Many parts of ASP.NET Core MVC are designed to facilitate unit testing, and this is especially true for 
actions and controllers. There are a few reasons for this support.

•    You can test actions and controllers outside a web server.  



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

522

•   You do not need to parse any HTML to test the result of an action method. You can 
inspect the  IActionResult  object that is returned to ensure that you received the 
expected result.  

•   You do not need to simulate client requests. The MVC model binding system allows 
you to write action methods that receive input as method parameters. To test an action 
method, you simply call the action method directly and provide the parameter values 
that interest you.    

 I will show you how to create unit tests for the different kinds of action results throughout this chapter. 
See Chapter   7     for instructions for setting up a unit test project or download the example projects from 
this book’s page at Apress.com.   

     Producing an HTML Response 
    In the previous section, I was able to take the code that generates the response out of the controller class 
using an action result. ASP.NET Core MVC comes complete with a more flexible approach to producing 
responses: the  ViewResult  class. 

 The  ViewResult  class is the action result that provides access to the Razor view engine, which processes 
. cshtml  files to incorporate model data and sends the result to the client through the  HttpResponse  context 
engine. I explain how view engines work in Chapter   21    , but for this chapter, my focus is on the use of the 
 ViewResult  class as an action result. 

 In Listing  17-18 , I have replaced the custom action result class with a  ViewResult , which is created 
through the  View  method provided by the  Controller  base class. 

      Listing 17-18.    Using the ViewResult Class in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Text; 
 using ControllersAndActions.Infrastructure; 

   namespace ControllersAndActions.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() => View("SimpleForm"); 

            public ViewResult ReceiveForm(string name, string city)  
              => View("Result", $"{name} lives in {city}");  
     } 
 } 

    You can create  ViewResult  objects directly, as I demonstrated in the POCO controller at the start of 
the chapter, but using the  View  method is simpler and more concise. The  Controller  class provides several 
different versions of the  View  method that allow the view that will be rendered to be selected and provided 
with model data, as described in Table  17-8 .         

http://dx.doi.org/10.1007/978-1-4842-0397-2_7
http://dx.doi.org/10.1007/978-1-4842-0397-2_21


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

523

 If you run the application and submit the form, you will see the familiar result shown in Figure  17-6 .  

   Understanding the Search for a View File 
    When MVC calls the  ExecuteResultAsync  method of the  ViewResult  object, a search will begin for the 
view that you have specified. The sequence of directories that MVC searches for a view is an example of 
convention over configuration. You do not need to register your view files with the framework. You just put 
them in one of a set of known locations and the framework will find them. By default, MVC will look for a 
view in the following locations: 

   /Views/ <ControllerName> / <ViewName> .cshtml 
 /Views/Shared/ <ViewName> .cshtml 

     Table 17-8.    The Controller View Methods   

 Method  Description 

  View()   This method creates a  ViewResult  object for the default view associated with 
the action method, such that calling  View()  in a method called  MyAction  will 
render a view called  MyAction.cshtml . No model data is used. 

  View(view)   This method creates a  ViewResult  that will render the specified view, such 
that calling  View("MyView")  will render a view called  MyView.cshtml . No 
model data is used. 

  View(model)   This method creates a  ViewResult  object for the default view associated with 
the action method and uses the specified object as the model data. 

  View(view, model)   This method creates a  ViewResult  object for the specified view and uses the 
specified object as the model data. 

  Figure 17-6.    Using a ViewResult to generate an HTML response       

 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

524

   The search starts with the folder that contains views that are dedicated to the current controller. The 
name of this folder omits the  Controller  part of the class name so that the folder for the  HomeController  
class is  Views/Home . 

 If the view name is not specified in the  ViewResult  object, then the value of the  action  variable from 
the routing data will be used. For most controllers, this means that the name of the method will be used so 
that the default view file associated with the  Index  method is  Index.cshtml . However, if you have used the 
 Route  attribute, then the view name associated with an action method may be different. 

 If your controller is part of an area, as described in Chapter   16    , then the search locations are different. 

   /Areas/ <AreaName> /Views/ <ControllerName> / <ViewName> .cshtml 
 /Areas/ <AreaName> /Views/Shared/ <ViewName> .cshtml 
 /Views/Shared/ <ViewName> .cshtml 

   MVC checks to see whether each of these files exists in turn. As soon as it locates a match, it uses that 
view to render the result of the action method. I am not using areas in the example project, so the action 
method in Listing  17-18  causes MVC to start its search by looking for the  Views/Home/Result.cshtml  file. 
There is no such file, so the search continues, with MVC looking for  Views/Shared/Result.cshtml , which 
does exist and so will be used to render the HTML response. 

 UNIT TEST: RENDERING A VIEW

 To test the view that an action method renders, you can inspect the  ViewResult  object that it returns. 
This is not quite the same thing (after all, you are not following the process through to check the final 
HTML that is generated), but it is close enough, as long as you have reasonable confidence that the MVC 
view system works properly. I added a new unit test file called  ActionTests.cs  to the test project to 
hold the unit tests for this chapter. 

 The first situation I want to test is when an action method selects a specific view, like this: 

   public ViewResult ReceiveForm(string name, string city) 
     => View("Result", $"{name} lives in {city}"); 

   You can determine which view has been selected by reading the  ViewName  property of the  ViewResult  
object, as shown in this test method: 

    using ControllersAndActions.Controllers; 
 using Microsoft.AspNetCore.Mvc; 
 using Xunit; 

   namespace ControllersAndActions.Tests { 

       public class ActionTests { 

           [Fact] 
         public void ViewSelected() { 
             // Arrange 
             HomeController controller = new HomeController(); 

               // Act 
             ViewResult result = controller.ReceiveForm("Adam", "London"); 

http://dx.doi.org/10.1007/978-1-4842-0397-2_16


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

525

               // Assert 
             Assert.Equal("Result", result.ViewName); 
         } 
     } 
 } 

    A variation arises when you are testing an action method that selects the default view, like this: 

   ... 
 public ViewResult Result() => View(); 
 ... 

   In such situations, you need to ensure that the view name is  null , like this: 

   ... 
 Assert.Null(result.ViewName); 
 ... 

   A  null  value is how the  ViewResult  object signals to MVC that the default view associated with the 
action method has been selected.  

 SPECIFYING A VIEW BY ITS PATH

 The naming convention approach for views is convenient and simple, but it does limit the views you can 
render. If you want to render a specific view, you can do so by providing an explicit path and bypass the 
search phase. Here is an example: 

    using Microsoft.AspNetCore.Mvc; 

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 

           public ViewResult Index() { 
              return View("/Views/Admin/Index");  
         } 
     } 
 } 

    When you specify a view like this, the path must begin with  /  or  ~/  and can include the file name 
extension (which is assumed to be . cshtml  if unspecified). 

 If you find yourself using this feature, I suggest that you take a moment and ask yourself what you are 
trying to achieve. If you are attempting to render a view that belongs to another controller, then you 
might be better off redirecting the user to an action method in that controller (see the “Redirecting to an 
Action Method” section later in this chapter for an example). If you are trying to work around the view 
file naming scheme because it doesn’t suit the way you have organized your project, then see Chapter 
  21    , which explains how to implement a custom search sequence.   

http://dx.doi.org/10.1007/978-1-4842-0397-2_21


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

526

   Passing Data from an Action Method to a View 
 When you use a  ViewResult  to select a view, you can pass data from the action method to be used when the 
HTML content is generated. MVC provides different ways for an action method to pass data to a view, which 
I describe in the following sections. These features naturally touch on the topic of views, which I describe in 
depth in Chapter   21    . In this chapter, I discuss only enough view functionality to demonstrate the controller 
features. 

   Using a View Model Object 

 You can send an object to the view by passing it as a parameter to the  View  method, which has the effect of 
setting the  ViewData.Model  property of the  ViewResult  object that is created. I set this property directly in 
Listing  17-9  to explain how POCO controllers work, but the  View  method takes care of this more concisely. 
Listing  17-19  shows a new  ExampleController  class that I added to the  Controllers  folder and that passes a 
view model object to the  View  method. 

      Listing 17-19.    The Contents of the ExampleController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 
 using System; 

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 

           public ViewResult Index() => View(DateTime.Now); 
     } 
 } 

    I passed a  DateTime  object to the  View  method to use as the view model. To access the object from 
within the view, I use the Razor  Model  keyword. I created the  Views/Example  folder and added a view called 
 Index.cshtml , which is shown in Listing  17-20 . 

     Listing 17-20.    The Contents of the Index.cshtml File in the Views/Example Folder   

  @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Controllers and Actions</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     Model: @(((DateTime)Model).DayOfWeek) 
 </body> 
 </html> 

http://dx.doi.org/10.1007/978-1-4842-0397-2_21


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

527

    This is an  untyped  or  weakly typed  view. The view does not know anything about the view model object 
and treats it as an instance of  object . To get the value of the  DayOfWeek  property, I need to cast the object to 
an instance of  DateTime , like this: 

   ... 
 Model: @(( (DateTime) Model).DayOfWeek) 
 ... 

   This works but produces messy views. I can tidy this up by creating  strongly typed views , in which the 
view includes details of the type of the view model object, as demonstrated in Listing  17-21 . 

     Listing 17-21.    Adding Strong Typing to the Index.cshtml File in the Views/Example Folder   

   @model DateTime  
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Controllers and Actions</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
      Model: @Model.DayOfWeek  
 </body> 
 </html> 

    I specified the view model type using the Razor  model  keyword. Notice that I use a lowercase  m  when 
specifying the model type and an uppercase  M  when reading the value. 

 Not only does strong typing help tidy up the view, but Visual Studio supports IntelliSense for strongly 
typed views, as shown in Figure  17-7 .  

  Figure 17-7.    IntelliSense support for strongly typed views       

 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

528

 UNIT TEST: VIEW MODEL OBJECTS

 View model objects are assigned to the  ViewResult.ViewData.Model  property, which means that you 
can test that an action method sends the expected data when the  View  method is used. Here is a test 
method that checks the model type for the action method in Listing  17-20 : 

     ... 
 [Fact] 
 public void ModelObjectType() { 
     //Arrange 
     ExampleController controller = new ExampleController(); 

       // Act 
     ViewResult result = controller.Index(); 

       // Assert 
     Assert.IsType<System.DateTime>(result.ViewData.Model); 
 } 
 ... 

    The  Assert.IsType  method is used to check that the view model object is an instance of  DateTime .  

 There is one wrinkle to be aware of when using the  View  method, which arises when you want to use the 
default view associated with an action and provide that view with a  string  model object, as shown in 
Listing  17-22 . 

     Listing 17-22.    Using the View Method in the ExampleController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System; 

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 

           public ViewResult Index() => View(DateTime.Now); 

            public ViewResult Result() => View("Hello World");  
     } 
 } 

    In the new  Result  action method, I want to use the  View  method that renders the default view for the 
action and specify the model data, which is the third version of the method in Table  17-8 . But if you run the 
application and request the  /Example/Result  URL, you will see an error like this one: 

   InvalidOperationException: The view 'Hello, World' was not found. 
 The following locations were searched: 
 /Views/Example/Hello, World.cshtml 
 /Views/Shared/Hello, World.cshtml 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

529

   The problem is that my call to the  View  method with a  string  was a match to the second version of the 
 View  method in Table  17-8 , which means that the  string  argument was interpreted as the name of the view 
to render, so MVC tries to find a view file called  Hello, World.cshtml  instead of  Result.cshtml . This is a 
common problem, but it is easy to fix by casting the model data to  object , as shown in Listing  17-23 . 

     Listing 17-23.    Selecting the Correct View Method in the ExampleController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System; 

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 

           public ViewResult Index() => View(DateTime.Now); 

            public ViewResult Result() => View((object)"Hello World");  
     } 
 } 

    Explicitly casting the model data to  object  ensures that the call matches the right version of the  View  
method and renders the  Result.cshtml  file.   

   Passing Data with the View Bag 
    I introduced the view bag feature in Chapter   2    . This feature allows you to define properties on a dynamic 
object and access them in a view. The dynamic object is accessed through the  ViewBag  property provided by 
the  Controller  class, as demonstrated in Listing  17-24 . 

     Listing 17-24.    Using the View Bag Feature in the ExampleController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System; 

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 

            public ViewResult Index() {  
              ViewBag.Message = "Hello";  
              ViewBag.Date = DateTime.Now;  
              return View();  
          }  

           public ViewResult Result() => View((object)"Hello World"); 
     } 
 } 

    I have defined view bag properties called  Message  and  Date  by assigning values to them. Before this 
point, no such properties existed, and I made no preparations to create them. To read the data back in the 
view, I get the same properties that I set in the action method, as shown in Listing  17-25 . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_2


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

530

     Listing 17-25.    Reading Data from the ViewBag in the Index.cshtml File in the Views/Example Folder   

  @model DateTime 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Controllers and Actions</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
      <p>The day is: @ViewBag.Date.DayOfWeek</p>  
      <p>The message is: @ViewBag.Message</p>  
 </body> 
 </html> 

    The  ViewBag  has an advantage over using a view model object in that it is easy to send multiple objects 
to the view. If MVC only supported view models, then I would need to create a new type that had  string  and 
 DateTime  members in order to get the same effect. 

 ■   Caution    Visual Studio cannot provide IntelliSense support for any dynamic objects, including the  ViewBag , 
and errors won’t be revealed until the view is rendered.  

 UNIT TEST: VIEWBAG

 The  ViewResult.ViewData  property returns a dictionary whose keys are the names of the view bag 
properties defined by the action method. Here is a test method for the action method in Listing  17-24 : 

     [Fact] 
 public void ModelObjectType() { 
     //Arrange 
     ExampleController controller = new ExampleController(); 

       // Act 
     ViewResult result = controller.Index(); 

       // Assert 
      Assert.IsType<string>(result.ViewData["Message"]);  
      Assert.Equal("Hello", result.ViewData["Message"]);  
      Assert.IsType<System.DateTime>(result.ViewData["Date"]);  
 } 

    This test method checks the types for both the  Message  and  Date  properties using the  Assert.IsType  
method and checks the value of the  Message  property using the  Assert.Equal  method.    



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

531

     Performing Redirections 
    A common result from an action method is not to produce any output directly but to redirect the client to 
another URL. Most of the time, this URL is another action method in the application that generates the 
output you want the users to see. When you perform a redirect, you send one of two HTTP codes to the 
browser.

•    HTTP code 302, which is a  temporary  redirection. This is the most frequently used 
type of redirection, and when using the Post/Redirect/Get pattern, this is the code 
that you want to send.  

•   HTTP code 301, which indicates a permanent redirection. This should be used with 
caution because it instructs the recipient of the HTTP code not to request the original 
URL ever again and to use the new URL that is included alongside the redirection 
code. If you are in doubt, use temporary redirections; that is, send code 302.    

 There are several different action results that can be used to perform a redirection, as described in 
Table  17-9 .  

   Redirecting to a Literal URL 
 The most basic way to redirect a browser is to call the  Redirect  method provided by the  Controller  class, 
which returns an instance of the  RedirectResult  class, as shown in Listing  17-26 . 

     Listing 17-26.    Redirecting to a Literal URL in the ExampleController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System; 

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 

           public ViewResult Index() { 
             ViewBag.Message = "Hello"; 

   Table 17-9.    The Redirection Action Results   

 Name  Controller Method  Description 

  RedirectResult    Redirect RedirectPermanent   This action result sends a 
response with the HTTP 301 or 
302 status code, redirecting the 
client to a new URL. 

  LocalRedirectResult    LocalRedirect 
LocalRedirectPermanent  

 This action result redirects the 
client to a local URL. 

  RedirectToActionResult    RedirectToAction  
  RedirectionToActionPermanent  

 This action result redirects the 
client to a specific action and 
controller. 

  RedirectToRouteResult    RedirectToRoute  
  RedirectToRoutePermanent  

 This action result redirects the 
client to a URL generated from 
a specific route. 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

532

             ViewBag.Date = DateTime.Now; 
             return View(); 
         } 

           public ViewResult Result() => View((object)"Hello World"); 

            public RedirectResult Redirect() => Redirect("/Example/Index");  
     } 
 } 

    The redirection URL is expressed as a  string  argument to the  Redirect  method, which produces a 
temporary redirection. You can perform a permanent redirection using the  RedirectPermanent  method, as 
shown in Listing  17-27 . 

 ■   Tip    The  LocalRedirectionResult  is an alternative action result that will throw an exception if a controller 
tries to perform a redirection to any URL that is not local. This is a useful when you are redirecting to URLs provided 
by users, where an  open redirection attack  is attempted to redirect another user to an untrusted site. This kind of 
action result can be created through the  LocalRedirect  method inherited from the  Controller  class.  

       Listing 17-27.    Permanently Redirecting to a Literal URL in the ExampleController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System; 

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 

           public ViewResult Index() { 
             ViewBag.Message = "Hello"; 
             ViewBag.Date = DateTime.Now; 
             return View(); 
         } 

           public ViewResult Result() => View((object)"Hello World"); 

            public RedirectResult Redirect() => RedirectPermanent("/Example/Index");  
     } 
 } 

    UNIT TEST: LITERAL REDIRECTIONS

 Literal redirections are easy to test. You can read the URL and test whether the redirection is permanent 
or temporary using the  Url  and  Permanent  properties of the  RedirectResult  class. The following is a 
test method for the permanent redirection shown in Listing  17-27 : 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

533

   ... 
 [Fact] 
 public void Redirection() { 
     // Arrange 
     ExampleController controller = new ExampleController(); 
     // Act 
     RedirectResult result = controller.Redirect(); 
     // Assert 
     Assert.Equal("/Example/Index", result.Url); 
     Assert.True(result.Permanent); 
 } 
 ... 

   Notice that I have updated the test to receive a  RedirectResult  when I call the action method.   

   Redirecting to a Routing System URL 
 If you are redirecting the user to a different part of your application, you need to make sure that the URL you 
send is valid within your URL schema. The problem with using literal URLs for redirection is that any change 
in your routing schema means that you need to go through your code and update the URLs. Fortunately, 
you can use the routing system to generate valid URLs with the  RedirectToRoute  method, which creates an 
instance of the  RedirectToRouteResult , as shown in Listing  17-28 . 

 ■   Tip    If you are following the examples in this chapter in sequence, then you may have to clear your 
browser’s history for the code in Listing  17-28  to work. This is because the browser remembers the permanent 
redirection in Listing  17-27  and will translate a request for the  /Example/Redirect  URL into a request to  /
Example/Index  without contacting the server.  

       Listing 17-28.    Redirecting to a Routing System URL in the ExampleController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System; 

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 

           public ViewResult Index() { 
             ViewBag.Message = "Hello"; 
             ViewBag.Date = DateTime.Now; 
             return View(); 
         } 

           public ViewResult Result() => View((object)"Hello World"); 

            public RedirectToRouteResult Redirect() =>  
              RedirectToRoute(new { controller = "Example",  



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

534

                                    action = "Index",  
                                    ID = "MyID" });  
     } 
 } 

    The  RedirectToRoute  method issues a temporary redirection. Use the  RedirectToRoutePermanent  
method for permanent redirections. Both methods take an anonymous type whose properties are then 
passed to the routing system to generate a URL, as described in Chapter   16    . 

 UNIT TESTING: ROUTED REDIRECTIONS

 Here is the unit test for the action method in Listing  17-28 : 

   ... 
 [Fact] 
 public void Redirection() { 
     // Arrange 
     ExampleController controller = new ExampleController(); 
     // Act 
      RedirectToRouteResult result = controller.Redirect();  
     // Assert 
      Assert.False(result.Permanent);  
      Assert.Equal("Example", result.RouteValues["controller"]);  
      Assert.Equal("Index", result.RouteValues["action"]);  
      Assert.Equal("MyID", result.RouteValues["ID"]);  
 } 
 ... 

   I have tested the result indirectly by looking at the routing information provided by the 
 RedirectToRouteResult  object, which means that I don’t have to parse a URL, which would require 
the unit test to make assumptions about the URL schema used by the application.   

   Redirecting to an Action Method 
 You can redirect to an action method more elegantly by using the  RedirectToAction  method (for temporary 
redirections) or the  RedirectToActionPermanent  method (for permanent redirections). These are just 
wrappers around the  RedirectToRoute  method that let you specify values for the action method and the 
controller without needing to create an anonymous type, as shown in Listing  17-29 . 

      Listing 17-29.    Redirecting Using the RedirectToAction Method in the ExampleController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System; 

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 

           public ViewResult Index() { 

http://dx.doi.org/10.1007/978-1-4842-0397-2_16


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

535

             ViewBag.Message = "Hello"; 
             ViewBag.Date = DateTime.Now; 
             return View(); 
         } 

            public RedirectToActionResult Redirect() => RedirectToAction("Index");  
     } 
 } 

    If you specify just an action method, then it is assumed that you are referring to an action method in the 
current controller. If you want to redirect to another controller, you need to provide the controller’s name as 
a parameter, like this: 

   ... 
 public RedirectToActionResult Redirect() =>  RedirectToAction("Index", "Home") ; 
 ... 

   There are other overloaded versions that you can use to provide additional values for the URL 
generation. These are expressed using an anonymous type, which does tend to undermine the purpose of 
the convenience method but can still make your code easier to read. 

 ■   Note    The values that you provide for the action method and controller are not verified before they are 
passed to the routing system. You are responsible for making sure that the targets you specify actually exist.  

 UNIT TESTING: ACTION METHOD REDIRECTIONS

 Here is the unit test for the action method in Listing  17-29 : 

   ... 
 [Fact] 
 public void Redirection() { 
     // Arrange 
     ExampleController controller = new ExampleController(); 
     // Act 
      RedirectToActionResult result = controller.Redirect();  
     // Assert 
     Assert.False(result.Permanent); 
      Assert.Equal("Index", result.ActionName);  
 } 
 ... 

   The  RedirectToActionResult  class provides  ControllerName  and  ActionName  properties that make it 
easy to inspect the redirection created by the controller without having to parse URLs.   



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

536

   Using the Post/Redirect/Get Pattern 
    The most frequent use of redirection is in action methods that process HTTP  POST  requests. As I explained in 
the previous chapter, POST requests are used when you want to change the state of an application. If you just 
return an HTML response after you process a POST request, there is a risk that the user will click the browser 
reload button and resubmit the form a second time, which can have unexpected and undesirable results. 

 You can see this problem in the  Home  controller in the example application. The  ReceiveForm  method 
accepts parameters whose values are obtained from form data, and it uses the  View  method to return a 
 ViewResult . 

   ... 
 public ViewResult ReceiveForm(string name, string city) 
      => View("Result", $"{name} lives in {city}");  
 ... 

   To see the problem, run the application and request the  /Home  URL. Submit the form and then click 
the browser reload button. Use the F12 tools to study the HTTP requests made by the browser and you 
will see that a new  POST  request is sent to the server. There is no impact in such a simple application, but 
this problem can wreak havoc if the  POST  requests end up repeatedly deleting data, submitting orders, or 
performing other important tasks that the user didn’t intend. 

 To avoid this problem, you can follow the pattern called Post/Redirect/Get. In this pattern, you receive 
a  POST  request, process it, and then redirect the browser so that a  GET  request is made by the browser for 
another URL.  GET  requests should not modify the state of your application, so any inadvertent resubmissions 
of this request won’t cause any problems. In Listing  17-30 , I have added a redirection so that the browser is 
redirected to a different URL with a  GET  request. 

     Listing 17-30.    Implementing the Post/Redirect/Get Pattern in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Text; 
 using ControllersAndActions.Infrastructure; 

   namespace ControllersAndActions.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() => View("SimpleForm"); 

            [HttpPost]  
          public RedirectToActionResult ReceiveForm(string name, string city)  
              => RedirectToAction(nameof(Data));  

            public ViewResult Data() => View("Result");  
     } 
 } 

    The  RedirectToActionResult  method receives the data from the user via a  POST  request and redirects 
the client to the  Data  action method. A harmless  GET  request will be sent to the  Data  action method if 
the user reloads the page. The  HttpPost  attribute, which I describe in Chapter   20    , ensures that only  POST  
requests can be sent to the  ReceiveForm  action. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_20


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

537

   Using Temp Data 

    A redirection causes the browser to send an entirely new HTTP request, which means that there is no access 
to the form data from the original request. This means that the  Data  method doesn’t have any knowledge of 
the  name  and  city  values that should be displayed to the user. 

 If you need to preserve data from one request to another, then you can use the temp data feature. 
Temp data is similar to session data, which I used in Chapter   9    , except that temp data values are marked for 
deletion when they are read and removed from the data store when the request has been processed. This is 
an ideal arrangement for short-lived data that is needed to make a redirection work in the Post/Redirect/Get 
pattern. The temp data feature is available through a  Controller  class property called  TempData , as shown in 
Listing  17-31 . 

 ■   Note    Temp data relies on the session middleware. See the start of this chapter for the list of NuGet 
packages required in the  project.json  file and the configuration statements for the  Startup  class.  

     Listing 17-31.    Using Temp Data in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System.Text; 
 using ControllersAndActions.Infrastructure; 

   namespace ControllersAndActions.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() { 
             return View("SimpleForm"); 
         } 

           [HttpPost] 
         public RedirectToActionResult ReceiveForm(string name, string city) { 
              TempData["name"] = name;  
              TempData["city"] = city;  
             return RedirectToAction(nameof(Data)); 
         } 

           public ViewResult Data() { 
              string name = TempData["name"] as string;  
              string city = TempData["city"] as string;  
              return View("Result", $"{name} lives in {city}");  
         }      
     } 
 } 

    The  ReceiveForm  method uses the  TempData  property, which returns a dictionary, to store the  name  
and  city  values before redirecting the client to the  Data  action. The  Data  method uses the same  TempData  
property to retrieve the data values and uses them to create the model data that will be displayed by the view. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_9


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

538

 ■   Tip    The  TempData  dictionary also provides a  Peek  method that allows you to get a data value without marking 
it for deletion and a  Keep  method, which can be used to prevent a previously read value from being deleted. The 
 Keep  method doesn’t protect a value forever. If the value is read again, it will be marked for removal once more. 
Use session data if you want to store items so that they won’t be removed when the request is processed.     

     Returning Different Types of Content 
 HTML isn’t the only kind of response that your action methods can generate, and Table  17-10  shows the 
built-in action results that can be used for different types of data.  

   Producing a JSON Response 
    The JavaScript Object Notation (JSON) format has become the standard way to transfer data between a web 
application and its client. JSON has largely replaced XML as a data exchange format because it is simpler 
to work with, especially when writing client-side JavaScript since JSON is closely related to the syntax that 
JavaScript uses to define literal data values. I return to the topic of JSON and its role in web applications in 
Chapter   20    , and Listing  17-32  shows the use of the  Json  method to create a  JsonResult  object. 

     Listing 17-32.    Generating a JSON Response in the ExampleController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using System; 

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 

            public JsonResult Index() => Json(new[] { "Alice", "Bob", "Joe" });  
     } 
 } 

   Table 17-10.    The Content Action Results   

 Name  Controller Method  Description 

  JsonResult    Json   This action result serializes an object into JSON 
and returns it to the client. 

  ContentResult    Content   This action result sends a response whose body 
contains a specified object. 

  ObjectResult    Not Available   This action result will use content negotiation to 
send an object to the client. 

  OkObjectResult    Ok   This action result will use content negotiation 
to send an object to the client with an HTTP 200 
status code if the content negotiation is successful. 

  NotFoundObjectResult    NotFound   This action result will use content negotiation 
to send an object to the client with an HTTP 404 
status code if the content negotiation is successful. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_20


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

539

    Run the example and request the  /Example  URL and you will see a response that expresses the C# 
 string  array from the action method in JSON, like this: 

   ["Alice","Bob","Joe"] 

   Some browsers will display JSON results inline, but others, including Microsoft Explorer, require you to 
save the data into a file before you can inspect it. 

 UNIT TESTING: NON-HTML ACTION RESULTS

 It is important to remember that your unit tests on an action method should focus on the data that is 
returned to be formatted and not the formatting itself, which is handled by MVC and which will generally 
be out of scope for most testing projects. As an example, here is a unit test for the action method in 
Listing  17-32 : 

    ... 
 [Fact] 
 public void JsonActionMethod() { 
     // Arrange 
     ExampleController controller = new ExampleController(); 
     // Act 
     JsonResult result = controller.GetJson(); 
     // Assert 
     Assert.Equal(new[] { "Alice", "Bob", "Joe" }, result.Value); 
 } 
 ... 

   The  JsonResult  class provides a  Value  property that returns the data that will be converted into JSON to 
produce the response to the client. In the unit test, I compare the  Value  property with the data that I expect.   

   Using Objects to Generate Responses 
 Many applications need just HTML and JSON responses from controllers and rely on support for static 
files to deliver other types of content, such as images, JavaScript files, and CSS stylesheets. There can be 
occasions, however, when you need to return a specific content type in a response, and there are action 
results available to help with this. The simplest is the  ContentResult  class, created through the  Content  
method, which is used to send a  string  value with an optional MIME content type. In Listing  17-33 , I have 
used the  Content  method to manually re-create the JSON result from the previous section. 

     Listing 17-33.    Manually Creating a JSON Result in the ExampleController.cs File   

  using Microsoft.AspNetCore.Mvc; 

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

540

            public ContentResult Index()  
              => Content("[\"Alice\",\"Bob\",\"Joe\"]", "application/json");  
     } 
 } 

    This type of action result is useful when you have content that is conveniently in a  string  format and 
you know that the client is able to accept the MIME type you specify. The danger with this approach is that 
you send a response to the client in a format that it doesn’t know how to process. A more robust approach is 
to rely on content negotiation, which is performed by the  ObjectResult , as shown in Listing  17-34 . 

     Listing 17-34.    Using Content Negotiation in the ExampleController.cs File   

  using Microsoft.AspNetCore.Mvc; 

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 

            public ObjectResult Index() => Ok(new string[] { "Alice", "Bob", "Joe" });  
     } 
 } 

    The term  content negotiation  suggests a complex system of figuring out a common format between the 
browser and the application, but in fact it is a simple process. When the browser makes an HTTP request, 
it includes the  Accept  header, which indicates which formats it can handle. Here is the header from the 
version of Google Chrome I used to test the example: 

   Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8 

   The supported formats are expressed as MIME types. MVC has a set of formats it can use for data values, 
and it compares these to the formats that the browser supports. The preferred format used by MVC is JSON, 
and this will be used most of the time, except when an action returns a  string  value, in which case plain text 
is used. See Chapter   20     for more details about the content negotiation process and how it is implemented.   

     Responding with the Contents of Files 
    Most applications rely on the static files middleware to deliver the contents of files, but there is also a set of 
action results that can be used to send files to the client, as described in Table  17-11 .  

 ■   Caution    Be careful when you use these action results and make sure that you do not create an application 
that allows the contents of arbitrary files to be requested. In particular, do not get the path of the file to send 
from any part of the request or from any data store that a user can modify through a request.  

http://dx.doi.org/10.1007/978-1-4842-0397-2_20


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

541

 In Listing  17-35 , I have used the  File  method inherited from the  Controller  class to return the 
Bootstrap CSS file as the result of the  Index  action method on the  Example  controller. 

      Listing 17-35.    Using a File as a Response in the ExampleController.cs File   

  using Microsoft.AspNetCore.Mvc; 

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 

            public VirtualFileResult Index()  
              => File("/lib/bootstrap/dist/css/bootstrap.css", "text/css");  
     } 
 } 

    To use this action method, I have modified the  link  element in the  SimpleForm.cshtml  file so that it 
uses the  Url  helper, as shown in Listing  17-36 . 

     Listing 17-36.    Targeting an Action Method in the SimplerForm.cshtml File   

  @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Controllers and Actions</title> 
      <link rel="stylesheet" href="@Url.Action("Index", "Example")" />  
 </head> 
 <body class="panel-body"> 
     <form method="post" asp-action="ReceiveForm"> 
         <div class="form-group"> 

   Table 17-11.    The File Action Results   

 Name  Controller Method  Description 

  FileContentResult    File   This action result sends a byte array to the client 
with a specified MIME type. 

  FileStreamResult    File   This action result reads a stream and sends the 
content to the client. 

  VirtualFileResult    File   This action result reads a stream from a virtual path 
(relative to the application on the host). 

  PhysicalFileResult    PhysicalFile   This action result reads the contents of a file from a 
specified path and sends the contents to the client. 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

542

             <label for="name">Name:</label> 
             <input class="form-control" name="name" /> 
         </div> 
         <div class="form-group"> 
             <label for="name">City:</label> 
             <input class="form-control" name="city" /> 
         </div> 
         <button class="btn btn-primary center-block" type="submit">Submit</button> 
     </form> 
 </body> 
 </html> 

    If you run the example and request the  /Home  URL, the HTML response that is sent to the browser will 
include the following element: 

   <link rel="stylesheet" href="/Example" /> 

   This will cause the browser to send an HTTP request that targets the action method in Listing  17-35 , 
which will send the CSS file required to style the content in the view. 

 ■   Note    Tag helpers are a much more useful tool for delivering CSS, as I describe in Chapter   25    .   

     Returning Errors and HTTP Codes 
       The final set of built-in  ActionResult  classes can be used to send specific error messages and HTTP result 
codes to the client, as described in Table  17-12 . Most applications do not require these features because ASP.
NET Core and MVC will automatically generate these kinds of results. However, they can be useful if you 
need to take more direct control over the responses sent to the client.  

http://dx.doi.org/10.1007/978-1-4842-0397-2_25


CHAPTER 17 ■ CONTROLLERS AND ACTIONS

543

   Sending a Specific HTTP Result Code 
 You can send a specific HTTP status code to the browser using the  StatusCode  method, which creates a 
 StatusCodeResult  object, as shown in Listing  17-37 . 

      Listing 17-37.    Sending a Specific Status Code in the ExampleController.cs File   

  using Microsoft.AspNetCore.Mvc; 
  using Microsoft.AspNetCore.Http;  

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 

            public StatusCodeResult Index()  
              => StatusCode(StatusCodes.Status404NotFound);  
     } 
 } 

    The  StatusCode  method accepts an  int  value, which you can use to specify a status code directly. The 
 StatusCodes  class in the  Microsoft.AspNetCore.Http  namespace defines fields for all the status codes 
supported by HTTP. In the listing, I used the  Status404NotFound  field to return code 404, which signifies that 
the requested resource does not exist.  

    Table 17-12.    The Status Code Action Result   

 Name  Controller Method  Description 

  StatusCodeResult    StatusCode   This action result sends a specified HTTP status 
code to the client. 

  OkResult    Ok   This action result sends an HTTP 200 status code to 
the client. 

  CreatedResult    Created   This action result sends an HTTP 201 status code to 
the client. 

  CreatedAtActionResult    CreatedAtAction   This action result sends an HTTP 201 status code to 
the client along with a URL in the Location header 
that targets an action and controller. 

  CreatedAtRouteResult    CreatedAtRoute   This action result sends an HTTP 201 status code to 
the client along with a URL in the Location header 
that is generated from a specific route. 

  BadRequestResult    BadRequest   This action result sends an HTTP 400 status code to 
the client. 

  UnauthorizedResult    Unauthorized   This action result sends an HTTP 401 status code to 
the client. 

  NotFoundResult    NotFound   This action result sends an HTTP 404 status code to 
the client 

  UnsupportedMediaTypeResult    None   This action result sends an HTTP 415 status code to 
the client. 



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

544

   Sending a 404 Result Using a Convenience Class 
 The other action results shown in Table  17-12  extend or rely on the  StatusCodeResult  class that provide a 
more convenient way to send specific status codes. I can achieve the same effect as Listing  17-37  using the 
more convenient  NotFoundResult  class, which is derived from  StatusCodeResult  and can be created using 
the controller  NotFound  convenience method, as shown in Listing  17-38 . 

      Listing 17-38.    Generating a 404 Result in the ExampleController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Http; 

   namespace ControllersAndActions.Controllers { 

       public class ExampleController : Controller { 

            public StatusCodeResult Index() => NotFound();  
     } 
 } 

    UNIT TEST: HTTP STATUS CODES

 The  StatusCodeResult  class follows the pattern you have seen for the other result types and makes 
its state available through a set of properties. In this case, the  StatusCode  property returns the numeric 
HTTP status code, and the  StatusDescription  property returns the associated descriptive string. The 
following test method is for the action method in Listing  17-38 : 

   ... 
 [Fact] 
 public void NotFoundActionMethod() { 
     // Arrange 
     ExampleController controller = new ExampleController(); 
     // Act 
     StatusCodeResult result = controller.Index(); 
     // Assert 
     Assert.Equal(404, result.StatusCode); 
 } 
 ... 

          Understanding the Other Action Result Classes 
 Some additional action result classes are closely linked with MVC features that I describe in other chapters. 
Table  17-13  lists these classes along with the chapters that describe the feature they relate to.    



CHAPTER 17 ■ CONTROLLERS AND ACTIONS

545

     Summary 
 Controllers are one of the key building blocks in the MVC design pattern and are at the heart of MVC 
development. In this chapter, you have seen how to create POCO controllers using basic C# classes and how 
to benefit from the convenience offered by the  Controller  base class. You saw the role that action results play 
in MVC controllers and how they ease unit testing. I showed you the different ways that you can receive input 
and generate output from an action method, and I demonstrated the built-in action result that make this a 
simple and flexible process. In the next chapter, I describe one of the features that causes the most confusion 
for ASP.NET developers but that is essential for effective MVC development: dependency injection.     

   Table 17-13.    Other Action Result Classes   

 Name  Controller Method  Description 

  PartialViewResult    PartialView   This action result is used to select a partial view, as 
described in Chapter   21    . 

  ViewComponentResult    ViewComponent   This action result is used to select a view 
component, as described in Chapter   22    . 

  EmptyResult    None   This action result class does nothing and produces 
an empty response to the client. 

  ChallengeResult    None   This action result is used to enforce security policies 
in requests. See Chapter   30     for details. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_21
http://dx.doi.org/10.1007/978-1-4842-0397-2_22
http://dx.doi.org/10.1007/978-1-4842-0397-2_30


547© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_18

    CHAPTER 18   

 Dependency Injection                          

    In this chapter, I describe  dependency injection  (DI), a technique that helps create flexible applications and 
simplifies unit testing. Dependency injection can be a difficult topic to understand, both in terms of why 
it can be useful and how it is performed. To that end, I build up slowly, starting with the conventional way 
of building application components and gradually explaining how dependency injection works and why it 
matters. Table  18-1  puts dependency injection into context.  

   Table 18-1.    Putting Dependency Injection in Context   

 Question  Answer 

 What is it?  Dependency Injection makes it easy to create loosely coupled components, 
which typically means that components consume functionality defined by 
interfaces without having any first-hand knowledge of which implementation 
classes are being used. 

 Why is it useful?  Dependency injection makes it easier to change the behavior of an application 
by changing the components that implements the interfaces that define 
application features. It also results in components that are easier to isolate for 
unit testing. 

 How is it used?  The  Startup  class is used to specify which implementation classes are used 
to deliver the functionality specified by the interfaces used by the application. 
When new objects—such as controllers—are created to handle requests, they 
are automatically provided with instances of the implementation classes they 
require. 

 Are there any pitfalls or 
limitations? 

 The main limitation is that classes declare their use of services as constructor 
arguments, which can result in constructors whose only role is to receive 
dependencies and assign them to instance fields. 

 Are there any 
alternatives? 

 You don’t have to use dependency injection in your own code, but it is helpful to 
know how it works because it is used by MVC to provide features to developers. 

 Has it changed since 
MVC 5? 

 Previous versions of ASP.NET MVC were designed to enable dependency 
injection, but you had to select and install a third-party tool to make it work. In 
ASP.NET Core MVC, a complete DI implementation is included as part of ASP.
NET and is used extensively by MVC internally, although it can be replaced with 
a third-party package. 

 Table  18-2  summarizes the chapter.  



CHAPTER 18 ■ DEPENDENCY INJECTION

548

     Preparing the Example Project 
 For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty 
project called DependencyInjection. I added the NuGet packages I required to the  dependencies  section of 
the  project.json  file and set up the Razor tooling in the  tools  section, as shown in Listing  18-1 . I removed 
the sections that are not required for this chapter. 

     Listing 18-1.    Adding Packages in the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
      "Microsoft.AspNetCore.Mvc": "1.0.0",  
      "Microsoft.AspNetCore.StaticFiles": "1.0.0",  
      "Microsoft.AspNetCore.Razor.Tools": {  
        "version": "1.0.0-preview2-final",  
        "type": "build"  
      }  
   }, 

     "tools": { 

   Table 18-2.    Chapter Summary   

 Problem  Solution  Listing 

 Create loosely coupled components  Isolate classes through interfaces and connect 
them together using external mappings 

 1–18 

 Declare a dependency in a component, 
such as a controller 

 Define a constructor argument of the type that 
the component requires 

 19 

 Configure a service mapping  Add the mapping to the  Startup  class  20, 22–28 

 Unit test a component with a dependency  Create a mock implementation of the service 
interface and pass it as a constructor argument 
when the component is created in the unit test 

 21 

 Specify the way in which implementation 
objects are created 

 Create the service mapping using the life-cycle 
method that suits the service being managed 

 29, 30, 32, 33 

 Change the implementation class at 
runtime 

 Use a life-cycle method that accepts a factory 
function 

 31 

 Receive dependencies for individual 
action methods in a controller 

 Use action injection  34 

 Manually request an implementation 
object in a controller 

 Use the  HttpContext.RequestServices  
property 

 35 



CHAPTER 18 ■ DEPENDENCY INJECTION

549

     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final", 
      "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final"  
   }, 

     "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6", "portable-net45+win8"] 
     } 
   }, 

     "buildOptions": { "emitEntryPoint": true, "preserveCompilationContext": true }, 

     "runtimeOptions": { 
     "configProperties": { "System.GC.Server": true } 
   } 
 } 

    Listing  18-2  shows the  Startup  class, which configures the features provided by the NuGet packages. 

     Listing 18-2.    The Contents of the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace DependencyInjection { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app) { 
              app.UseStatusCodePages();  
              app.UseDeveloperExceptionPage();  
              app.UseStaticFiles();  
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

        Creating the Model and Repository 
 The examples in this chapter require a simple model that I created by creating the  Models  folder and adding 
a class file called  Product.cs , which I used to define the class shown in Listing  18-3 . 

     Listing 18-3.    The Contents of the Product.cs File in the Models Folder   

  namespace DependencyInjection.Models { 

       public class Product { 



CHAPTER 18 ■ DEPENDENCY INJECTION

550

           public string Name { get; set; } 
         public decimal Price { get; set; } 
     } 
 } 

    To manage the model, I added a class called  IRepository.cs  to the  Models  folder and used it to define 
the interface shown in Listing  18-4 . 

     Listing 18-4.    The Contents of the IRepository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace DependencyInjection.Models { 
     public interface IRepository { 

           IEnumerable<Product> Products { get; } 

           Product this[string name] { get; } 

           void AddProduct(Product product); 
         void DeleteProduct(Product product); 
     } 
 } 

    The interface defines the operations that can be performed on the collection of  Product  objects. To 
provide an implementation of the interface, I added a class file called  MemoryRepository.cs  to the  Models  
folder and defined the class shown in Listing  18-5 . 

     Listing 18-5.    The Contents of the MemoryRepository.cs File   

  using System.Collections.Generic; 

   namespace DependencyInjection.Models { 

       public class MemoryRepository : IRepository { 
         private Dictionary<string, Product> products; 

           public MemoryRepository() { 
             products = new Dictionary<string, Product>(); 
             new List<Product> { 
                 new Product { Name = "Kayak", Price = 275 M }, 
                 new Product { Name = "Lifejacket", Price = 48.95 M }, 
                 new Product { Name = "Soccer ball", Price = 19.50 M } 
             }.ForEach(p => AddProduct(p)); 
         } 

           public IEnumerable<Product> Products => products.Values; 

           public Product this[string name] => products[name]; 

           public void AddProduct(Product product) => 



CHAPTER 18 ■ DEPENDENCY INJECTION

551

             products[product.Name] = product; 

           public void DeleteProduct(Product product) => 
             products.Remove(product.Name); 

       } 
 } 

    The  MemoryRepository  class stores its models objects in memory, using a dictionary. This means that 
there is no persistent storage and stopping or restarting the application will reset the model to the sample 
data objects that are created in the constructor. This isn’t a sensible approach for a real project, but it will be 
enough for this chapter, where the focus is on a different aspect of how applications work.  

     Creating the Controller and View 
 I created the  Controllers  folder, added a class file called  HomeController.cs , and used it to define the class 
shown in Listing  18-6 . 

     Listing 18-6.    The Contents of the HomeController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 

   namespace DependencyInjection.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() => View(); 
     } 
 } 

    The controller has only one action method, which uses the  View  method to create a  ViewResult  that 
will render the default view. To create the view associated with the action method, I created the  Views/Home  
folder and added a Razor file called  Index.cshtml . Listing  18-7  shows the markup I added to the view. 

     Listing 18-7.    The Contents of the Index.cshtml File in the Views/Home Folder   

  @model IEnumerable<Product> 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Dependency Injection</title> 
     <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" /> 
 </head> 
 <body class="panel-body"> 
     @if (ViewData.Count > 0) { 
         <table class="table table-bordered table-condensed table-striped"> 
             @foreach (var kvp in ViewData) { 
                 <tr><td>@kvp.Key</td><td>@kvp.Value</td></tr> 



CHAPTER 18 ■ DEPENDENCY INJECTION

552

             } 
         </table> 
     } 
     <table class="table table-bordered table-condensed table-striped"> 
         <thead> 
             <tr><th>Name</th><th>Price</th></tr> 
         </thead> 
         <tbody> 
             @if (Model == null) { 
                <tr><td colspan="3" class="text-center">No Model Data</td></tr> 
             } else { 
                 @foreach (var p in Model) { 
                     <tr> 
                         <td>@p.Name</td> 
                         <td>@string.Format("{0:C2}", p.Price)</td> 
                     </tr> 
                 } 
             } 
         </tbody> 
     </table> 
 </body> 
 </html> 

    The view is strongly typed using an enumeration of  Product  objects, and the main content of the view 
is an HTML table. If the controller doesn’t provide any model data, then a message is shown as the only 
content of the table. If there is model data, then a row is added to the table for each  Product  object in the 
enumeration. There is also a table that will enumerate the keys and values in the view bag if there are any but 
is otherwise hidden. I use this table later in the chapter. 

 The view depends on the Bootstrap CSS package for styling the HTML elements. To add Bootstrap to 
the project, I used the Bower Configuration File item template to create the  bower.json  file and added the 
Bootstrap package to the  dependencies  section, as shown in Listing  18-8 . 

     Listing 18-8.    Adding the Bootstrap Package in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6"  
   } 
 } 

   The final preparation is to create the  _ViewImports.cshtml  file in the  Views  folder, which sets up the 
built-in tag helpers for use in Razor views and imports the model namespace, as shown in Listing  18-9 . 

     Listing 18-9.    The Contents of the _ViewImports.cshtml File in the Views Folder   

 @using DependencyInjection.Models 
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 



CHAPTER 18 ■ DEPENDENCY INJECTION

553

        Creating the Unit Test Project 
 I used the Class Library (.NET Core) template to create a project called  DependencyInjection.Tests  in a 
folder called  test  that I added to the Visual Studio solution, following the process described in Chapter   7    . I 
replaced the default contents of the  project.json  file with the configuration shown in Listing  18-10 . 

     Listing 18-10.    The Contents of the project.json file in the DependencyInjection.Tests Project   

 { 
   "version": "1.0.0-*", 
   "testRunner": "xunit", 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "type": "platform", 
       "version": "1.0.0" 
     }, 
     "xunit": "2.1.0", 
     "dotnet-test-xunit": "2.2.0-preview2-build1029", 
     "DependencyInjection": "1.0.0", 
     "moq.netcore": "4.4.0-beta8", 
     "System.Diagnostics.TraceSource": "4.0.0" 
   }, 
   "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6", "portable-net45+win8"] 
     } 
   } 
 } 

   If you run the application, you will see the result shown in Figure  18-1 .    

  Figure 18-1.    Running the example application       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_7


CHAPTER 18 ■ DEPENDENCY INJECTION

554

     Creating Loosely Coupled Components 
       The reason that Figure  18-1  shows no model data is because there is no relationship between the 
 HomeController  class, which needs to pass model data to its view, and the  MemoryRepository  class, which 
contains the model data. The goal when connecting components together in an MVC application is to able 
to easily replace a component with an alternative implementation of the same functionality. 

 Being able to replace components allows effective unit testing, makes it possible to easily change 
the behavior of the application in different hosting environments (such as development and production 
servers), and simplifies long-term application maintenance. 

 In the sections that follow, I start by explaining the alternative approach and the problems it presents. 
This may seem like an indirect way to explain the dependency injection feature, but one of the challenges 
with DI is that it solves a problem that isn’t always obvious when writing code and that appears only later in 
the development cycle. 

 TAKING A VIEW ON DEPENDENCY INJECTION

 Dependency injection is one of the topics that readers contact me about most often. About half of 
the e-mails complain that I am “forcing” DI upon them. Oddly, the other half are complaints that I 
did not emphasize the benefits of DI strongly enough and other readers may not have realized how 
useful it can be. 

 Dependency injection can be a difficult topic to understand, and its value is contentious. DI can be a 
useful tool, but not everyone likes it—or needs it. 

 DI offers limited benefit if you are not doing unit testing or if you are working on a small, self-contained 
and stable project. It is still helpful to understand how DI works because DI is used to access some 
important MVC features, but you don’t always need to embrace DI in the controllers and other classes 
you write. 

 I use DI in my own projects, largely because I find that projects often go in unexpected directions and 
being able to easily replace a component with a new implementation can save me a lot of tedious and 
error-prone changes. I’d rather put in some effort at the start of the project than have to do a complex 
set of edits later. I am not dogmatic about dependency injection—it solves a problem that doesn’t 
arise in every project. Only you can determine whether you need DI on your project, and only you can 
evaluate the benefits and costs.  

     Examining Closely Coupled Components 
    For most developers, the natural inclination is to take the most direct path to solve a problem. For the 
example application, that means using the  new  keyword to create the repository object that is required by the 
controller in order to get hold of the model data, as shown in Listing  18-11 . 

      Listing 18-11.    Instantiating the Repository in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
  using DependencyInjection.Models;  

   namespace DependencyInjection.Controllers { 



CHAPTER 18 ■ DEPENDENCY INJECTION

555

       public class HomeController : Controller { 

            public ViewResult Index() => View(new MemoryRepository().Products);  
     } 
 } 

    The good news about this code is that it works. If you run the application, you will see the details of the 
model objects displayed in the browser, as shown in Figure  18-2 .  

  Figure 18-2.    Displaying the model data       

  Figure 18-3.    The effect of tightly coupled components       

 The bad news is that the  Home  controller and the  MemoryRepository  class are now  tightly coupled , 
which means that I can’t replace the repository without altering the  HomeController  class. As I explained in 
Chapter   7    , performing effective unit tests means being able to isolate a single component, but I can’t test the 
 Index  action method in Listing  18-11  without also implicitly testing the repository class. If my unit test fails, 
I won’t know whether the problem is in the controller, the repository, or some other component that the 
repository depends on. For all practical purposes, the  Home  controller and  MemoryRepository  form a single 
individual unit, as illustrated by Figure  18-3 .  

   De-coupling Components for Unit Testing 
 In Chapter   7    , I used a property to store a reference to the repository class through the interface it 
implements, which allowed me to create a mock repository for the purposes of unit testing. Listing  18-12  
shows this approach applied to the controller in this example application for this chapter. 

 

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_7
http://dx.doi.org/10.1007/978-1-4842-0397-2_7


CHAPTER 18 ■ DEPENDENCY INJECTION

556

     Listing 18-12.    Using a Property for the Repository in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using DependencyInjection.Models; 

   namespace DependencyInjection.Controllers { 

       public class HomeController : Controller { 

            public IRepository Repository { get; set; } = new MemoryRepository();  

            public ViewResult Index() => View(Repository.Products);  
     } 
 } 

    This technique is perfectly serviceable if you want to do unit testing because it lets you isolate the 
controller class by setting the  Repository  property before calling the action method in a unit test. 

 I added a class file called  DITests.cs  to the  DependencyInjection.Tests  project and used it to define 
the unit test shown in Listing  18-13 , which uses the  Repository  property to set up a fake repository before 
acting on the controller. 

     Listing 18-13.    Testing the Controller in the DITests.cs File in the Unit Test Project   

  using DependencyInjection.Controllers; 
 using DependencyInjection.Models; 
 using Microsoft.AspNetCore.Mvc; 
 using Moq; 
 using Xunit; 

   namespace Tests { 

       public class DITests { 

           [Fact] 
         public void ControllerTest() { 
             // Arrange 
             var data = new[] { new Product { Name = "Test", Price = 100 } }; 
             var mock = new Mock<IRepository>(); 
             mock.SetupGet(m => m.Products).Returns(data); 
             HomeController controller = new HomeController { 
                 Repository = mock.Object 
             }; 

               // Act 
             ViewResult result = controller.Index(); 

               // Assert 
             Assert.Equal(data, result.ViewData.Model); 
         } 
     } 
 } 



CHAPTER 18 ■ DEPENDENCY INJECTION

557

    The  Repository  property allows me to isolate the controller and supply test data that I can inspect in 
the  ViewResult  created by the action method. This provides only a partial solution to the tightly coupled 
component problem because you can’t set the  Repository  property when the application is running. As I 
explained in Chapter   17    , MVC is responsible for instantiating controllers to process requests, and it knows 
nothing about the special importance attached to the  Repository  property. The effect that this technique 
creates is that the controller and repository are loosely coupled for the purposes of unit testing but tightly 
coupled when the application is running, as shown in Figure  18-4 .   

  Figure 18-4.    The effect of adding a repository property       

   Using a Type Broker 
 The next logical step is to take the decision about which implementation of the repository interface is used 
out of the controller class and put it elsewhere in the application. To demonstrate how this can work, I added 
an  Infrastructure  folder to the example application and added a class file to it called  TypeBroker.cs , the 
contents of which are shown in Listing  18-14 . 

     Listing 18-14.    The Contents of the TypeBroker.cs File in the Infrastructure Folder   

  using DependencyInjection.Models; 
 using System; 

   namespace DependencyInjection.Infrastructure { 
     public static class TypeBroker { 
         private static Type repoType = typeof(MemoryRepository); 
         private static IRepository testRepo; 

           public static IRepository Repository => 
             testRepo ?? Activator.CreateInstance(repoType) as IRepository; 

           public static void SetRepositoryType<T>() where T : IRepository =>     
             repoType = typeof(T);    

           public static void SetTestObject(IRepository repo) { 
             testRepo = repo; 
         }      
     } 
 } 

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_17


CHAPTER 18 ■ DEPENDENCY INJECTION

558

    The  TypeBroker  class defines a  Repository  property that returns new objects that implement the 
 IRepository  interface. The implementation class used by the  Repository  property is determined by the 
value of the  repoType  field, which defaults to  MemoryRepository  but which can be changed by calling the 
 SetRepositoryType  method. 

 To support unit testing, the  SetTestObject  method allows a specific object to be used. In Listing  18-15 , 
I have updated the  Home  controller so that it obtains the repository object from the broker. 

     Listing 18-15.    Using the Type Broker in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using DependencyInjection.Models; 
  using DependencyInjection.Infrastructure;  

   namespace DependencyInjection.Controllers { 

       public class HomeController : Controller { 

            public IRepository Repository { get; } = TypeBroker.Repository;  

           public ViewResult Index() => View(Repository.Products); 
     } 
 } 

    There is now a more complex set of relationships in the example application, as shown in Figure  18-5 . 
The key point to note is that there is no direct relationship between the controller class and the repository 
class—everything is mediated through the interface and the broker. This means that it is possible to change 
the repository class without having to make any change to the controller.  

  Figure 18-5.    The effect of adding a type broker       

 To demonstrate the use of the type broker, I added a class file called  AlternateRepository.cs  to the 
 Models  folder and used it to define another implementation of the  IRepository  interface, as shown in 
Listing  18-16 . 

     Listing 18-16.    The Contents of the AlternateRepository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace DependencyInjection.Models { 
     public class AlternateRepository : IRepository { 
         private Dictionary<string, Product> products; 

           public AlternateRepository() { 

 



CHAPTER 18 ■ DEPENDENCY INJECTION

559

             products = new Dictionary<string, Product>(); 
             new List<Product> { 
                 new Product { Name = "Corner Flags", Price = 34.95 M }, 
                 new Product { Name = "Stadium", Price = 79500 M } 
             }.ForEach(p => AddProduct(p)); 
         } 

           public IEnumerable<Product> Products => products.Values; 

           public Product this[string name] => products[name]; 

           public void AddProduct(Product product) => 
             products[product.Name] = product; 

           public void DeleteProduct(Product product) => 
             products.Remove(product.Name); 
     } 
 } 

    In a real application, an alternative repository might store its data in a different format or use a 
different kind of persistence. In this example, the difference between the  AlternateRepository  class 
and the  MemoryRepository  class is the model data they create when the class is instantiated. To use the 
 AlternateRepository  class, I configured the type broker in the  ConfigureServices  method of the  Startup  
class, as shown in Listing  18-17 . 

     Listing 18-17.    Configuring the Type Broker in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
  using DependencyInjection.Infrastructure;  
  using DependencyInjection.Models;  

   namespace DependencyInjection { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              TypeBroker.SetRepositoryType<AlternateRepository>();  
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    You can see the effect of the change by starting the application, which will show the data provided by 
the new repository class, as shown in Figure  18-6 .  



CHAPTER 18 ■ DEPENDENCY INJECTION

560

 The type broker allows a specific object to be used as the repository, which allows unit tests to be 
written like the one in Listing  18-18 . 

     Listing 18-18.    Testing the Controller Through the Broker in the DITests.cs File   

  using DependencyInjection.Controllers; 
 using DependencyInjection.Infrastructure; 
 using DependencyInjection.Models; 
 using Microsoft.AspNetCore.Mvc; 
 using Moq; 
 using Xunit; 

   namespace Tests { 

       public class DITests { 

           [Fact] 
         public void ControllerTest() { 
             // Arrange 
             var data = new[] { new Product { Name = "Test", Price = 100 } }; 
             var mock = new Mock<IRepository>(); 
             mock.SetupGet(m => m.Products).Returns(data); 
              TypeBroker.SetTestObject(mock.Object);  
              HomeController controller = new HomeController();  

               // Act 
             ViewResult result = controller.Index(); 

               // Assert 
             Assert.Equal(data, result.ViewData.Model); 
         } 
     } 
 } 

  Figure 18-6.    Changing the repository class       

 



CHAPTER 18 ■ DEPENDENCY INJECTION

561

           Introducing ASP.NET Dependency Injection 
 In the previous section, I walked through the process of separating a controller class and the repository that 
supplies its model data. The  HomeController  class can now obtain an implementation of the  IRepository  
interface without having any knowledge of which class is being used or how it is instantiated. The knowledge 
about which  IRepository  class is contained in the  TypeBroker  class, which can be used by any other 
controller that requires access to the repository and which can be used to apply a test object.  

 The overall effect is a more flexible application, but there are some rough edges. The biggest drawback is that 
I have to add new methods and properties for each new type that I want to manage the broker. I could rewrite the 
 TypeBroker  class to be more general, but there isn’t any need because ASP.NET Core provides a slicker version of 
the same functionality, packaged in a way that makes it easier to use and doesn’t require any special classes. 

     Preparing for Dependency Injection 
 The term  dependency injection  (DI) describes an alternative approach to creating loosely coupled 
components, which is integrated into the ASP.NET Core platform and used automatically by MVC, which 
means that controllers and other components don’t need to have any knowledge of how the types they 
require are created. Listing  18-19  shows how I have prepared the  Home  controller for DI. 

     Listing 18-19.    Preparing for Dependency Injection in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using DependencyInjection.Models; 
 using DependencyInjection.Infrastructure; 

   namespace DependencyInjection.Controllers { 

       public class HomeController : Controller { 
          private IRepository repository;  

            public HomeController(IRepository repo) {  
              repository = repo;  
          }  

            public ViewResult Index() => View(repository.Products);  
     } 
 } 

    The controller declares its dependencies as constructor arguments. This accounts for the first part of the 
term: the  dependencies  in “dependency injection” are the objects that are required to create a new instance 
of a class. In this case, the controller class has declared a dependency on the  IRepository  interface. 

 In ASP.NET Core, a component called the  service provider  is responsible for mapping interfaces to the 
implementation types that are used to satisfy dependencies.     

 When a new controller is required, MVC asks the service provider to create a new instance of the 
 HomeController  class. The service provider inspects the  HomeController  constructor to determine its 
dependencies, creates the service objects that are required, and  injects  them into the  HomeController  
constructor to create a new controller that can be used to handle a request. This is the core process of 
dependency injection, so I am going to reiterate it for clarity:

    1.    MVC receives an incoming request to an action method on the  Home  controller.  

    2.    MVC asks the ASP.NET service provider component for a new instance of the 
 HomeController  class.  



CHAPTER 18 ■ DEPENDENCY INJECTION

562

    3.    The service provider inspects the  HomeController  constructor and discovers that 
it has a dependency on the  IRepository  interface.  

    4.    The service provider consults its mappings to find the implementation class it 
has been told to use for dependencies on the  IRepository  interface.  

    5.    The service provider creates a new instance of the implementation class.  

    6.    The service provider creates a new  HomeController  object, using the 
implementation object as a constructor argument.  

    7.    The service provider returns the newly created  HomeController  object to MVC, 
which uses it to handle the incoming HTTP request.     

 The overall effect is the same as for the custom type broker class, but an important advantage is 
that the dependency injection process is integrated into MVC, which means that the service provider 
component will be used whenever a controller class is created. This allows for controller classes to declare 
dependencies without needing any knowledge of how they will be resolved. You just write controller 
classes that declare their dependencies as constructor parameters and let MVC and the service provider 
component figure out the rest. 

 ■   Note    All the examples in this chapter use the built-in dependency injection system that comes as part 
of ASP.NET Core. There are third-party packages that can be used as drop-in replacements for the built-in 
functionality and that can offer enhancements and additional features. Popular packages include Autofac and 
StructureMap, although at the time of writing additional packages are required to integrate them into ASP.
NET Core. You can find details at    http://github.com/aspnet/DependencyInjection/blob/dev/README.md     , 
although the packages that are listed are likely to become obsolete as support for ASP.NET Core is integrated 
into the main DI packages.   

     Configuring the Service Provider 
 Declaring a dependency through the  HomeController  constructor has broken the application, which you 
can see if you run the project. When MVC tries to create an instance of the  HomeController  class to service a 
request, it encounters the error shown in Figure  18-7 .  

http://github.com/aspnet/DependencyInjection/blob/dev/README.md


CHAPTER 18 ■ DEPENDENCY INJECTION

563

 To resolve dependencies, the service provider has to be configured so that it knows how to resolve 
service dependencies. At the moment, the service provider doesn’t have that information, and it threw 
an exception when asked to create a  HomeController  object because it doesn’t know how to resolve the 
dependency on the  IRepository  interface. 

 The configuration for the service provider is defined in the  Startup  class so that the service is in place 
before the application starts to receive requests. In Listing  18-20 , I have configured the service provider so 
that it knows how to deal with dependencies on the  IRepository  interface. 

      Listing 18-20.    Configuring the Service Provider in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using DependencyInjection.Infrastructure; 
 using DependencyInjection.Models; 

   namespace DependencyInjection { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddTransient<IRepository, MemoryRepository>();  
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

  Figure 18-7.    Running the example project       

 



CHAPTER 18 ■ DEPENDENCY INJECTION

564

    Dependency injection is configured using extension methods that are called on the 
 IServiceCollection  object received by the  ConfigureServices  method. The  AddTransient  extension 
method that I used in the listing tells the service provider how to handle a dependency (which I describe in 
more detail later in the chapter). The mapping is expressed using type parameters, with the first type being 
the interface and the second type being the implementation class. 

   ... 
 services.AddTransient< IRepository, MemoryRepository >(); 
 ... 

   This statement tells the service provider to resolve dependencies on the  IRepository  interface by 
creating a  MemoryRepository  object. If you run the application, you will see that the dependency declared 
by the  HomeController  constructor is resolved and the controller is provided with access to model data, as 
shown in Figure  18-8 .   

  Figure 18-8.    Configuring dependency injection       

     Unit Testing a Controller with a Dependency 
 Using the constructor to receive dependencies make it easy to unit test controllers. Listing  18-21  shows a 
unit test for the controller in Listing  18-20 . 

     Listing 18-21.    Testing a Controller in the DITests.cs File in the Unit Test Project   

  using DependencyInjection.Controllers; 
 using DependencyInjection.Models; 
 using Microsoft.AspNetCore.Mvc; 
 using Moq; 
 using Xunit; 

   namespace Tests { 

 



CHAPTER 18 ■ DEPENDENCY INJECTION

565

       public class DITests { 

           [Fact] 
         public void ControllerTest() { 
             // Arrange 
             var data = new[] { new Product { Name = "Test", Price = 100 } }; 
             var mock = new Mock<IRepository>(); 
             mock.SetupGet(m => m.Products).Returns(data); 
              HomeController controller = new HomeController(mock.Object);  

               // Act 
             ViewResult result = controller.Index(); 

               // Assert 
             Assert.Equal(data, result.ViewData.Model); 
         } 
     } 
 } 

    The controller doesn’t know—or care—what kind of object is passed to the constructor as long as it 
implements the correct interface. This allows me to use my fake repository without having to rely on any 
external class, such as a type broker, that may affect the outcome of the test.  

     Using Dependency Chains 
    When the service provider needs to resolve a dependency, it inspects the type that it has been 
configured to use to see whether it, too, has dependencies to resolve. The result is that you can create a 
 chain  of dependencies, all of which are resolved at runtime and all of which can be managed through 
the configuration in the  Startup  class. To demonstrate a dependency chain, I added a class file called 
 IModelStorage.cs  to the  Models  folder and used it to define the interface shown in Listing  18-22 . 

     Listing 18-22.    The Contents of the IModelStorage.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace DependencyInjection.Models { 

       public interface IModelStorage { 
         IEnumerable<Product> Items { get; } 
         Product this[string key] { get; set; } 
         bool ContainsKey(string key); 
         void RemoveItem(string key); 
     } 
 } 

    This interface defines the behavior of a simple storage mechanism for  Product  objects. To implement 
this interface, I added a class file called  DictionaryStorage.cs  to the  Models  folder and used it to define the 
class shown in Listing  18-23 . 



CHAPTER 18 ■ DEPENDENCY INJECTION

566

     Listing 18-23.    The Contents of the DictionaryStorage.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace DependencyInjection.Models { 
     public class DictionaryStorage : IModelStorage { 
         private Dictionary<string, Product> items 
             = new Dictionary<string, Product>(); 

           public Product this[string key] { 
             get { return items[key]; } 
             set { items[key] = value; } 
         } 

           public IEnumerable<Product> Items => items.Values; 
         public bool ContainsKey(string key) => items.ContainsKey(key); 
         public void RemoveItem(string key) => items.Remove(key); 
     } 
 } 

    The  DictionaryStorage  class implements the  IModelStorage  interface by using a strongly 
typed dictionary to store model objects. This is functionality that is currently contained within the 
 MemoryRepository  class and that there would be little value in separating using an interface in a real project, 
but it makes for a useful example of how dependency injection can be used without adding too much 
additional complexity to the example application. 

 In Listing  18-24 , I have updated the  MemoryRepository  class so that it declares a dependency on the 
 IModelStorage  interface but without any knowledge about the implementation class that will be used at runtime. 

     Listing 18-24.    Declaring a Dependency in the MemoryRepository.cs File   

  using System.Collections.Generic; 

   namespace DependencyInjection.Models { 
     public class MemoryRepository : IRepository { 
          private IModelStorage storage;  

            public MemoryRepository(IModelStorage modelStore) {  
              storage = modelStore;  
             new List<Product> { 
                 new Product { Name = "Kayak", Price = 275 M }, 
                 new Product { Name = "Lifejacket", Price = 48.95 M }, 
                 new Product { Name = "Soccer ball", Price = 19.50 M } 
             }.ForEach(p => AddProduct(p)); 
         } 

            public IEnumerable<Product> Products => storage.Items;  

            public Product this[string name] => storage[name];  

           public void AddProduct(Product product) => 
              storage[product.Name] = product;  

           public void DeleteProduct(Product product) => 



CHAPTER 18 ■ DEPENDENCY INJECTION

567

              storage.RemoveItem(product.Name);  
     } 
 } 

    If you run the application, you will see that the service provider throws an exception with the following 
message: 

   InvalidOperationException: Unable to resolve service for type 'DependencyInjection.Models.
IModelStorage' while attempting to activate 'DependencyInjection.Models.MemoryRepository'. 

   This demonstrates that the service provider is working its way through the chain of dependencies. 
When it was asked to create a new controller, it inspected the  HomeController  constructor and found a 
dependency on the  IRepository  interface, which it knows should be resolved with a  MemoryRepository  
object. The service provider then inspected the  MemoryRepository  constructor, which has a dependency on 
the  IModelStorage  interface. The configuration doesn’t specify how  IModelStorage  dependencies should 
be resolved, which means that the  MemoryRepository  object cannot be created, and this, in turn, means that 
the  HomeController  object can’t be created either. The service provider is unable to provide MVC with the 
object it needs to handle the request, and an exception is thrown. 

 What I need is a type mapping that tells the service provider how it should resolve dependencies on 
 IModelStorage , which I have added to the application configuration in Listing  18-25 . 

     Listing 18-25.    Configuring an Additional Type Mapping in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using DependencyInjection.Infrastructure; 
 using DependencyInjection.Models; 

   namespace DependencyInjection { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddTransient<IRepository, MemoryRepository>(); 
              services.AddTransient<IModelStorage, DictionaryStorage>();  
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    With this addition, the service provider can satisfy both of the dependencies in the chain and is able to 
create the set of objects required to service the request: a  DictionaryStorage  object that is injected into the 
 MemoryRepository  constructor, which is turn is injected into the  HomeController  constructor. Dependency chains 
are not just a clever trick; they allow complex functionality to be composed by combining components that can be 
easily isolated for testing and that can be easily changed to suit the evolving requirements of a project as it matures.  



CHAPTER 18 ■ DEPENDENCY INJECTION

568

     Using Dependency Injection for Concrete Types 
    Dependency injection can also be used for concrete types, which are not accessed through interfaces. While 
this doesn’t provide the loose-coupling advantages of using an interface, it is a useful technique in its own 
right because it allows objects to be accessed anywhere in an application and puts concrete types under life-
cycle management, which I describe later in this chapter. 

 To demonstrate, I added a class file called  ProductTotalizer.cs  to the  Models  folder and used it to 
define the class shown in Listing  18-26 . 

     Listing 18-26.    The Contents of the ProductTotalizer.cs File in the Models Folder   

  using System.Linq; 

   namespace DependencyInjection.Models { 
     public class ProductTotalizer { 

           public ProductTotalizer(IRepository repo) { 
             Repository = repo; 
         } 

           public IRepository Repository { get; set; } 

           public decimal Total => Repository.Products.Sum(p => p.Price); 
     } 
 } 

    This class doesn’t do anything especially useful, but it does have a dependency on the  IRepository  
interface, which means using dependency injection will resolve this dependency using the configuration 
that applies to the rest of the application as well. In Listing  18-27 , I have declared the  ProductTotalizer  
class as a dependency of the  HomeController  class. 

     Listing 18-27.    Adding a Dependency in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using DependencyInjection.Models; 
 using DependencyInjection.Infrastructure; 

   namespace DependencyInjection.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 
          private ProductTotalizer totalizer;  

            public HomeController(IRepository repo, ProductTotalizer total) {  
             repository = repo; 
              totalizer = total;  
         } 

            public ViewResult Index() {  
              ViewBag.Total = totalizer.Total;  



CHAPTER 18 ■ DEPENDENCY INJECTION

569

              return View(repository.Products);  
          }  
     } 
 } 

    The  Index  action adds a view bag property that contains the total produced by the  ProductTotalizer  
class, which will be displayed in the table for view bag values that I added to the  Index.cshtml  view at the 
start of the chapter. The final step is to tell the service provider how to deal with  ProductTotalizer  requests, 
as shown in Listing  18-28 . 

     Listing 18-28.    Configuring the Service Provider in the Startup.cs File   

 ... 
 public void ConfigureServices(IServiceCollection services) { 
     services.AddTransient<IRepository, MemoryRepository>(); 
     services.AddTransient<IModelStorage, DictionaryStorage>(); 
      services.AddTransient<ProductTotalizer>();  
     services.AddMvc(); 
 } 
 ... 

   There is no mapping between a service type and an implementation type in this situation, so there is 
an override of the  AddTransient  extension method that accepts a single type parameter that tells the service 
provider that it should instantiate the  ProductTotalizer  class to resolve a dependency on this type. 

 The advantages of this approach—as opposed to simply instantiating the concrete class in the 
controller—are that the service provider will resolve any dependencies declared by the concrete class and 
that you can change the configuration so that more specialized subclasses are used to resolve dependencies 
for a concrete class. Concrete classes are managed by the service provider and are also subject to the life-
cycle features that I describe in the next chapter. If you run the application, you will see that the total value of 
the  Product  objects in the model are displayed, as shown in Figure  18-9 .    

  Figure 18-9.    Using dependency injection for classes       

 



CHAPTER 18 ■ DEPENDENCY INJECTION

570

     Understanding Service Life Cycles 
    In the previous section, I used the  AddTransient  extension method to tell the service provider how it should 
handle dependencies on the  IRepository  and  IModelStorage  interfaces. The  AddTransient  method is 
one of four different ways that type mappings can be defined. Table  18-3  describes the extension methods 
that tell the service provider how to resolve dependencies. The methods shown in Table  18-3  all use type 
parameters, but there are also extension methods available that accept  Type  objects as arguments instead, 
which can be useful if you need to generate mappings at runtime.  

     Table 18-3.    The Service Provider Dependency Injection Extension Methods   

 Name  Description 

  AddTransient<service, 
implType>()  

 This method tells the service provider to create a new instance of the 
implementation type for every dependency on the service type. See the 
“Using the Transient Life Cycle” section. 

  AddTransient<service>()   This method is used to register a single type, which will be instantiated for 
every dependency, as described in the “Using Dependency Injection for 
Concrete Types” section. 

  AddTransient<service>
(factoryFunc)  

 This method is used to register a factory function that will be invoked to 
create an implementation object for every dependency on the service type, 
as described in the “Using a Factory Function” section. 

  AddScoped<service, 
implType>() 
AddScoped<service>() 
AddScoped<service>
(factoryFunc)  

 These methods tell the service provider to reuse instances of the 
implementation type so that all service requests made by components 
associated with a common scope, which is usually a single HTTP request, share 
the same object. These methods follow the same pattern as the corresponding 
 AddTransient  methods. See the “Using the Scoped Life Cycle” section. 

  AddSingleton<service, 
implType>() 
AddSingleton<service>()  
  AddSingleton<service
(factoryFunc)  

 These methods tell the service provider to create a new instance of the 
implementation type for the first service request and then reuse it for every 
subsequent service request. See the “Using the Singleton Life Cycle” section. 

  AddSingleton<service>
(instance)  

 This method provides the service provider with an object that should be used to 
service all service requests. The service provider will not create any new objects. 

     Using the Transient Life Cycle 
    The simplest way to start using dependency injection is to use the  AddTransient  method, which tells 
the service provider to create a new instance of the implementation type whenever it needs to resolve a 
dependency. This is the configuration that is already present in the  Startup  class, as follows: 

   ... 
 public void ConfigureServices(IServiceCollection services) { 
     services. AddTransient <IRepository, MemoryRepository>(); 
     services. AddTransient <IModelStorage, DictionaryStorage>(); 
     services. AddTransient <ProductTotalizer>(); 
     services.AddMvc(); 
 } 
 ... 



CHAPTER 18 ■ DEPENDENCY INJECTION

571

   All of the life cycles described in Table  18-3  offer trade-offs. The transient life cycle incurs the cost of 
creating a new instance of the implementation class every time a dependency is resolved, but the advantage 
is that you don’t have to worry about managing concurrent access or ensure that objects can be safely reused 
for multiple requests. 

 To demonstrate the transient life cycle, I have overridden the  ToString  method in the 
 MemoryRepository  class so that it generates a globally unique identifier (GUID), as shown in Listing  18-29 . 

     Listing 18-29.    Overriding the ToString Method in the MemoryRepository.cs File   

  using System.Collections.Generic; 

   namespace DependencyInjection.Models { 
     public class MemoryRepository : IRepository { 
         private IModelStorage storage; 
          private string guid = System.Guid.NewGuid().ToString();  

           public MemoryRepository(IModelStorage modelStore) { 
             storage = modelStore; 
             new List<Product> { 
                 new Product { Name = "Kayak", Price = 275 M }, 
                 new Product { Name = "Lifejacket", Price = 48.95 M }, 
                 new Product { Name = "Soccer ball", Price = 19.50 M } 
             }.ForEach(p => AddProduct(p)); 
         } 

           public IEnumerable<Product> Products => storage.Items; 

           public Product this[string name] => storage[name]; 

           public void AddProduct(Product product) => 
             storage[product.Name] = product; 

           public void DeleteProduct(Product product) => 
             storage.RemoveItem(product.Name); 

            public override string ToString() {  
              return guid;  
          }  
     } 
 } 

    The GUID will make it easy to identify a specific instance of the  MemoryRepository  class and see how 
the different life-cycle methods change the way that the service provider behaves. In Listing  18-30 , I updated 
the  Index  action method on the  Home  controller so that it creates a  Controller  property to the view bag that 
is set to the GUID from the repository. 

     Listing 18-30.    Using the View Bag in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using DependencyInjection.Models; 
 using DependencyInjection.Infrastructure; 



CHAPTER 18 ■ DEPENDENCY INJECTION

572

   namespace DependencyInjection.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 
         private ProductTotalizer totalizer; 

           public HomeController(IRepository repo, ProductTotalizer total) { 
             repository = repo; 
             totalizer = total; 
         } 

           public ViewResult Index() { 
              ViewBag.HomeController = repository.ToString();  
              ViewBag.Totalizer = totalizer.Repository.ToString();  
             return View(repository.Products); 
         } 
     } 
 } 

    The  Index  action method adds values to the view bag that contains the GUIDs for the repository objects 
received directly to the constructor and through the constructor of the  ProductTotalizer  class, which 
you can see if you run the application. The two GUIDs are different because the service provider has been 
configured with the  AddTransient  method, which means that it creates a new  MemoryRepository  object to 
resolve the dependency of the  HomeController  and a second one for the  ProductTotalizer , as shown in 
Figure  18-10 .  

  Figure 18-10.    The effect of the transient life cycle       

 



CHAPTER 18 ■ DEPENDENCY INJECTION

573

 Each time you reload the web page, the new HTTP request causes MVC to create a new  HomeController , 
which leads to the creation of two new  MemoryRepository  objects, each with their own GUIDs. 

 ■   Tip    GUIDs are unique—or as close to unique as to make no real difference—and so you will see different 
values when you run the application on your machine.  

   Using a Factory Function 
 One version of the  AddTransient  method accepts a factory function that is invoked every time there 
is a dependency on the service type. This allows the object that is created to be varied so that different 
dependencies receive instances of different types or instances that are configured differently. In Listing  18-31 , 
I have used a factory function to select different implementations of the  IRepository  interface based on the 
hosting environment in which the application is running. 

     Listing 18-31.    Using a Factory Function in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using DependencyInjection.Infrastructure; 
 using DependencyInjection.Models; 
  using Microsoft.AspNetCore.Hosting;  

   namespace DependencyInjection { 

       public class Startup { 
          private IHostingEnvironment env;  

            public Startup(IHostingEnvironment hostEnv) {  
              env = hostEnv;  
          }  

           public void ConfigureServices(IServiceCollection services) { 
              services.AddTransient<IRepository>(provider => {  
                  if (env.IsDevelopment()) {  
                      var x =  provider.GetService<MemoryRepository>();  
                      return x;  
                  } else {  
                      return new AlternateRepository();  
                  }  
              });  
              services.AddTransient<MemoryRepository>();  
             services.AddTransient<IModelStorage, DictionaryStorage>(); 
             services.AddTransient<ProductTotalizer>(); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 



CHAPTER 18 ■ DEPENDENCY INJECTION

574

             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    In Chapter   14    , I described how ASP.NET provides the  Startup  class with services to help set up the 
application, including an implementation of the  IHostingEnvironment  interface for determining the 
hosting environment. You can receive these services as arguments to the  Configure  method but not the 
 ConfigureServices  method, so I have added a constructor to the  Startup  class, which does provide access 
to an  IHostingEnvironment  object, and assigned it to a field called  env . 

 Within the  ConfigureServices  method, I use the  AddTransient  method to define a factory function 
using a lambda expression. The expression receives a  System.IServiceProvider  object, which can be used 
to create instances of other types that have been registered with the service provider using the methods 
shown in Table  18-4 .  

     Table 18-4.    The IServiceProvider Methods and Extension Methods   

 Name  Description 

  GetService<service>()   This method uses the service provider to create a new instance of the service 
type. It returns  null  if there is no mapping for the requested type. 

  GetRequiredService<ser
vice>()  

 This method uses the service provider to create a new instance of the service 
type. It throws an exception if there is no mapping for the requested type. 

 Within the factory function, I use the  IHostingEnvironment  to determine whether the application is 
running in the development environment, and if it is, I use the  GetService  method to create an instance of 
the  MemoryRepository  class and return it from the factory function as the object to use for the  IRepository  
dependency. I use the  GetService  to create the object because  MemoryRepository  has its own dependency 
on the  IModelStorage  interface and using the service provider to create the object means that detecting and 
resolving the dependency will be managed automatically—but it does mean that I have to specify the life 
cycle that should be used for  MemoryRepository  objects, like this:

  ... 
 services.AddTransient< MemoryRepository >(); 
 ... 

   Without this statement, the service provider would not have the information it needs to create and 
manage  MemoryRepository  objects. 

 If the application is not running in the development environment, then the factory function returns a 
new instance of the  AlternateRepository  class. This class can be created directly using the  new  keyword 
because it doesn’t declare any dependencies in its constructor.   

     Using the Scoped Life Cycle 
    This life cycle creates a single object from the implementation class that is used to resolve all of the 
dependencies associated with a single scope, which generally means a single HTTP request. (You can create 
your own scopes, but this isn’t useful in most applications.) 

http://dx.doi.org/10.1007/978-1-4842-0397-2_14


CHAPTER 18 ■ DEPENDENCY INJECTION

575

 Since the default scope is the HTTP request, this life cycle allows for a single object to be shared by all 
of the components that process a request and is most often useful for sharing common context data when 
writing custom classes, such as routes. The scoped life cycle is created by using the  AddScoped  extension 
method to configure the service provider, as shown in Listing  18-32 . 

 ■   Tip    As described in Table  18-4 , there are also versions of the  AddScoped  method that accept a factory 
function and that can be used to register a concrete type. These methods work in the same way as the 
 AddTransient  method demonstrated in the previous section, with the obvious exception that the life cycle of 
the objects they create is different.  

     Listing 18-32.    Using the Scoped Life Cycle in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using DependencyInjection.Infrastructure; 
 using DependencyInjection.Models; 
 using Microsoft.AspNetCore.Hosting; 

   namespace DependencyInjection { 

       public class Startup { 
         private IHostingEnvironment env; 

           public Startup(IHostingEnvironment hostEnv) { 
             env = hostEnv; 
         } 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddScoped<IRepository, MemoryRepository>();  
             services.AddTransient<IModelStorage, DictionaryStorage>(); 
             services.AddTransient<ProductTotalizer>(); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    In the example application, the  HomeController  and  ProductTotalizer  are instantiated together to 
handle a request, and both require the service repository to resolve a dependency on the  IRepository  
interface. Using the  AddScoped  method ensures that both objects’ dependencies are resolved with a single 
 MemoryRepository  object. You can see the effect by running the example; both of the GUIDs shown by the 
browser are the same, as shown in Figure  18-11 . Reloading the page creates a new HTTP request, which 
means a new  MemoryRepository  object is created.   



CHAPTER 18 ■ DEPENDENCY INJECTION

576

     Using the Singleton Life Cycle 
    The singleton life cycle ensures that a single object is used to resolve all the dependencies for a given 
service type. When using this life cycle, you must ensure that the implementation classes used to resolve 
dependencies are safe for concurrent access. In Listing  18-33 , I have changed the scope for the  IRepository  
configuration. 

     Listing 18-33.    Using the Scope Life Cycle in the Startup.cs File   

 ... 
 public void ConfigureServices(IServiceCollection services) { 
      services.AddSingleton<IRepository, MemoryRepository>();  
     services.AddTransient<IModelStorage, DictionaryStorage>(); 
     services.AddTransient<ProductTotalizer>(); 
     services.AddMvc(); 
 } 
 ... 

   The  AddSingleton  method creates a new instance of the  MemoryRepository  class the first time that it 
has to resolve a dependency on the  IRepository  interface and then reuses that instance for any subsequent 
dependencies, even if they are associated with different HTTP requests, as shown in Figure  18-12 .    

  Figure 18-11.    The effect of the scope life cycle       

  Figure 18-12.    The effect of the singleton life cycle       

 

 



CHAPTER 18 ■ DEPENDENCY INJECTION

577

     Using Action Injection 
    The standard way to declare a dependency is through a constructor, which is a technique that can be used in 
any class and that relies on the dependency injection features that are part of the core ASP.NET platform. 

 MVC supplements the standard functionality with an alternative approach called  action injection , 
which allows dependencies to be declared through parameters to action methods. Strictly speaking, action 
injection is provided by the model binding system that I describe in Chapter   26    , but I have described it in 
this chapter because it allows services to be used in a different way. Action injection is performed using the 
 FromServices  attribute, which is applied to an action method parameter, as shown in Listing  18-34 . 

     Listing 18-34.    Using Action Injection in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using DependencyInjection.Models; 
 using DependencyInjection.Infrastructure; 

   namespace DependencyInjection.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

            public ViewResult Index([FromServices]ProductTotalizer totalizer) {  
             ViewBag.HomeController = repository.ToString(); 
              ViewBag.Totalizer = totalizer.Repository.ToString();  
             return View(repository.Products); 
         } 
     } 
 } 

    MVC uses the service provider to get an instance of the  ProductTotalizer  class and provides it as an 
argument when the  Index  action method is invoked. Using action injection is less common than standard 
constructor injection, but it can be useful when you have a dependency on an object that is expensive to 
create and that is required in only one of the action methods defined by a controller. Using constructor 
injection resolves the dependency for all action methods, even if the one used to handle the request doesn’t 
use the implementation object. Decorating an action method with the  FromServices  attribute narrows the 
focus of the dependency and ensures that the implementation type is instantiated only when it is required.  

     Using the Property Injection Attributes 
    In Chapter   17    , I explained how to receive context data in a POCO controller by declaring a property 
and decorating it with the  ControllerContext  attribute. Now that you have read this chapter, you will 
understand that this was a special form of dependency injection. It is known as  property injection . 

 MVC provides a set of specialized attributes that can be used to receive specific types via property 
injection in controllers and in view components (which I describe in Chapter   22    ). You won’t need to 
use these attributes if you derive your controllers from the  Controller  base class because the context 
information is exposed through convenience properties, but Table  18-5  lists the attributes for use in POCO 
controllers.   

http://dx.doi.org/10.1007/978-1-4842-0397-2_26
http://dx.doi.org/10.1007/978-1-4842-0397-2_17
http://dx.doi.org/10.1007/978-1-4842-0397-2_22


CHAPTER 18 ■ DEPENDENCY INJECTION

578

     Manually Requesting an Implementation Object 
    The main ASP.NET dependency injection feature and the additional attributes that MVC provides for 
property and action injection provide all the support that most applications will require for creating loosely 
coupled components. There can be occasions, however, when it can be useful to get an implementation for 
an interface without relying on injection. In these situations, you can work directly with the service provider, 
as shown in Listing  18-35 . 

     Listing 18-35.    Using the Service Provider Directly in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using DependencyInjection.Models; 
 using DependencyInjection.Infrastructure; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace DependencyInjection.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index([FromServices]ProductTotalizer totalizer) { 

                IRepository repository =  
                  HttpContext.RequestServices.GetService<IRepository>();  

               ViewBag.HomeController = repository.ToString(); 
             ViewBag.Totalizer = totalizer.Repository.ToString(); 
             return View(repository.Products); 
         } 
     } 
 } 

   Table 18-5.    The Specialized Property Injection Attributes   

 Name  Description 

  ControllerContext   This attribute sets a  ControllerContext  property, which provides a superset of 
the functionality of the  ActionContext  class, as described in Chapter   31    . 

  ActionContext   This attribute sets an  ActionContext  property to provide context information to 
action methods. The  Controller  classes expose the context information through 
an  ActionContext  property, as well as a set of convenience properties described 
in Chapter   31    . 

  ViewContext   This attribute sets a  ViewContext  property to provide context data for view 
operations, including tag helpers (as described in Chapter   23    ). 

  ViewComponentContext   This attribute sets a  ViewComponentContext  property for view components, 
which I describe in Chapter   22    . 

  ViewDataDictionary   This attribute sets a  ViewDataDictionary  property to provide access to the 
model binding data, as described in Chapter   26    . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_31
http://dx.doi.org/10.1007/978-1-4842-0397-2_31
http://dx.doi.org/10.1007/978-1-4842-0397-2_23
http://dx.doi.org/10.1007/978-1-4842-0397-2_22
http://dx.doi.org/10.1007/978-1-4842-0397-2_26


CHAPTER 18 ■ DEPENDENCY INJECTION

579

    The  HttpContext  object returned by the property of the same name defines a  RequestServices  method 
that returns an  IServiceProvider  object, on which the methods described in Table  18-4  can be called. 
In the listing, I removed the  Repository  property, which was set using property injection, and used the 
 HttpContext.RequestServices  property to obtain an implementation of the  IRepository  interface. 

 This is known as the  service locator pattern , which some developers believe should be avoided. Mark 
Seemann wrote a good description of the problems it can cause at    http://blog.ploeh.dk/2010/02/03/
ServiceLocatorisanAnti-Pattern     . My view is more relaxed in that obtaining services in this way is 
perfectly reasonable when the normal technique of receiving dependencies through the constructor cannot 
be used for some reason. 

 ■   Tip    If you need to access services in the  Configure  method of the  Startup  class, then you can use the 
 ApplicationServices  property provided by the  IApplicationBuilder  interface.   

     Summary 
 In this chapter, I explained the role that dependency injection plays in an MVC application, helping to create 
loosely coupled components that can be easily replaced and easily isolated for testing. I demonstrated the 
ASP.NET dependency injection feature and the attributes that MVC provides for injecting dependencies 
into properties and action methods. I described the different life-cycle options that are available when 
configuring the service provider and explained how they affect the way that objects are created. In the next 
chapter, I introduce filters, which add extra logic into the request-handling process.     

http://blog.ploeh.dk/2010/02/03/ServiceLocatorisanAnti-Pattern
http://blog.ploeh.dk/2010/02/03/ServiceLocatorisanAnti-Pattern


581© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_19

    CHAPTER 19   

 Filters                          

     Filters  inject extra logic into MVC request processing. They provide a simple and elegant way to implement 
 cross-cutting concerns —a term that refers to functionality that is used all over an application and doesn’t fit 
neatly into any one place, where it would break the separation of concerns. Classic examples of cross-cutting 
concerns are logging, authorization, and caching. In this chapter, I show you the different categories of filters 
that MVC supports, how to create and use custom filters, and how to control their execution. Table  19-1  puts 
filters in context.  

   Table 19-1.    Putting Filters in Context   

 Question  Answer 

 What are they?  Filters are used to apply logic to action methods without having 
to add code to the controller class. 

 Why are they useful?  Filters allow code to be applied that isn’t part of the classic 
MVC pattern definition of an action. The result is simpler 
controller classes and reusable functionality that can be applied 
throughout an application. 

 How are they used?  There are different types of filters that are used by MVC in 
different ways. The most common way to create a filter is to 
create a class that subclasses an attribute provided by MVC for 
the filter type you require. 

 Are there any pitfalls or limitations?  The functionality provided by the different types of filters 
overlap, and it can be hard to figure out which type is required. 

 Are there any alternatives?  No, filters are a core MVC feature and are used to implement 
commonly required functionality such as authorization. 

 Have they changed since MVC 5?  Filters behave in much the same way as in earlier MVC versions. 
There are some minor changes: 

 •    The functionality previously provided by authentication 
filters has been folded into authorization filters. 

 •    The  Authorize  attribute is no longer a filter (see Chapter   29     
for details of using this attribute). 

 •    All filter types can be defined using separate synchronous 
or asynchronous interfaces. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_29


CHAPTER 19 ■ FILTERS

582

 Table  19-2  summarizes the chapter.  

   Table 19-2.    Chapter Summary   

 Problem  Solution  Listing 

 Inject extra logic into request processing  Apply filters to controllers or their action methods  1–11 

 Restrict access to actions  Use authorization filters  12, 13 

 Inject general-purpose logic into the 
request-handling process 

 Use action filters  14–16 

 Inspect or alter the results produced by 
action methods 

 Use result filters  17–21 

 Handle errors  Use exception filters  22, 23 

 Use services in filters  Declare dependencies in the filter constructor, 
register the service in the  Startup  class, and apply 
the filter using the  TypeFilter  attribute 

 24–28 

 Put filters under life-cycle management  Use the dependency injection life cycles to 
register the filters in the  Startup  class and apply 
the filters using the  ServiceFilter  attribute 

 29–31 

 Apply filters to every action method in the 
application 

 Use a global filter  32–34 

 Change the order in which filters are executed  Use the  Order  parameter  35–37 

     Preparing the Example Project 
 For this chapter, I followed the same approach to create the example application as in recent chapters. I used 
the ASP.NET Core Web Application (.NET Core) template to create a new Empty project called Filters. I added 
the NuGet packages I required to the  dependencies  section of the  project.json  file and set up the Razor 
tooling in the  tools  section, as shown in Listing  19-1 . 

     Listing 19-1.    Adding Packages in the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
      "Microsoft.AspNetCore.Mvc": "1.0.0",  
      "Microsoft.AspNetCore.StaticFiles": "1.0.0",  
      "Microsoft.AspNetCore.Razor.Tools": {  
        "version": "1.0.0-preview2-final",  
        "type": "build"  
      }  
   }, 



CHAPTER 19 ■ FILTERS

583

     "tools": { 
      "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final",  
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final" 
   }, 

     "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6", "portable-net45+win8"] 
     } 
   }, 

     "buildOptions": { 
     "emitEntryPoint": true, "preserveCompilationContext": true 
   }, 

     "runtimeOptions": { 
     "configProperties": { "System.GC.Server": true } 
   } 
 } 

    Listing  19-2  shows the  Startup  class, which configures the features provided by the NuGet packages. 

     Listing 19-2.    The Contents of the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace Filters { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app) { 
              app.UseStatusCodePages();  
              app.UseDeveloperExceptionPage();  
              app.UseStaticFiles();  
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

        Enabling SSL 
 Some of the examples in this chapter require the use of SSL, which is disabled by default. To enable 
SSL, select Filter Properties from the Visual Studio Project menu and check the Enable SSL option in the 
Debug tab, as shown in Figure  19-1 . Make a note of the port that is assigned, which will be different for 
each project.   



CHAPTER 19 ■ FILTERS

584

     Creating the Controller and View 
 The controllers in this chapter are simple because the focus is on placing logic elsewhere in the application. 
I created the  Controllers  folder, added a class file called  HomeController.cs , and used it to define the 
controller shown in Listing  19-3 . 

     Listing 19-3.    The Contents of the HomeController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 

   namespace Filters.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() => View("Message", 
             "This is the Index action on the Home controller"); 
     } 
 } 

    The action method renders a view called  Message  and passes a string as the view data. I created the 
 Views/Shared  folder and added a Razor view file called  Message.cshtml  file with the markup shown in 
Listing  19-4 . 

     Listing 19-4.    The Contents of the Message.cshtml File in the Views/Shared Folder   

  @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Filters</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     @if (Model is string) { 
         @Model 
     } else if (Model is IDictionary<string, string>) { 

  Figure 19-1.    Enabling SSL       

 



CHAPTER 19 ■ FILTERS

585

         var dict = Model as IDictionary<string, string>; 
         <table class="table table-condensed table-striped table-bordered"> 
             <thead><tr><th>Name</th><th>Value</th></tr></thead> 
             <tbody> 
                 @foreach (var kvp in dict) { 
                     <tr><td>@kvp.Key</td><td>@kvp.Value</td></tr> 
                 } 
             </tbody> 
         </table> 
     } 
 </body> 
 </html> 

    This view is weakly typed and will display either a  string  or a  Dictionary<string, string> , in which 
case a table is displayed. 

 The view depends on the Bootstrap CSS package for styling the HTML elements. To add Bootstrap to the 
project, I used the Bower Configuration File item template to create the  bower.json  file in the root project 
folder and added the Bootstrap package to the  dependencies  section, as shown in Listing  19-5 . 

     Listing 19-5.    Adding the Bootstrap Package in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6"  
   } 
 } 

   The final preparation is to create the  _ViewImports.cshtml  file in the  Views  folder, which sets up the 
built-in tag helpers for use in Razor views, as shown in Listing  19-6 . 

     Listing 19-6.    The Contents of the _ViewImports.cshtml File in the Views Folder   

 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

   If you run the application, you will see the output shown in Figure  19-2 .    

  Figure 19-2.    Running the example application       

 



CHAPTER 19 ■ FILTERS

586

     Using Filters 
 Filters allow logic that would otherwise be applied in the action method to be removed from the controller 
and defined in a reusable class. As an example, imagine that I wanted to ensure that action methods could 
be accessed only using HTTPS and not with regular nonencrypted HTTP. The  HttpRequest  context object 
provides the information I need to figure out whether HTTPS is used, as shown in Listing  19-7 . 

       Listing 19-7.    Testing for HTTPS in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
  using Microsoft.AspNetCore.Http;  

   namespace Filters.Controllers { 

       public class HomeController : Controller { 

            public IActionResult Index() {  
              if (!Request.IsHttps) {  
                  return new StatusCodeResult(StatusCodes.Status403Forbidden);  
              } else {  
                  return View("Message",  
                      "This is the Index action on the Home controller");  
              }  
          }  
     } 
 } 

    This is how you would approach the HTTPS issue without filters. If you run the application, your 
browser will request the non-HTTPs default URL for the project, which the  Index  action method deals with 
by returning an  StatusCodeResult , which sends the HTTP 403 status code in the response (as described 
in Chapter   17    ). If you request the HTTPS default URL, which for me is  https://localhost:44318 , the 
 Index  action method will respond by rendering the  Message  view (you may need to acknowledge a security 
warning before the browser will display the result). Figure  19-3  shows both outcomes.  

 ■   Tip   Clear your browser’s history if you don’t get the results you expect from the examples in this section. 
Browsers will often refuse to send requests to servers that have generated SSL errors, which is a good security 
practice but can be frustrating during development.  

  Figure 19-3.    Restricting access to HTTPS requests       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_17


CHAPTER 19 ■ FILTERS

587

 The code in Listing  19-7  works but has problems. The first problem is that the action method contains 
code that is more about implementing a security policy than about handling the request, updating the 
model, and selecting the response. A more serious problem is that including the HTTP-detecting code 
within the action method doesn’t scale well and must be duplicated in every action method in the controller, 
as shown in Listing  19-8 . 

      Listing 19-8.    Adding an Action Method in the HomeController.cs File   

  using Microsoft.AspNetCore.Http; 
 using Microsoft.AspNetCore.Mvc; 

   namespace Filters.Controllers { 

       public class HomeController : Controller { 

           public IActionResult Index() { 
             if (!Request.IsHttps) { 
                 return new StatusCodeResult(StatusCodes.Status403Forbidden); 
             } else { 
                 return View("Message", 
                     "This is the Index action on the Home controller"); 
             } 
         } 

            public IActionResult SecondAction() {  
              if (!Request.IsHttps) {  
                  return new StatusCodeResult(StatusCodes.Status403Forbidden);  
              } else {  
                  return View("Message",  
                      "This is the SecondAction action on the Home controller");  
              }  
          }  
     } 
 } 

    I have to remember to implement the same check in every action method in every controller for which 
I want to require HTTPS. The code to implement the security policy is a substantial part of the—admittedly 
simple—controller, which makes the controller harder to understand, and it is only a matter of time before 
I forget to add it to a new action method, creating a hole in my security policy. This is the kind of problems 
that filters can address, as shown in Listing  19-9 .     

     Listing 19-9.    Applying a Filter in the HomeController.cs File   

  using Microsoft.AspNetCore.Http; 
 using Microsoft.AspNetCore.Mvc; 

   namespace Filters.Controllers { 

       public class HomeController : Controller { 



CHAPTER 19 ■ FILTERS

588

            [RequireHttps]  
          public ViewResult Index() => View("Message",  
              "This is the Index action on the Home controller");  

            [RequireHttps]  
          public ViewResult SecondAction() => View("Message",  
              "This is the SecondAction action on the Home controller");  
     } 
 } 

    The  RequireHttps  attribute applies one of the built-in filters to the  HomeController  class. It restricts 
access to action methods so that only HTTPS requests are supported and allows me to remove the security 
code from each method and focus on handling the successful requests. 

 ■   Note   The  RequireHttps  filter doesn’t work in quite the same way as my custom code in Listing  19-7 . For 
 GET  requests, the  RequireHttps  attribute redirects the client to the originally requested URL, but it do so by 
using the  https  scheme so that a request to  http://localhost/Home/Index  will be redirected to  https://
localhost/Home/Index . This makes sense for most deployed applications but not during development because 
HTTP and HTTPS are on different local ports. The  RequireHttpsAttribute  class defines a protected method 
called  HandleNonHttpsRequest  that you can override to change the behavior. Alternatively, I re-create the 
original functionality from scratch in the “ Using Authorization Filters ” section.  

 Of course, I still have to remember to apply the  RequireHttps  attribute to each action method, which 
means that I might forget. But filters have a useful trick: applying the attribute to a controller class has the 
same effect as applying it to each individual action method, as shown in Listing  19-10 . 

     Listing 19-10.    Applying a Filter to All Action Methods in the HomeController.cs File   

  using Microsoft.AspNetCore.Http; 
 using Microsoft.AspNetCore.Mvc; 

   namespace Filters.Controllers { 

        [RequireHttps]  
     public class HomeController : Controller { 

           public ViewResult Index() => View("Message", 
             "This is the Index action on the Home controller"); 

           public ViewResult SecondAction() => View("Message", 
             "This is the SecondAction action on the Home controller"); 
     } 
 } 

    Filters can be applied with differing levels of granularity. If you want to restrict access to some actions 
but not others, then you can apply the  RequireHttps  attribute to just those methods. If you want to protect 
all of the action methods, including any that you add to the controller in the future, then the  RequireHttps  
attribute can be applied to the class. If you want to apply a filter to every action in an application, then you 
can use  global filters , which I describe later in this chapter.  



CHAPTER 19 ■ FILTERS

589

     Understanding Filters 
 Now that you have seen how filters are used, it is time to explain what happens behind the scenes. 
Filters implement the  IFilterMetadata  interface, which is in the  Microsoft.AspNetCore.Mvc.Filters  
namespace. Here is the definition: 

   namespace Microsoft.AspNetCore.Mvc.Filters { 
     public interface IFilterMetadata { } 
 } 

   The interface is empty and doesn’t require a filter class to implement any specific behaviors. This is 
because there are several distinct types of filter, and each of them works in a different way and is used for a 
different purpose. 

 Table  19-3  lists each type of filter, the interfaces that define them, and what they do. (There are some 
other types of filter supported by MVC, but they are not used directly. Instead, they are integrated into 
features that I describe in other chapters and applied through specific attributes, including the  Produces  
and  Consumes  attributes I describe in Chapter   20    .)  

    Table 19-3.    The Different Type of Filter   

 Filter  Interfaces  Description 

 Authorization   IAuthorizationFilter 
IAsyncAuthorizationFilter  

 This type of filter is used to apply the 
application’s security policy, including user 
authorization. 

 Action   IActionFilter IAsyncActionFilter   This type of filter is used to perform work 
immediately before or after an action method 
is performed. 

 Result   IResultFilter IAsyncResultFilter   This type of filter is used to perform work 
immediately before or after the result from an 
action method is processed. 

 Exception   IExceptionFilter IAsyncExceptionFilter   This type of filter is used to handle exceptions. 

      The descriptions in the table are vague because you can use filters for a wide range of tasks, limited only 
by your imagination and the problems you need to solve. This will become clearer as I get into the detail of 
how filters work, but for now there are two important points to understand. 

 First, there are two different interfaces for each type of filter in Table  19-3 . Filters can do their work 
synchronously or asynchronously so that a synchronous result filter, for example, implements the 
 IResultFilter  interface, while an asynchronous one would implement the  IAsyncResultFilter  interface. 

 Second, filters are executed in a specific order. Authorization filters are executed first, followed by action 
files and then result filters. Exception filters are executed only if an exception is thrown, which disrupts the 
normal sequence. 

     Getting Context Data 
    Filters are provided with context data in the form of a  FilterContext  object. The  FilterContext  class is 
derived from  ActionContext , which is also the base class for the  ControllerContext  class that I described 
in Chapter   17    . For convenience, Table  19-4  lists the properties inherited from the  ActionContext  class, 
along with the additional property that  FilterContext  defines.    

http://dx.doi.org/10.1007/978-1-4842-0397-2_20
http://dx.doi.org/10.1007/978-1-4842-0397-2_17


CHAPTER 19 ■ FILTERS

590

     Using Authorization Filters 
    Authorization filters are used to implement an application’s security policy. Authorization filters are 
executed before other types of filter and before the action method is executed. Here is the definition of the 
 IAuthorizationFilter  interface: 

    namespace Microsoft.AspNetCore.Mvc.Filters { 

       public interface IAuthorizationFilter : IFilterMetadata { 

           void OnAuthorization(AuthorizationFilterContext context); 
     } 
 } 

    The  OnAuthorization  method is called to provide the filter with the opportunity to authorize the 
request. For asynchronous authorization filters, here is the definition of the  IAsyncAuthorizationFilter  
interface: 

    using System.Threading.Tasks; 

   namespace Microsoft.AspNetCore.Mvc.Filters { 

       public interface IAsyncAuthorizationFilter : IFilterMetadata { 

           Task OnAuthorizationAsync(AuthorizationFilterContext context); 
     } 
 } 

    The  OnAuthorizationAsync  method is called so that the filter can authorize the request. 
Whichever interface is used, the filter receives context data describing the request through an 
 AuthorizationFilterContext  object, which is derived from the  FilterContext  class and adds one 
important property, as described in Table  19-5 .  

    Table 19-4.    The FilterContext Properties   

 Name  Description 

  ActionDescriptor   This property returns an  ActionDescriptor  object, which describes the 
action method. 

  HttpContext   This property returns an  HttpContext  object, which provides details of the 
HTTP request and the HTTP response that will be sent in return. 

  ModelState   This property returns a  ModelStateDictionary  object, which is used to validate 
data sent by the client, as described in Chapter   27    . 

  RouteData   This property returns a  RouteData  object that describes the way that the routing 
system has processed the request, as described in Chapter   15    . 

  Filters   This property returns a list of filters that have been applied to the action 
method, expressed as an  IList<IFilterMetadata >  . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_27
http://dx.doi.org/10.1007/978-1-4842-0397-2_15


CHAPTER 19 ■ FILTERS

591

     Creating an Authorization Filter 
 To demonstrate how authorization filters work, I created an  Infrastructure  folder in the example project, 
added a class file called  HttpsOnlyAttribute.cs , and used it to define the filter shown in Listing  19-11 . 

      Listing 19-11.    The Contents of the HttpsOnlyAttribute.cs File in the Infrastructure Folder   

  using System; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.Filters; 

   namespace Filters.Infrastructure { 
     public class HttpsOnlyAttribute : Attribute, IAuthorizationFilter { 

           public void OnAuthorization(AuthorizationFilterContext context) { 
             if (!context.HttpContext.Request.IsHttps) { 
                 context.Result = 
                     new StatusCodeResult(StatusCodes.Status403Forbidden); 
             } 
         } 
     } 
 } 

    An authorization filter does nothing if a request complies with the authorization policy, and this 
inaction allows MVC to move on to the next filter and, eventually, to execute the action method. 

 ■   Note   The  Authorize  attribute, which can be used to restrict access to specific users and groups, was 
implemented as a filter, but this is no longer the case in ASP.NET Core MVC. The  Authorize  attribute is still 
used, but it works in a different way. Behind the scenes, a global filter (I describe global filters later in this 
chapter) is used to detect the  Authorize  attribute and enforce policies defined by ASP.NET Core Identity 
system, but the  Authorize  attribute isn’t a filter and doesn’t implement the  IAuthorizationFilter  interface. 
I describe how to use ASP.NET Core Identity and the  Authorize  attribute in Chapter   29    .  

 If there is a problem, then the filter sets the  Result  property of the  AuthorizationFilterContext  object 
that is passed to the  OnAuthorization  method. This prevents further execution from happening and provides 
MVC with a result to return to the client. In the listing, my  HttpsOnlyAttribute  class inspects the  IsHttps  
property of the  HttpRequest  context object and sets the  Result  property to interrupt execution if the request 
has been made without HTTPS. Listing  19-12  shows the new filter applied to the  Home  controller. 

   Table 19-5.    The AuthorizationFilterContext Property   

 Name  Description 

  Result   This  IActionResult  property is set by authorization filters when 
the request doesn’t comply with the application’s authorization 
policy. If this property is set, then MVC renders the  IActionResult  
instead of invoking the action method. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_29


CHAPTER 19 ■ FILTERS

592

     Listing 19-12.    Applying the Custom Filter in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
  using Filters.Infrastructure;  

   namespace Filters.Controllers { 

        [HttpsOnly]  
     public class HomeController : Controller { 

           public ViewResult Index() => View("Message", 
             "This is the Index action on the Home controller"); 

           public ViewResult SecondAction() => View("Message", 
             "This is the SecondAction action on the Home controller"); 
     } 
 } 

    This filter re-creates the functionality that I included in the action methods in Listing  19-8  This is less 
useful in real projects than doing a redirection like the built-in  RequireHttps  filter because users won’t 
understand the meaning of a 403 status code, but it does provide a useful example of how authorization 
filters work. 

 UNIT TESTING FILTERS

    Most of the work in unit testing a filter is setting up the context object that is passed to the filter’s 
methods. The amount of mocking required depends on the context information used by the filter. As an 
example, here is a unit test for the  HttpsOnly  filter from Listing  19-11 . 

    using System.Linq; 
 using Filters.Infrastructure; 
 using Microsoft.AspNetCore.Http; 
 using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.Abstractions; 
 using Microsoft.AspNetCore.Mvc.Filters; 
 using Moq; 
 using Xunit; 

   namespace Tests { 

       public class FilterTests { 

           [Fact] 
         public void TestHttpsFilter() { 

               // Arrange 
             var httpRequest = new Mock<HttpRequest>(); 
             httpRequest.SetupSequence(m => m.IsHttps).Returns(true) 
                                                      .Returns(false); 
             var httpContext = new Mock<HttpContext>(); 
             httpContext.SetupGet(m => m.Request).Returns(httpRequest.Object); 



CHAPTER 19 ■ FILTERS

593

               var actionContext = new ActionContext(httpContext.Object, 
                 new Microsoft.AspNetCore.Routing.RouteData(), 
                 new ActionDescriptor()); 
             var authContext = new AuthorizationFilterContext(actionContext, 
                 Enumerable.Empty<IFilterMetadata>().ToList()); 

               HttpsOnlyAttribute filter = new HttpsOnlyAttribute(); 

               // Act and Assert 
             filter.OnAuthorization(authContext); 
             Assert.Null(authContext.Result); 

               filter.OnAuthorization(authContext); 
             Assert.IsType(typeof(StatusCodeResult), authContext.Result); 
             Assert.Equal(StatusCodes.Status403Forbidden, 
                 (authContext.Result as StatusCodeResult).StatusCode); 
         } 
     } 
 } 

    I start by mocking the  HttpRequest  and  HttpContext  context objects, which allows me to present a 
request with or without HTTPS. I want to test both conditions, which I do like this: 

   ... 
 httpRequest. SetupSequence (m => m.IsHttps). Returns (true). Returns (false); 
 ... 

   This statement sets up the  HttpRequest.IsHttps  property so that it returns a sequence of values: 
the property returns  true  the first time it is read and returns  false  the second time it is read. Once 
I have an  HttpContext  object, I can use it to create an  ActionContext  object, which allows me 
to create the  AuthorizationContext  object I need to do the unit tests. By inspecting the  Result  
property of the  AuthorizationFilterContext  object, I test how the filter responds to non-HTTPS 
requests and then test what happens with HTTP requests. There are lots of types required to set up the 
 AuthorizationFilterContext  object, and they rely on many ASP.NET Core and MVC namespaces, but 
once you have the context object, then writing the rest of the test is relatively simple.    

     Using Action Filters 
    The best way to understand action filters is to look at the interface that defines them. Here is the 
 IActionFilter  interface: 

    namespace Microsoft.AspNetCore.Mvc.Filters { 

       public interface IActionFilter : IFilterMetadata { 

           void OnActionExecuting(ActionExecutingContext context); 

           void OnActionExecuted(ActionExecutedContext context); 
     } 
 } 



CHAPTER 19 ■ FILTERS

594

    When an action filter has been applied to an action method, the  OnActionExecuting  method is called 
just before the action method is invoked, and the  OnActionExecuted  method is called just after. Action 
filters are provided with context data through two different context classes:  ActionExecutingContext  for the 
 OnActionExecuting  method and  ActionExecutedContext  for the  OnActionExecuted  method. Both of the 
context classes extend the  FilterContext  class, which I described in Table  19-4 . 

 The  ActionExecutingContext  class, which is used to describe an action that is about to be invoked, 
defines the additional properties described in Table  19-6 .  

   Table 19-6.    The ActionExecutingContext Property   

 Name  Description 

  Controller   This property returns the controller whose action method is about to be invoked. 
(Details of the action method are available through the  ActionDescriptor  
property inherited from the base classes.) 

  ActionArguments   This property returns a dictionary of the arguments that will be passed to the action 
method, indexed by name. The filter can insert, remove, or change the arguments. 

  Result   If the filter assigns an  IActionResult  to this property, then the request process 
will be short-circuited, and the action result will be used to generate the 
response to the client without invoking the action method. 

   Table 19-7.    The ActionExecutedContext Properties   

 Name  Description 

  Controller   This property returns the  Controller  object whose action method will 
be invoked. 

  Canceled   This  bool  property is set to  true  if another action filter has short-
circuited the request-handling process by assigning an action result to 
the  Result  property of the  ActionExecutingContext  object. 

  Exception   This property contains any  Exception  that was thrown by the action 
method. 

  ExceptionDispatchInfo   This method returns an  ExceptionDispatchInfo  object that contains 
the stack trace details of any exception thrown by the action method. 

  ExceptionHandled   Setting this property to  true  indicates that the filter has handled the 
exception, which will not be propagated any further. 

  Result   This property returns the  IActionResult  returned by the action 
method. The filter can change or replace the action result if required. 

 The  ActionExecutedContext  class is used to represent an action that has been executed and defines the 
properties described in Table  19-7 .  



CHAPTER 19 ■ FILTERS

595

     Creating an Action Filter 
 Action filters are a general-purpose tool and can be used to implement any cross-cutting concern in the 
application. Action filters can be used to interrupt the request process before an action is invoked and to 
change the result after an action is performed. The simplest way to create an action filter is to derive a class 
from the  ActionFilterAttribute  class, which implements the  IActionFilter  interface. To demonstrate, 
I added a class file called  ProfileAttribute.cs  to the  Infrastructure  folder and used it to define the filter 
shown in Listing  19-13 . 

     Listing 19-13.    The Contents of the ProfileAttribute.cs File in the Infrastructure Folder   

  using System.Diagnostics; 
 using System.Text; 
 using Microsoft.AspNetCore.Mvc.Filters; 

   namespace Filters.Infrastructure { 

       public class ProfileAttribute : ActionFilterAttribute { 
         private Stopwatch timer; 

           public override void OnActionExecuting(ActionExecutingContext context) { 
             timer = Stopwatch.StartNew(); 
         } 

           public override void OnActionExecuted(ActionExecutedContext context) { 
             timer.Stop(); 
             string result = "<div>Elapsed time: " 
                 + $"{timer.Elapsed.TotalMilliseconds} ms</div>"; 
             byte[] bytes = Encoding.ASCII.GetBytes(result); 
             context.HttpContext.Response.Body.Write(bytes, 0, bytes.Length); 
         } 
     } 
 } 

    In the listing, I use a  Stopwatch  object to measure the number of milliseconds that it takes for an 
action method to be executed by starting a timer in the  OnActionExecuting  method and stop it in the 
 OnActionExecuted  method. To note the result, I use the context object to get the  HttpResponse  and include a 
simple fragment of HTML in the response. 

 Listing  19-14  shows the  Profile  attribute applied to the  Home  controller. (I also removed the previous 
filter so that requests over standard HTTP will be accepted.) 

 ■   Tip   As an odd quirk, controllers are also action filters. The  Controller  base class implements the 
 IActionFilter  and  IAsyncActionFilter  interfaces, which means you can override the methods defined 
by these interfaces to create action filter functionality. For POCO controllers, MVC inspects classes and 
checks to see whether they implement either of the action filter interfaces and automatically uses them as 
action filters.  



CHAPTER 19 ■ FILTERS

596

     Listing 19-14.    Applying a Filter in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Filters.Infrastructure; 

   namespace Filters.Controllers { 

        [Profile]  
     public class HomeController : Controller { 

           public ViewResult Index() => View("Message", 
             "This is the Index action on the Home controller"); 

           public ViewResult SecondAction() => View("Message", 
             "This is the SecondAction action on the Home controller"); 
     } 
 } 

    If you run the application, you will see a message like the one shown in Figure  19-4 . The number of 
milliseconds you see will vary based on the speed of your development machine.  

 ■   Note   Writing HTML fragments directly to the response relies on the browser being tolerant of badly formed 
HTML documents: the  div  element that I generate in the filter appears at the start of the response body, before 
the  DOCTYPE  and  html  elements that indicate the start of the HTML document generated by the Razor view. This 
technique works and can be useful for producing diagnostic information, but it isn’t something you should rely 
on for production features.   

  Figure 19-4.    Using an action filter       

 



CHAPTER 19 ■ FILTERS

597

     Creating an Asynchronous Action Filter 
 The  IAsyncActionFilter  interface is used to define action filters that operate asynchronously. Here is the 
definition of the interface: 

    using System.Threading.Tasks; 

   namespace Microsoft.AspNetCore.Mvc.Filters { 

       public interface IAsyncActionFilter : IFilterMetadata { 

           Task OnActionExecutionAsync(ActionExecutingContext context, 
             ActionExecutionDelegate next); 
     } 
 } 

    There is a single method that relies on task continuation to allow the filter to run before and after the 
action method has been executed. Listing  19-15  shows the use of the  OnActionExecutionAsync  method in 
the  Profile  filter. 

     Listing 19-15.    Creating an Asynchronous Action Filter in the ProfileAttribute.cs File   

  using System.Diagnostics; 
 using System.Text; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Mvc.Filters; 

   namespace Filters.Infrastructure { 

       public class ProfileAttribute : ActionFilterAttribute { 

            public override async Task OnActionExecutionAsync(  
                  ActionExecutingContext context,  
                  ActionExecutionDelegate next) {  

                Stopwatch timer = Stopwatch.StartNew();  

                await next();  

                timer.Stop();  
              string result = "<div>Elapsed time: "  
                  + $"{timer.Elapsed.TotalMilliseconds} ms</div>";  
              byte[] bytes = Encoding.ASCII.GetBytes(result);  
              await context.HttpContext.Response.Body.WriteAsync(bytes,  
                  0, bytes.Length);  
          }  
     } 
 } 

    The  ActionExecutingContext  object provides context data to the filter and the 
 ActionExectionDelegate  object represents the action method (or the next filter) to execute. The filter does 
its preparatory work before invoking the delegate and then completes its work when the delegate finishes. 
The delegate returns a  Task , which is why I have used the  await  keyword in the listing.   



CHAPTER 19 ■ FILTERS

598

     Using Result Filters 
    Result filters are applied before and after MVC processes the action result returned by an action method. 
Result filters are able to change or replace the action result or cancel the request entirely (even though the 
action method has already been invoked). Here is the  IResultFilter  interface that defines result filters: 

    namespace Microsoft.AspNetCore.Mvc.Filters { 

       public interface IResultFilter : IFilterMetadata { 

           void OnResultExecuting(ResultExecutingContext context); 

           void OnResultExecuted(ResultExecutedContext context); 
     } 
 } 

    Result filters follow the same pattern as action filters. The  OnResultExecuting  method is called before 
the action result produced by the action method is processed and is provided with context information 
through a  ResultExecutingContext  object. The  ResultExecutingContext  class is derived from 
 FilterContext  and defines the additional properties described in Table  19-8 .  

   Table 19-8.    The ResultExecutingContext Properties   

 Name  Description 

  Controller   This property returns the controller whose action method was executed. 

  Cancel   Setting this  bool  property to  true  will stop the action result from being processed 
to generate a response. 

  Result   This property returns the  IActionResult  object returned by the action method. 

   Table 19-9.    The ResultExecutedContext Properties   

 Name  Description 

  Controller   This property returns the controller whose action method was executed. 

  Canceled   This  bool  property indicates whether the request was canceled. 

  Exception   This property contains any  Exception  that was thrown by the action method. 

  ExceptionDispatchInfo   This method returns an  ExceptionDispatchInfo  object that contains the 
stack trace details of any exception thrown by the action method. 

  ExceptionHandled   Setting this property to  true  indicates that the filter has handled the 
exception, which will not be propagated any further. 

  Result   This property returns the  IActionResult  object that was used to generate the 
response to the client. 

 The  OnResultExecuted  method is called after MVC has processed the action result and is provided with 
context data through an instance of the  ResultExecutedContext  class, which defines the properties shown 
in Table  19-9  in addition to those inherited from  FilterContext .  



CHAPTER 19 ■ FILTERS

599

     Creating a Result Filter 
 The  ResultFilterAttribute  class implements the result filter interfaces and provides the easiest way to 
create a result filter that can be applied as an attribute. To demonstrate how a result filter works, I added a 
class file called  ViewResultDetailsAttribute.cs  to the  Infrastructure  folder and used it to define the 
filter shown in Listing  19-16 . 

     Listing 19-16.    The Contents of the ViewResultDetailsAttribute.cs File in the Infrastructure Folder   

  using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.Filters; 
 using Microsoft.AspNetCore.Mvc.ModelBinding; 
 using Microsoft.AspNetCore.Mvc.ViewFeatures; 

   namespace Filters.Infrastructure { 

       public class ViewResultDetailsAttribute : ResultFilterAttribute { 

           public override void OnResultExecuting(ResultExecutingContext context) { 

               Dictionary<string, string> dict = new Dictionary<string, string> { 
                 ["Result Type"] = context.Result.GetType().Name, 
             }; 

               ViewResult vr; 
             if ((vr = context.Result as ViewResult) != null) { 
                 dict["View Name"] = vr.ViewName; 
                 dict["Model Type"] = vr.ViewData.Model.GetType().Name; 
                 dict["Model Data"] = vr.ViewData.Model.ToString(); 
             } 

               context.Result = new ViewResult { 
                 ViewName = "Message", 
                 ViewData = new ViewDataDictionary( 
                         new EmptyModelMetadataProvider(), 
                         new ModelStateDictionary()) { Model = dict } 
                 }; 
         } 
     } 
 } 

    This class overrides only the  OnResultExecuting  method and uses the context object to change the 
action result used to generate a response to the client. The filter creates a  ViewResult  object that renders the 
 Message  view, using a dictionary containing simple diagnostic information as the view model. 

 The  OnResultExecuting  method is called after the action method has produced the action result but 
before it is processed to generate a result, and changing the value of the context object’s  Result  object allows 
me to supply a different type of result from the action method to which the filter is applied. Listing  19-17  
shows the result filter applied to the  Home  controller. 



CHAPTER 19 ■ FILTERS

600

     Listing 19-17.    Applying the Result Filter in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Filters.Infrastructure; 

   namespace Filters.Controllers { 

        [ViewResultDetails]  
     public class HomeController : Controller { 

           public ViewResult Index() => View("Message", 
             "This is the Index action on the Home controller"); 

           public ViewResult SecondAction() => View("Message", 
             "This is the SecondAction action on the Home controller"); 
     } 
 } 

    If you run the application, you will see the effect of the result filter, as shown in Figure  19-5 .   

  Figure 19-5.    The effect of a result filter       

     Creating an Asynchronous Result Filter 
 The  IAsyncResultFilter  interface can be used to create asynchronous result filters. Here is the definition of 
the interface: 

    using System.Threading.Tasks; 

   namespace Microsoft.AspNetCore.Mvc.Filters { 

 



CHAPTER 19 ■ FILTERS

601

       public interface IAsyncResultFilter : IFilterMetadata { 

           Task OnResultExecutionAsync(ResultExecutingContext context, 
             ResultExecutionDelegate next); 
     } 
 } 

    This interface is similar to the one for asynchronous action filters. In Listing  19-18 , I have rewritten the 
 ViewResultDetailsAttribute  class to implement the  IAsyncResultFilter  interface. 

     Listing 19-18.    Creating an Asynchronous Result Filter in the ViewResultDetailsAttribute.cs File   

  using System.Collections.Generic; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.Filters; 
 using Microsoft.AspNetCore.Mvc.ModelBinding; 
 using Microsoft.AspNetCore.Mvc.ViewFeatures; 

   namespace Filters.Infrastructure { 

       public class ViewResultDetailsAttribute : ResultFilterAttribute { 

            public override async Task OnResultExecutionAsync(  
                  ResultExecutingContext context,  
                  ResultExecutionDelegate next) {  

               Dictionary<string, string> dict = new Dictionary<string, string> { 
                 ["Result Type"] = context.Result.GetType().Name, 
             }; 

               ViewResult vr; 
             if ((vr = context.Result as ViewResult) != null) { 
                 dict["View Name"] = vr.ViewName; 
                 dict["Model Type"] = vr.ViewData.Model.GetType().Name; 
                 dict["Model Data"] = vr.ViewData.Model.ToString(); 
             } 

               context.Result = new ViewResult { 
                 ViewName = "Message", 
                 ViewData = new ViewDataDictionary( 
                         new EmptyModelMetadataProvider(), 
                         new ModelStateDictionary()) { 
                             Model = dict 
                         } 
                 }; 

                await next();  
         } 
     } 
 } 



CHAPTER 19 ■ FILTERS

602

    Notice that I am responsible for invoking the delegate received as an argument to the 
 OnResultExecutionAsync  method. If don’t invoke the delegate, the request processing pipeline won’t 
complete and the action result won’t be rendered.  

     Creating a Hybrid Action/Result Filter 
    It isn’t always helpful to distinguish between the action and the result stages of request processing. This can 
be because you want to treat both stages as a single step or because your filter responds to the way that an 
action is executed but does so by interfering with the result. It can be useful to be able to create a filter that is 
both an action filter and a result filter and is able to perform work at each stage. 

 This is such a common requirement that the  ActionFilterAttribute  class implements the interfaces 
for both kinds of filter, which means you can mix and match filter types in a single attribute. To demonstrate 
how this works, I have revised the  ProfileAttribute  class in Listing  19-19  so that it is combines an action 
filter with a result filter. 

     Listing 19-19.    Creating a Hybrid Filter in the ProfileAttribute.cs File   

  using System.Diagnostics; 
 using System.Text; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Mvc.Filters; 

   namespace Filters.Infrastructure { 

       public class ProfileAttribute : ActionFilterAttribute { 
          private Stopwatch timer;  
          private double actionTime;  

           public override async Task OnActionExecutionAsync( 
                 ActionExecutingContext context, 
                 ActionExecutionDelegate next) { 

                timer = Stopwatch.StartNew();  

               await next(); 

                actionTime = timer.Elapsed.TotalMilliseconds;  
         } 

            public override async Task OnResultExecutionAsync(  
                  ResultExecutingContext context,  
                  ResultExecutionDelegate next) {  

                await next();  

                timer.Stop();  
              string result = "<div>Action time: "  
                  + $"{actionTime} ms</div><div>Total time: "  
                  + $"{timer.Elapsed.TotalMilliseconds} ms</div>";  
              byte[] bytes = Encoding.ASCII.GetBytes(result);  



CHAPTER 19 ■ FILTERS

603

                await context.HttpContext.Response.Body.WriteAsync(bytes,  
                  0, bytes.Length);  
          }  
     } 
 } 

    I have used the asynchronous methods for both types of filter, but you can mix and match to get the 
functionality you require because the default implementations of these methods call their synchronous 
counterparts. Within the filter, I use the  Stopwatch  to measure how long it takes the action to be processed 
and what the total elapsed time is and write the results to the response In Listing  19-20 , I have applied the 
combined filter to the  Home  controller. 

     Listing 19-20.    Applying a Hybrid Filter in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Filters.Infrastructure; 

   namespace Filters.Controllers { 

        [Profile]  
     [ViewResultDetails] 
     public class HomeController : Controller { 

           public ViewResult Index() => View("Message", 
             "This is the Index action on the Home controller"); 

           public ViewResult SecondAction() => View("Message", 
             "This is the SecondAction action on the Home controller"); 
     } 
 } 

    If you run the application, you will see output similar to that shown in Figure  19-6 . The output appears 
after the content provided by the  ViewResultDetails  because it is written in the post-processed stage of the 
result filter, rather than from the action filter method used in the previous version.    



CHAPTER 19 ■ FILTERS

604

     Using Exception Filters 
    Exception filters allow you to respond to exceptions without having to write  try...catch  blocks in 
every action method. Exception filters can be applied to controller classes or action methods. They are 
invoked when an exception is not handled by the action method or by the action or result filters that have 
been applied to the action method. (Action and result filters can deal with an unhandled exception by 
setting the  ExceptionHandled  property of their context objects to  true .) Exception filters implement the 
 IExceptionFilter  interface, which is defined as follows: 

    namespace Microsoft.AspNetCore.Mvc.Filters { 

       public interface IExceptionFilter : IFilterMetadata { 

           void OnException(ExceptionContext context); 
     } 
 } 

    The  OnException  method is called if an unhandled exception is encountered. The  IAsyncExceptionFilter  
interface can be used to create asynchronous exception filters, which is useful if you need to respond to 
exceptions using an asynchronous API. Here is the definition of the asynchronous interface: 

    using System.Threading.Tasks; 

   namespace Microsoft.AspNetCore.Mvc.Filters { 

  Figure 19-6.    Output from a hybrid action/result filter       

 



CHAPTER 19 ■ FILTERS

605

       public interface IAsyncExceptionFilter : IFilterMetadata { 

           Task OnExceptionAsync(ExceptionContext context); 
     } 
 } 

    The  OnExceptionAsync  method is the asynchronous counterpart to the  OnException  method from the 
 IExceptionFilter  interface and is called when there is an unhandled exception. 

 For both interfaces, context data is provided through the  ExceptionContext  class, which is derived from 
 FilterContext  and defines the additional properties shown in Table  19-10 .  

   Table 19-10.    The ExceptionContext Properties   

 Name  Description 

  Exception   This property contains any  Exception  that was thrown. 

  ExceptionDispatchInfo   This method returns an  ExceptionDispatchInfo  object that contains the 
stack trace details for the exception. 

  ExceptionHandled   This  bool  property is used to indicate if the exception has been handled. 

  Result   This property sets the  IActionResult  that will be used to generate the response. 

     Creating an Exception Filter 
 The  ExceptionFilterAttribute  class implements both of the exception filter interfaces and is the easiest 
way to create a filter so that it can be applied as an attribute. The most common use for an exception filter 
is to present a custom error page for a specific exception type in order to provide the user with more useful 
information than the standard error-handling capabilities can provide. As a demonstration, I added a class 
file called  RangeExceptionAttribute.cs  to the  Infrastructure  folder and used it to define the filter shown 
in Listing  19-21 . 

     Listing 19-21.    The Contents of the RangeExceptionAttribute.cs File in the Infrastructure Folder   

  using System; 
 using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.Filters; 
 using Microsoft.AspNetCore.Mvc.ModelBinding; 
 using Microsoft.AspNetCore.Mvc.ViewFeatures; 

   namespace Filters.Infrastructure { 

       public class RangeExceptionAttribute : ExceptionFilterAttribute { 

           public override void OnException(ExceptionContext context) { 
             if (context.Exception is ArgumentOutOfRangeException) { 
                 context.Result = new ViewResult() { 
                     ViewName = "Message", 
                     ViewData = new ViewDataDictionary( 
                         new EmptyModelMetadataProvider(), 
                         new ModelStateDictionary()) { 
                            Model = @"The data received by the 



CHAPTER 19 ■ FILTERS

606

                                 application cannot be processed" 
                     } 
                 }; 
             } 
         } 
     } 
 } 

    This filter uses the  ExceptionContext  object to get the type of the unhandled exception and, if the type is 
 ArgumentOutOfRangeException , creates an action result that displays a message to the user. In Listing  19-22 , 
I have added an action method to the  Home  controller and applied the exception filter to it. 

     Listing 19-22.    Applying an Exception Filter in the HomeController.cs File   

  using Filters.Infrastructure; 
 using Microsoft.AspNetCore.Mvc; 
  using System;  

   namespace Filters.Controllers { 

       [Profile] 
     [ViewResultDetails] 
      [RangeException]  
     public class HomeController : Controller { 

           public ViewResult Index() => View("Message", 
             "This is the Index action on the Home controller"); 

           public ViewResult SecondAction() => View("Message", 
             "This is the SecondAction action on the Home controller"); 

            public ViewResult GenerateException(int? id) {  
              if (id == null) {  
                  throw new ArgumentNullException(nameof(id));  
              } else if (id > 10) {  
                  throw new ArgumentOutOfRangeException(nameof(id));  
              } else {  
                  return View("Message", $"The value is {id}");  
              }  
          }  
     } 
 } 

    The  GenerateException  action method relies on the default routing pattern to receive a nullable  int  
value from the request URL. The action method throws an  ArgumentNullException  if there is no matching 
URL segment and throws an  ArgumentOutOfRangeException  if its value is greater than 50. If there is a value 
and it is in range, then the action method returns a  ViewResult . 

 You can test the exception filter by running the application and requesting the  /Home/
GenerateException/100  URL. The final segment will exceed the range expected by the action method, 
which will throw the exception type that is handled by the filter, producing the result shown in Figure  19-7 . If 
you request  /Home/GenerateException , then the exception thrown by the action method won’t be handled 
by the filter and the default error handling will be used.    



CHAPTER 19 ■ FILTERS

607

     Using Dependency Injection for Filters 
    When you derive a filter from one of the convenience attribute classes, such as  ExceptionFilterAttribute , 
MVC creates a new instance of the filter class to handle every request. This is a reasonable approach because 
it avoids any possible reuse or concurrency problems and it suits the needs of most filter classes that 
developers require. 

 An alternative approach is to use the dependency injection system to select a different life cycle for 
filters. There are two different approaches to using dependency injection in filters, which I describe in the 
following sections. 

     Resolving Filter Dependencies 
 The first approach is to use dependency injection to manage context data for filters, which allows different 
types of filters to share data or for a single filter to share data with instances of itself used to process 
other requests. To demonstrate how this works, I added a class file called  FilterDiagnostics.cs  to the 
 Infrastructure  folder and used it to define the interface and implementation class show in Listing  19-23 . 

     Listing 19-23.    The Contents of the FilterDiagnostics.cs File in the Infrastructure Folder   

  using System.Collections.Generic; 

   namespace Filters.Infrastructure { 

       public interface IFilterDiagnostics { 
         IEnumerable<string> Messages { get; } 
         void AddMessage(string message); 
     } 

       public class DefaultFilterDiagnostics : IFilterDiagnostics { 
         private List<string> messages = new List<string>(); 

           public IEnumerable<string> Messages => messages; 

           public void AddMessage(string message) => 
             messages.Add(message); 
     } 
 } 

  Figure 19-7.    Using an exception filter       

 



CHAPTER 19 ■ FILTERS

608

    The  IFilterDiagnostics  interface defines a simple model for collecting diagnostic messages during 
filter execution. The  DefaultFilterDiagnostics  class is the implementation I will use. In Listing  19-24 , I have 
updated the  Startup  class to configure the service provider with the new interface and its implementation. 

     Listing 19-24.    Configuring the Service Provider in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
  using Filters.Infrastructure;  

   namespace Filters { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddScoped<IFilterDiagnostics, DefaultFilterDiagnostics>();  
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    I used the  AddScoped  extension method to configure the service provider, which means that all the 
filters instantiated to deal with a single request will receive the same  DefaultFilterDiagnostics  object. 
This is the basis for sharing custom context data between filters. 

   Creating Filters with Dependencies 
 The next step is to create filters that declare dependencies on the  IFilterDiagnostics  interface. I created 
a class file called  TimeFilter.cs  in the  Infrastructure  folder and used it to define the class shown in 
Listing  19-25 . 

     Listing 19-25.    The Contents of the TimeFilter.cs File in the Infrastructure Folder   

  using System.Diagnostics; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Mvc.Filters; 

   namespace Filters.Infrastructure { 

       public class TimeFilter : IAsyncActionFilter, IAsyncResultFilter { 
         private Stopwatch timer; 
         private IFilterDiagnostics diagnostics; 



CHAPTER 19 ■ FILTERS

609

           public TimeFilter(IFilterDiagnostics diags) { 
             diagnostics = diags; 
         } 

           public async Task OnActionExecutionAsync( 
                 ActionExecutingContext context, 
                 ActionExecutionDelegate next) { 

               timer = Stopwatch.StartNew(); 
             await next(); 
             diagnostics.AddMessage($@"Action time: 
                 {timer.Elapsed.TotalMilliseconds}"); 
         } 

           public async Task OnResultExecutionAsync( 
                 ResultExecutingContext context, 
                 ResultExecutionDelegate next) { 

               await next(); 
             timer.Stop(); 
             diagnostics.AddMessage($@"Result time: 
                 {timer.Elapsed.TotalMilliseconds}"); 
         } 
     } 
 } 

    The  TimeFilter  is a hybrid action/result filter that re-creates the timer functionality from a previous 
example but stores its timing information using an implementation of the  IFilterDiagnostics  interface, 
which is declared as a constructor argument and will be provided by the dependency injection system when 
the filter is created. 

 Notice that the  TimeFilter  class implements the filter interfaces directly, rather than deriving from the 
convenience attribute class. As you will see, filters that rely on dependency injection are applied through a 
different attribute and are not used to decorate controllers or actions directly. 

 To demonstrate how filters can use dependency injection to share context data, I added a class file 
called  DiagnosticsFilter.cs  to the  Infrastructure  folder and used it to create the filter shown in 
Listing  19-26 . 

     Listing 19-26.    The Contents of the DiagnosticsFilter.cs File in the Infrastructure Folder   

  using System.Text; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Mvc.Filters; 

   namespace Filters.Infrastructure { 

       public class DiagnosticsFilter : IAsyncResultFilter { 
         private IFilterDiagnostics diagnostics; 

           public DiagnosticsFilter(IFilterDiagnostics diags) { 
             diagnostics = diags; 
         } 



CHAPTER 19 ■ FILTERS

610

           public async Task OnResultExecutionAsync( 
                 ResultExecutingContext context, 
                 ResultExecutionDelegate next) { 

               await next(); 

               foreach (string message in diagnostics?.Messages) { 
                 byte[] bytes = Encoding.ASCII 
                     .GetBytes($"<div>{message}</div>"); 
                 await context.HttpContext.Response.Body 
                     .WriteAsync(bytes, 0, bytes.Length); 
             } 
         } 
     } 
 } 

    The  DiagnosticsFilter  class is a result filter that receives an implementation of the  IFilterDiagnostics  
interface as a constructor argument and writes out the messages it contains to the response.  

   Applying the Filters 
 The final step is to apply the filters to the controller class. Standard C# attributes don’t have integral support 
for resolving constructor dependencies, which is why the filters in the previous sections are not attributes. 
Instead, the  TypeFilter  attribute is applied and is configured with the type of the filter that is needed, as 
shown in Listing  19-27 . 

 ■   Tip   The order in which I applied the filters in Listing  19-27  is important, as I explain in the “Understanding 
and Changing Filter Order” section later in the chapter.  

       Listing 19-27.    Applying Filters with Dependencies in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Filters.Infrastructure; 
 using System; 

   namespace Filters.Controllers { 

        [TypeFilter(typeof(DiagnosticsFilter))]  
      [TypeFilter(typeof(TimeFilter))]  
     public class HomeController : Controller { 

           public ViewResult Index() => View("Message", 
             "This is the Index action on the Home controller"); 

           public ViewResult SecondAction() => View("Message", 
             "This is the SecondAction action on the Home controller"); 



CHAPTER 19 ■ FILTERS

611

           public ViewResult GenerateException(int? id) { 
             if (id == null) { 
                 throw new ArgumentNullException(nameof(id)); 
             } else if (id > 10) { 
                 throw new ArgumentOutOfRangeException(nameof(id)); 
             } else { 
                 return View("Message", $"The value is {id}"); 
             } 
         } 
     } 
 } 

    The  TypeFilter  attribute creates a new instance of the filter class for each request but does so using 
the dependency injection feature, which allows for loosely coupled components to be created and puts the 
objects used to resolve dependencies under life-cycle management. 

 In the example, this means that both of the filters applied in Listing  19-27  will receive the same 
 IFilterDiagnostics  implementation object and so the messages written by the  TimeFilter  class will be 
written out to the response by the  DiagnosticsFilter  class. Figure  19-8  shows the effect, which you can see 
by starting the application and requesting the default URL for the application.    

  Figure 19-8.    Using filters with dependencies       

     Managing Filter Life Cycles 
 When using the  TypeFilter  attribute, a new instance of the filter class is created for every request. This is the 
same behavior as applying a filter directly as an attribute, except that the  TypeFilter  attribute allows a filter 
class to declare dependencies that are resolved through the service provider. 

 The  ServiceFilter  attribute goes a step further and uses the service provider to create the filter object. 
This allows filter objects to be placed under life-cycle management as well. As a demonstration, in Listing  19-28 , 
I have modified the  TimeFilter  class so that it keeps a simple average of the times it records. 

 



CHAPTER 19 ■ FILTERS

612

     Listing 19-28.    Keeping Averages in the TimeFilter.cs File   

  using System.Collections.Concurrent; 
 using System.Diagnostics; 
  using System.Linq;  
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Mvc.Filters; 

   namespace Filters.Infrastructure { 

       public class TimeFilter : IAsyncActionFilter, IAsyncResultFilter { 
          private ConcurrentQueue<double> actionTimes = new ConcurrentQueue<double>();  
          private ConcurrentQueue<double> resultTimes = new ConcurrentQueue<double>();  
         private IFilterDiagnostics diagnostics; 

           public TimeFilter(IFilterDiagnostics diags) { 
             diagnostics = diags; 
         } 

           public async Task OnActionExecutionAsync( 
                 ActionExecutingContext context, ActionExecutionDelegate next) { 

                Stopwatch timer = Stopwatch.StartNew() ; 
             await next(); 
             timer.Stop(); 
              actionTimes.Enqueue(timer.Elapsed.TotalMilliseconds);  
             diagnostics.AddMessage($@"Action time: 
                 {timer.Elapsed.TotalMilliseconds} 
                  Average: {actionTimes.Average():F2}");  
         } 

           public async Task OnResultExecutionAsync( 
                 ResultExecutingContext context, ResultExecutionDelegate next) { 

                Stopwatch timer = Stopwatch.StartNew();  
             await next(); 
              timer.Stop();  
              resultTimes.Enqueue(timer.Elapsed.TotalMilliseconds);  
             diagnostics.AddMessage($@"Result time: 
                 {timer.Elapsed.TotalMilliseconds} 
                  Average: {resultTimes.Average():F2}");  
         } 
     } 
 } 

    The filter now uses a thread-safe collection to store the times it records for the action and result phases of 
request processing and uses a separate  Stopwatch  each time it is asked to process a request. In Listing  19-29 , 
I have registered the  TimeFilter  class as a singleton with the service provider in the  Startup  class. 



CHAPTER 19 ■ FILTERS

613

     Listing 19-29.    Configuring the Service Provider in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Filters.Infrastructure; 

   namespace Filters { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddSingleton<IFilterDiagnostics, DefaultFilterDiagnostics>();  
              services.AddSingleton<TimeFilter>();  
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    Notice that I also changed the life cycle for  IFilterDiagnostics  so that is a singleton. If I had 
continued to create a new instance for each request, then the singleton  TimeFilter  would receive a different 
 IFilterDiagnostics  object from the  DiagnosticsFilter , which continues to be instantiated through the 
 TypeFilter  attribute and will be created for each request. 

   Applying the Filter 
 The final step is to apply the filter to the controller using the  ServiceType  attribute, as shown in Listing  19-30 . 

     Listing 19-30.    Applying a Filter in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Filters.Infrastructure; 
 using System; 

   namespace Filters.Controllers { 

       [TypeFilter(typeof(DiagnosticsFilter))] 
      [ServiceFilter(typeof(TimeFilter))]  
     public class HomeController : Controller { 

           public ViewResult Index() => View("Message", 
             "This is the Index action on the Home controller"); 

           public ViewResult SecondAction() => View("Message", 
             "This is the SecondAction action on the Home controller"); 



CHAPTER 19 ■ FILTERS

614

           public ViewResult GenerateException(int? id) { 
             if (id == null) { 
                 throw new ArgumentNullException(nameof(id)); 
             } else if (id > 10) { 
                 throw new ArgumentOutOfRangeException(nameof(id)); 
             } else { 
                 return View("Message", $"The value is {id}"); 
             } 
         } 
     } 
 } 

    You can see the effect by running the application and requesting the default URL. Since a single 
implementation object for the  IFilterDiagnostics  interface is used to resolve all dependencies, the set of 
messages displayed builds up with each request, as shown in Figure  19-9 .     

  Figure 19-9.    Using the service provider to manage the filter life cycle       

     Creating Global Filters 
    At the start of the chapter, I explained that you can apply filters to a controller class so that you don’t have 
to apply them to individual action methods.  Global filters  go a step further and are applied once in the 
 Startup  class and, as their name suggests, are automatically applied to every action method in every 
controller in the application. Any filter can be used as a global filter, and, to demonstrate, I created a class 
file called  ViewResultDiagnostics.cs  to the  Infrastructure  folder and used it to define the filter shown 
in Listing  19-31 . 

 



CHAPTER 19 ■ FILTERS

615

     Listing 19-31.    The Contents of the ViewResultDiagnostics.cs File in the Infrastructure Folder   

  using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.Filters; 

   namespace Filters.Infrastructure { 
     public class ViewResultDiagnostics : IActionFilter { 
         private IFilterDiagnostics diagnostics; 

           public ViewResultDiagnostics(IFilterDiagnostics diags) { 
             diagnostics = diags; 
         } 

           public void OnActionExecuting(ActionExecutingContext context) { 
             // do nothing - not used in this filter 
         } 

           public void OnActionExecuted(ActionExecutedContext context) { 
             ViewResult vr; 
             if ((vr = context.Result as ViewResult) != null) { 
                 diagnostics.AddMessage($"View name: {vr.ViewName}"); 
                 diagnostics.AddMessage($@"Model type: 
                     {vr.ViewData.Model.GetType().Name}"); 
             } 
         } 
     } 
 } 

    The filter uses an  IFilterDiagnostics  object to store messages about the view name and model type of 
 ViewResult  action results. In Listing  19-32 , I applied this filter globally, along with the  DiagnosticsFilter  
class that it depends on to write out the diagnostics messages. 

     Listing 19-32.    Registering Global Filters in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Filters.Infrastructure; 

   namespace Filters { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddScoped<IFilterDiagnostics, DefaultFilterDiagnostics>();  
              services.AddScoped<TimeFilter>();  
              services.AddScoped<ViewResultDiagnostics>();  
              services.AddScoped<DiagnosticsFilter>();  
              services.AddMvc().AddMvcOptions(options => {  
                  options.Filters.AddService(typeof(ViewResultDiagnostics));  
                  options.Filters.AddService(typeof(DiagnosticsFilter));  
              });  
         } 



CHAPTER 19 ■ FILTERS

616

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    Global filters are set up by configuring the MVC services package. In the example, I used the 
 MvcOptions.Filters.AddService  method to register filters globally. The  AddService  method accepts a 
.NET type that will instantiated using the life-cycle rules specified elsewhere in the  ConfigureServices  
method. I changed the life cycle of the other filter types to scoped so that new instances are created for each 
request. The result is that new instances of the  ViewResultDiagnostics  and  DiagnosticsFilter  filters will 
be created and applied for every request to every controller. 

 ■   Tip   You can also add global filters using an  Add  method instead of the  AddService  method, which allows a 
filter object to be registered as a global filter without relying on dependency injection and the service provider. I 
use the  Add  method in the next section.  

 I added a class file called  GlobalController.cs  to the  Controllers  folder and used it to define the 
controller shown in Listing  19-33 . 

     Listing 19-33.    The Contents of the GlobalController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 

   namespace Filters.Controllers { 

       public class GlobalController : Controller { 

           public ViewResult Index() => View("Message", 
             "This is the global controller"); 
     } 
 } 

    No filters have been applied to the  Global  controller, but if you start the application and request the  /
global  URL, you will see the output from the two global filters, as shown in Figure  19-10 .   



CHAPTER 19 ■ FILTERS

617

     Understanding and Changing Filter Order 
    Filters run in a specific sequence: authorization, action, and then result. But if there are multiple filters 
of a given type, then the order in which they are applied is driven by the scope through which the filters 
have been applied. To demonstrate how this works, I added a class file called  MessageAttribute.cs  to the 
 Infrastructure  folder and used it to define the filter shown in Listing  19-34 . 

     Listing 19-34.    The Contents of the MessageAttribute.cs File in the Infrastructure Folder   

  using System.Text; 
 using Microsoft.AspNetCore.Mvc.Filters; 

   namespace Filters.Infrastructure { 

       public class MessageAttribute : ResultFilterAttribute { 
         private string message; 

           public MessageAttribute(string msg) { 
             message = msg; 
         } 

           public override void OnResultExecuting(ResultExecutingContext context) { 
             WriteMessage(context, $"<div>Before Result:{message}</div>"); 
         } 

           public override void OnResultExecuted(ResultExecutedContext context) { 
             WriteMessage(context, $"<div>After Result:{message}</div>"); 
         } 

           private void WriteMessage(FilterContext context, string msg) { 
             byte[] bytes = Encoding.ASCII 
                 .GetBytes($"<div>{msg}</div>"); 
             context.HttpContext.Response 

  Figure 19-10.    Using global filters       

 



CHAPTER 19 ■ FILTERS

618

                 .Body.Write(bytes, 0, bytes.Length); 
         } 
     } 
 } 

    This is a result filter than writes out fragments of HTML to the response before and after the action 
result is processed. The message written by the filter is configured through a constructor argument that can 
be used when applied as an attribute. In Listing  19-35 , I have simplified the  Home  controller and replaced the 
filters from previous examples with multiple instances of the  Message  filter. 

     Listing 19-35.    Applying a Filter in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Filters.Infrastructure; 

   namespace Filters.Controllers { 

        [Message("This is the Controller-Scoped Filter")]  
     public class HomeController : Controller { 

            [Message("This is the First Action-Scoped Filter")]  
          [Message("This is the Second Action-Scoped Filter")]  
         public ViewResult Index() => View("Message", 
             "This is the Index action on the Home controller"); 
     } 
 } 

    I have changed the set of global filters so that the  Message  filter is used there as well, as shown 
Listing  19-36 . 

     Listing 19-36.    Creating a Global Filter in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Filters.Infrastructure; 

   namespace Filters { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddScoped<IFilterDiagnostics, DefaultFilterDiagnostics>(); 
             services.AddScoped<TimeFilter>(); 
             services.AddScoped<ViewResultDiagnostics>(); 
             services.AddScoped<DiagnosticsFilter>(); 
             services.AddMvc().AddMvcOptions(options => { 
                  options.Filters.Add(new  
                      MessageAttribute("This is the Globally-Scoped Filter"));  
             }); 
         } 



CHAPTER 19 ■ FILTERS

619

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    Four instances of the filter will be used when the  Index  method responds to a request. If you run the 
application and request the default URL, you will see the following output displayed in the browser: 

   Before Result:This is the Globally-Scoped Filter 
 Before Result:This is the Controller-Scoped Filter 
 Before Result:This is the First Action-Scoped Filter 
 Before Result:This is the Second Action-Scoped Filter 
 After Result:This is the Second Action-Scoped Filter 
 After Result:This is the First Action-Scoped Filter 
 After Result:This is the Controller-Scoped Filter 
 After Result:This is the Globally-Scoped Filter 

   By default, MVC runs global filters, then filters applied to controller filter, and finally filters applied to 
action methods. Once the action method has been invoked or the action result has been processed, the stack 
of filters is unwound, which is why the  After Result  messages in the output are shown in reverse order. 

     Changing Filter Order 
 The default order can be changed by implementing the  IOrderedFilter  interface, which MVC looks for 
when it is working out how to stack filters in sequence. Here is the definition of the interface: 

    namespace Microsoft.AspNetCore.Mvc.Filters { 

       public interface IOrderedFilter : IFilterMetadata { 
         int Order { get; } 
     } 
 } 

    The  Order  property returns an  int  value; a low value tells MVC to apply a filter before those with higher 
 Order  values. The convenience attributes already implement the  IOrder  value, and in Listing  19-37 , I have 
set the  Order  property for the filters applied to the  Home  controller. 

 ■   Tip   The  TypeFilter  and  ServiceFilter  attributes also implement the  IOrderedFilter  interface, which 
means that you can change the filter order when using dependency injection as well.  



CHAPTER 19 ■ FILTERS

620

     Listing 19-37.    Setting Filter Order in the HomeController.cs File   

  using Filters.Infrastructure; 
 using Microsoft.AspNetCore.Mvc; 

   namespace Filters.Controllers { 

        [Message("This is the Controller-Scoped Filter", Order = 10)]  
     public class HomeController : Controller { 

            [Message("This is the First Action-Scoped Filter", Order = 1)]  
          [Message("This is the Second Action-Scoped Filter", Order = -1)]  
         public ViewResult Index() => View("Message", 
             "This is the Index action on the Home controller"); 
     } 
 } 

     Order  values can also be negative, which is a helpful way of ensuring that a filter is applied before any 
global filters with the default order (although you can also set the order when creating global filters, too). 
If you run the example, you will see that the order of the output messages has changed to reflect the new 
priorities. 

   Before Result:This is the Second Action-Scoped Filter 
 Before Result:This is the Globally-Scoped Filter 
 Before Result:This is the First Action-Scoped Filter 
 Before Result:This is the Controller-Scoped Filter 
 After Result:This is the Controller-Scoped Filter 
 After Result:This is the First Action-Scoped Filter 
 After Result:This is the Globally-Scoped Filter 
 After Result:This is the Second Action-Scoped Filter 

         Summary 
 In this chapter, you saw how to encapsulate logic that addresses cross-cutting concerns as filters. I showed 
you the different kinds of filters available and how to implement them. You saw how filters can be applied 
as attributes to controllers and action methods and how they can be applied as global filters. In the next 
chapter, I show you how to use controllers to create web services.     



621© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_20

    CHAPTER 20   

 API Controllers                          

 Not all controllers are used to send HTML documents to clients. There are also API controllers, which are 
used to provide access to an application’s data. This is a feature that was previously provided through the 
separate Web API framework but has now been integrated into ASP.NET Core MVC. In this chapter, I explain 
the role that API controllers play in a web application, describe the problems they solve, and demonstrate 
how they are created, tested, and used. Table  20-1  puts API controllers in context.        

 Table  20-2  summarizes the chapter.  

   Table 20-1.    Putting API Controllers in Context   

 Question  Answer 

 What are they?  API controllers are like regular controllers, except that the 
responses produced by their action methods are data objects 
that are sent to the client without HTML markup. 

 Why are they useful?  API controllers allow clients to access the data in an 
application without also receiving the HTML markup that is 
required to present that content to the user. Not all clients are 
browsers, and not all clients present data to a user. An API 
controller makes an application open for supporting new types 
of clients or clients developed by a third party. 

 How are they used?  API controllers are used like regular HTML controllers. 

 Are there any pitfalls or limitations?  The most common problems relate to the way that data 
objects are serialized so they can be sent to the client. See the 
“Understanding Content Formatting” section for details. 

 Are there any alternatives?  You don’t have to use API controllers in your project, but doing 
so can increase the value of your platform to your clients. 

 Have they changed since MVC 5?  API controllers were previously provided through the Web API 
framework, but they are now integrated into ASP.NET Core 
MVC and are created like regular controllers. 



CHAPTER 20 ■ API CONTROLLERS

622

     Preparing the Example Project 
 For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty 
project called ApiControllers. 

     Creating the Model and Repository 
 I started by created the  Models  folder, added a class file called  Reservation.cs , and used it to define the 
model class shown in Listing  20-1 . 

     Listing 20-1.    The Contents of the Reservation.cs File in the Models Folder   

  namespace ApiControllers.Models { 

       public class Reservation { 
         public int ReservationId { get; set; } 
         public string ClientName { get; set; } 
         public string Location { get; set; } 
     } 
 } 

    I also added a file called  IRepository.cs  to the  Models  folder and used it to define the interface for a 
model repository, as shown in Listing  20-2 . 

   Table 20-2.    Chapter Summary   

 Problem  Solution  Listing 

 Provide access to the data in 
an application 

 Create an API controller  1–11 

 Request data from an API 
controller 

 Use an Ajax query, either directly using the browser’s 
API or through a library like jQuery 

 12–14 

 Provide a range of different 
data formats to clients 

 Add additional serialization packages to the MVC 
project 

 16–17 

 Override the content 
negotiation process 

 Use the  Produces  attribute  18 

 Allow clients to override the 
 Accept  header by specifying 
the data format in the URL 

 Add formatter mappings in the  Startup  class, add a 
segment variable that captures the data format, and, 
optionally, apply the  FormatFilter  attribute 

 19–20 

 Provide full support for the 
content negotiation process 

 Enable the  HttpNotAcceptableOutputFormatter  
formatter and set the  RespectBrowserAcceptHeader  
configuration property 

 21–22 

 Receive data in different 
formats using different action 
methods 

 Apply the  Consumes  attribute  23 



CHAPTER 20 ■ API CONTROLLERS

623

     Listing 20-2.    The Contents of the IRepository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace ApiControllers.Models { 

       public interface IRepository { 

           IEnumerable<Reservation> Reservations { get; } 
         Reservation this[int id] { get; } 

           Reservation AddReservation(Reservation reservation); 
         Reservation UpdateReservation(Reservation reservation); 
         void DeleteReservation(int id); 
     } 
 } 

    I added a class file called  MemoryRepository.cs  to the  Models  folder and used it to define a 
nonpersistent implementation of the  IRepository  interface, as shown in Listing  20-3 . 

      Listing 20-3.    The Contents of the MemoryRepository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace ApiControllers.Models { 

       public class MemoryRepository : IRepository { 
         private Dictionary<int, Reservation> items; 

           public MemoryRepository() { 
             items = new Dictionary<int, Reservation>(); 
             new List<Reservation> { 
                 new Reservation { ClientName = "Alice", Location = "Board Room" }, 
                 new Reservation { ClientName = "Bob", Location = "Lecture Hall" }, 
                 new Reservation { ClientName = "Joe", Location = "Meeting Room 1" } 
             }.ForEach(r => AddReservation(r)); 
         } 

           public Reservation this[int id] => items.ContainsKey(id) ? items[id] : null; 

           public IEnumerable<Reservation> Reservations => items.Values; 

           public Reservation AddReservation(Reservation reservation) { 
             if (reservation.ReservationId == 0) { 
                 int key = items.Count; 
                 while (items.ContainsKey(key)) { key++; }; 
                 reservation.ReservationId = key; 
             } 
             items[reservation.ReservationId] = reservation; 
             return reservation; 
         } 



CHAPTER 20 ■ API CONTROLLERS

624

           public void DeleteReservation(int id) => items.Remove(id); 

           public Reservation UpdateReservation(Reservation reservation) 
             => AddReservation(reservation); 

       } 
 } 

    The repository creates a simple set of model objects when it is instantiated, and since there is no 
persistent storage, any changes will be lost when the application is stopped or restarted. (See Chapter   8     for 
an example of how to create a persistent repository as part of the SportsStore example application.)  

     Creating the Controller and Views 
 Later in the chapter, I will be creating RESTful controllers, but in preparation, I need to create a regular 
controller to provide a foundation for later examples. I created the  Controllers  folder, added a file called 
 HomeController.cs , and used it to define the controller shown in Listing  20-4 . 

     Listing 20-4.    The Contents of the HomeController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 
 using ApiControllers.Models; 

   namespace ApiControllers.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository { get; set; } 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           public ViewResult Index() => View(repository.Reservations); 

           [HttpPost] 
         public IActionResult AddReservation(Reservation reservation) { 
             repository.AddReservation(reservation); 
             return RedirectToAction("Index"); 
         } 
     } 
 } 

    This controller defines the  Index  action, which is the default for the application and renders the data 
model. It also defines an  AddReservation  action, which is accessible only for HTTP  POST  requests and will 
be used to receive form data from the user. These actions follow the Post/Redirect/Get pattern described in 
Chapter   17     so that reloading the web page won’t create a duplicate form submission. 

 I created a layout so that I can separate the HTML content from the document header, which will 
simplify some changes I make later in the chapter. I created the  Views/Shared  folder, added a layout called 
the  _Layout.cshtml  file, and added the markup shown in Listing  20-5 . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_8
http://dx.doi.org/10.1007/978-1-4842-0397-2_17


CHAPTER 20 ■ API CONTROLLERS

625

     Listing 20-5.    The Contents of the _Layout.cshtml File in the Views/Shared Folder   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>RESTful Controllers</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     @RenderBody() 
 </body> 
 </html> 

   Next, I created the  Views/Home  folder, added a view file called  Index.cshtml , and added the content 
shown in Listing  20-6 . 

     Listing 20-6.    The Contents of the Index.cshtml File in the Views/Home Folder   

  @model IEnumerable<Reservation> 
 @{  Layout = "_Layout"; } 

   <form id="addform" asp-action="AddReservation" method="post"> 
     <div class="form-group"> 
         <label for="ClientName">Name:</label> 
         <input class="form-control" name="ClientName" /> 
     </div> 
     <div class="form-group"> 
         <label for="Location">Location:</label> 
         <input class="form-control" name="Location" /> 
     </div> 
     <div class="text-center panel-body"> 
         <button type="submit" class="btn btn-sm btn-primary">Add</button> 
     </div> 
 </form> 

   <table class="table table-condensed table-striped table-bordered"> 
     <thead><tr><th>ID</th><th>Client</th><th>Location</th></tr></thead> 
     <tbody> 
         @foreach (var r in Model) { 
             <tr> 
                 <td>@r.ReservationId</td> 
                 <td>@r.ClientName</td> 
                 <td>@r.Location</td> 
             </tr> 
         } 
     </tbody> 
 </table> 

    This strongly typed view receives a sequence of  Reservation  objects as its model and uses a Razor 
 foreach  loop to populate a table with them. There is also a  form  that has been configured to send  POST  
requests to the  AddReservation  action. 



CHAPTER 20 ■ API CONTROLLERS

626

 The examples in this chapter depend on the Bootstrap CSS package. To add Bootstrap to the project, I 
used the Bower Configuration File item template to create the  bower.json  file in the root of the project and 
added the package to the  dependencies  section, as shown in Listing  20-7 . 

     Listing 20-7.    Adding a Package in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6"  
   } 
 } 

   Next, I created a  _ViewImports.cshtml  file in the  Views  folder and used it to set up the built-in tag 
helpers for use in Razor views and to import the model namespace, as shown in Listing  20-8 . 

     Listing 20-8.    The Contents of the _ViewImports.cshtml File in the Views Folder   

 @using ApiControllers.Models 
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

        Configuring the Application 
 I added the NuGet packages I required to the  dependencies  section of the  project.json  file and set up the 
Razor tooling in the  tools  section, as shown in Listing  20-9 . I removed the sections that are not required for 
this chapter. 

     Listing 20-9.    Adding Packages in the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 

       "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
      "Microsoft.AspNetCore.Mvc": "1.0.0",  
      "Microsoft.AspNetCore.StaticFiles": "1.0.0",  
      "Microsoft.AspNetCore.Razor.Tools": {  
        "version": "1.0.0-preview2-final",  
        "type": "build"  
      }  
   }, 

     "tools": { 
      "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final",  
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final" 



CHAPTER 20 ■ API CONTROLLERS

627

   }, 

     "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6","portable-net45+win8"] 
     } 
   }, 

     "buildOptions": { 
     "emitEntryPoint": true, "preserveCompilationContext": true 
   }, 

     "runtimeOptions": { 
     "configProperties": { "System.GC.Server": true } 
   } 
 } 

    Listing  20-10  shows the  Startup  class, which configures the features provided by the NuGet packages 
and uses the  AddSingleton  method to set up the service mapping for the model repository. 

     Listing 20-10.    The Contents of the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
  using ApiControllers.Models;  

   namespace ApiControllers { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddSingleton<IRepository, MemoryRepository>();  
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app) { 
              app.UseStatusCodePages();  
              app.UseDeveloperExceptionPage();  
              app.UseStaticFiles();  
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

      Setting the HTTP Port 
 Some of the examples in this chapter are tested by manually typing URLs. To make this easier to describe, I will 
set the port that will be used to receive HTTP requests. Select ApiControllers Properties from the Visual Studio 
Project menu, display the Debug tab and change the value of the App URL field to  http://localhost:7000/ , as 
shown in Figure  20-1 . Make sure that you save the changes after you have set the port number.  



CHAPTER 20 ■ API CONTROLLERS

628

 Start the application, fill out the form, and click the Add button; the application will add a new 
 Reservation  to the model, as shown in Figure  20-2 . The changes you make to the repository are not 
persistent and will be lost when the application is stopped or restarted.     

     Understanding the Role of RESTful Controllers 
    The example application is an example of a classic web application. All of the logic in the application 
exists at the server, contained in C# classes, which makes them easy to manage, test, and maintain. But 
an application designed in this way can have serious deficiencies with regard to speed, efficiency, and 
openness. 

  Figure 20-1.    Setting the application URL       

  Figure 20-2.    Using the example application       

 

 



CHAPTER 20 ■ API CONTROLLERS

629

     Understanding the Speed Problem 
 At the moment, the example application is a  synchronous  web application. When the user clicks the Add 
button, the browser sends the POST request to the server, waits for a response, and then renders the HTML 
it receives. During this period, the user can’t do anything but wait. The waiting period can be imperceptible 
during development, when the browser and the server are on the same machine; however, deployed 
applications are subject to real-world capacity limits and delays, and the amount of time that a synchronous 
application requires the user to wait for a response can be substantial. 

 A synchronous application won’t always have a speed problem. For example, if you are writing a line-
of-business application for use in a single location where all the clients are connected by a fast and reliable 
LAN, then you may not have a problem to solve. On the other hand, if you are writing an application for 
mobile clients in areas with poor infrastructure, then a speed problem can be substantial. 

 ■   Tip    Some browsers let you simulate different types of network, which can be a useful tool for seeing 
whether your users are likely to accept working with a synchronous application for a range of scenarios. Google 
Chrome, for example, offers a feature called  network throttling , which is available in the Network section of 
the F12 developer tools. There is a range of predefined networks available, or you can create your own by 
specifying the upload and download rates and the latency.   

     Understanding the Efficiency Problem 
 The efficiency problem arises from the way that a synchronous web application treats the browser as an 
HTML rendering engine used only to display the HTML documents sent by the server. 

 When the user first requests the default URL for the example application, for instance, the HTML 
document that is sent back contains everything that the browser needs to display the content for the 
application, including the following information:

•    The content relies on the Bootstrap CSS file, which should be downloaded if a 
cached copy isn’t available.  

•   The content contains a form that is configured to send a  POST  request to the 
 AddReservation  action.  

•   The content contains a table whose body contains three populated rows.    

 The example application is simple, and the initial request results in the server sending about 1.3 KB 
of data to the client. However, when the user submits the form, the client is redirected to the  Index  action 
again, which results in another 1.3 KB of data to reflect the addition of a single table row. The browser 
had already rendered the form and the table, but these are discarded and replaced with an entirely new 
representation of what is largely the same content. 

 You may think that 1.3 KB of data isn’t much and, of course, you would be right. But if you consider the 
ratio of useful content to duplicate content, you will see that the vast majority of the data sent to the browser is 
wasted. And the example application is deliberately simple; few real applications require so little HTML, and 
the amount of duplicated content will be substantially increased as the complexity of the application rises.  



CHAPTER 20 ■ API CONTROLLERS

630

     Understanding the Openness Problem 
 The final problem presented by traditional web applications is that the design is closed, meaning that the data 
in the model can be accessed only through the actions provided by the  Home  controller. Closed applications 
become a problem when there is a need to use the underlying data in another application, especially when 
that application is being developed by a different team or even a different organization. Developers often 
believe that the value in an application is in the user interactions that it offers users, largely because those are 
the parts that we spend time thinking about and writing. But once an application is established and has an 
active user base, it is often the data that the application contains that becomes important.   

     Introducing REST and API Controllers 
 An  API controller  is an MVC controller that is responsible for providing access to the data in an application 
without encapsulating it in HTML. This allows the data in the model to be retrieved or modified without 
having to use the actions provided by the regular controllers, such as the  Home  controller in the example 
application. 

 The most common approach for delivering data from an application is to use the  Representational State 
Transfer  pattern, known as REST. There is no detailed specification for REST, which leads to a lot of different 
approaches that fall under the RESTful banter. There are, however, some unifying ideas that are useful in 
client-side web application development. 

 The core premise of a RESTful web service is to embrace the characteristics of HTTP so that request 
methods—also known as  verbs —specify an operation for the server to perform, and the request URL 
specifies one or more data objects to which the operation will be applied. 

 As an example, here is a URL that might refer to a specific  Reservation  in the example application: 

   /api/reservations/1 

   The first part of the URL— api —is used to separate out the data part of the application from the 
standard controllers that generate HTML. The next part— reservations —indicates the collection of 
objects that will be operated on. The final part— 1 —specifies an individual object within the  reservations  
collection. In the example application, it is the value of the  ReservationId  property that uniquely identifies 
an object and that would be used in the URL. 

 URLs that identify an object are combined with HTTP methods to specify operations. In Table  20-3 , I 
have listed the most common HTTP methods and what they represent when combined with an example 
URL. I have also included details of what data—the  payload —is included in the request and response for 
each method and URL combination. The API controller that processes these requests uses the response 
status code to report on the outcome of the request.  



CHAPTER 20 ■ API CONTROLLERS

631

 Following the RESTful convention isn’t a requirement, but it does help make your application easier to 
work with because the same broad approach has been adopted by many established web applications. 

     Creating an API Controller 
 The process for creating an API controller builds on the approach used for standard controllers, with some 
additional features to help specify the API that is presented to clients. To demonstrate, I added a class file 
called  ReservationController.cs  to the  Controllers  folder and used it to define the class shown in 
Listing  20-11 . I break down the functionality provided by this controller in the sections that follow. 

 ■   Tip    Remember that controller classes can be defined anywhere in the project and not just in the 
 Controllers  folder. For large and complex projects, it can be helpful to define the API controllers separately 
from the regular HTML controllers and place them in a subfolder or even separate folder entirely.  

    Table 20-3.    Combining HTTP Methods with URLs to Specify a RESTful Web Service   

 Verb  URL  Description  Payloads 

  GET    /api/reservations   This combination retrieves all 
the objects. 

 This response contains 
the complete collection of 
 Reservation  objects. 

  GET    /api/reservations/1   This combination retrieves 
the reservation object whose 
 ReservationId  is 1. 

 The response contains the 
specified  Reservation  object. 

  POST    /api/reservation   This combination creates a 
new  Reservation . 

 The request contains 
the values for the other 
properties required to create 
a  Reservation  object. The 
response contains the object 
that was stored, ensuring that 
the client receives the saved 
data. 

  PUT    /api/reservation   This combination updates an 
existing  Reservation . 

 The request contains the 
values required to change the 
properties of the specified 
 Reservation . The response 
contains the object that was 
stored, ensuring that the 
client receives the saved data. 

  DELETE    /api/reservation/1   This combination deletes the 
 Reservation  object whose 
 ReservationId  is 1. 

 There is no payload in the 
request or response. 



CHAPTER 20 ■ API CONTROLLERS

632

       Listing 20-11.    The Contents of the ReservationController.cs File in the Controllers Folder   

  using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc; 
 using ApiControllers.Models; 

   namespace ApiControllers.Controllers { 

       [Route("api/[controller]")] 
     public class ReservationController : Controller { 
         private IRepository repository; 

           public ReservationController(IRepository repo) { 
             repository = repo; 
         } 

           [HttpGet] 
         public IEnumerable<Reservation> Get() => repository.Reservations; 

           [HttpGet("{id}")] 
         public Reservation Get(int id) => repository[id]; 

           [HttpPost] 
         public Reservation Post([FromBody] Reservation res) => 
             repository.AddReservation(new Reservation { 
                 ClientName = res.ClientName, 
                 Location = res.Location 
             }); 

           [HttpPut] 
         public Reservation Put([FromBody] Reservation res) => 
             repository.UpdateReservation(res);             

           [HttpDelete("{id}")] 
         public void Delete(int id) => repository.DeleteReservation(id); 
     } 
 } 

    API controllers work in the same basic way as regular controllers, which means that you can create a 
POCO controller or derive a class from the  Controller  base class, which provides more convenient access to 
the request context data. 

 ADAPTING THE RESTFUL PATTERN

 REST has encouraged a certain amount of dogmatism about how web application APIs should be 
presented to clients. REST isn’t a standard or even a well-defined pattern, and there are some helpful 
approaches that make REST easier to adopt with an ASP.NET Core MVC application but that have a 
tendency to upset those programmers who have fixed views about what counts as RESTful. 



CHAPTER 20 ■ API CONTROLLERS

633

 In Table  20-3 , the URLs that I listed for the  POST  and  PUT  operations do not uniquely identify a resource, 
which some people consider an essential REST characteristic. In the case of the  POST  operation, the 
unique identifier of a  Reservation  object is assigned by the model, which means that the client is unable 
to provide it as part of the URL. In the case of the  PUT  operation, the MVC model binding feature—which 
I describe in Chapter   26     and is the reason I applied the  FromBody  attribute in Listing  20-11 —makes 
it easier to receive details of the  Reservation  object that is to be modified from the request body. So, 
that’s where the  Reservation  controller expects to find the  ReservationId  value that identifies the 
model object that is to be modified. 

 In common with all patterns, REST is a starting point that contains helpful and useful ideas. It is not a 
rigid standard that must be followed at all costs, and the only important thing is to write code that can 
be understood, tested, and maintained. Accommodating the nature of MVC applications and the design 
of the repository makes for a simpler application while still providing a useful API for clients to consume. 
My advice is to consider patterns to be a guiding principle that you adapt to your own needs—something 
that is as true for REST as it is for MVC itself.  

   Defining the Route ]
       The route by which API controllers are reached can be defined only using the  Route  attribute and cannot 
be defined in the application configuration in the  Startup  class. The convention for API controllers is to 
use a route prefixed with  api , followed by the name of the controller, so that the  ReservationController  
controller shown in Listing  20-11  is reached through the URL  /api/reservation , like this: 

   ... 
  [Route("api/[controller]")]  
 public class ReservationController : Controller { 
 ... 

      Declaring Dependencies 
    API controllers are instantiated in the same way as regular controllers, which means that they can declare 
dependencies that will be resolved using the service provider. The  ReservationController  class declares a 
constructor dependency on the  IRepository  interface, which will be resolved to provide access to the data 
in the model. 

   ... 
  public ReservationController(IRepository repo) {  
     repository = repo; 
 } 
 ... 

      Defining the Action Methods 
 Each action method is decorated with an attribute that specifies the HTTP method that it accepts, like this: 

   ... 
  [HttpGet]  
 public IEnumerable<Reservation> Get() => repository.Reservations; 
 ... 

http://dx.doi.org/10.1007/978-1-4842-0397-2_26


CHAPTER 20 ■ API CONTROLLERS

634

   The  HttpGet  attribute is one of a set that is used to restrict access to action methods to requests that 
have a specific HTTP method or verb. The complete set of attributes is described in Table  20-4 .  

      Routes are further refined by including a routing fragment as the argument to the HTTP method 
attribute, like this: 

   ... 
  [HttpGet("{id}")]  
 public Reservation Get(int id) => repository[id]; 
 ... 

   The routing fragment,  {id} , is combined with the route defined by the  Route  attribute applied to the 
controller and a constraint based on the HTTP method. In this case, it means that this action can be reached 
by sending a  GET  request whose URL matches the  /api/reservations/{id}  routing pattern, where the  id  
segment is then used to identify the reservation object that should be retrieved. 

 Notice that the routes generated for an API controller don’t include an  {action}  segment variable, 
which means that the name of the action method isn’t part of the URL required to target a specific method. 
All of the actions in an API controller are reached through the same base URL ( /api/reservation  for the 
example) and the HTTP method and optional segments are used to differentiate between them.  

   Defining the Action Results 
 Action methods for API controllers don’t rely on  ViewResult  objects to present their results since there are 
no views required when delivering data. Instead, API controller action methods return data objects, like this: 

   ... 
 [HttpGet] 
 public  IEnumerable<Reservation> Get()  => repository.Reservations; 
 ... 

   Table 20-4.    The HTTP Method Attribtues   

 Name  Description 

  HttpGet   This attribute specifies that the action can be invoked only by HTTP requests 
that use the  GET  verb. 

  HttpPost   This attribute specifies that the action can be invoked only by HTTP requests 
that use the  POST  verb. 

  HttpDelete   This attribute specifies that the action can be invoked only by HTTP requests 
that use the  DELETE  verb. 

  HttpPut   This attribute specifies that the action can be invoked only by HTTP requests 
that use the  PUT  verb. 

  HttpPatch   This attribute specifies that the action can be invoked only by HTTP requests 
that use the  PATCH  verb. 

  HttpHead   This attribute specifies that the action can be invoked only by HTTP requests 
that use the  HEAD  verb. 

  AcceptVerbs   This attribute is used to specify multiple HTTP verbs. 



CHAPTER 20 ■ API CONTROLLERS

635

   This action returns a sequence of  Reservation  objects and leaves MVC to take responsibility for 
serializing them into a format that can be processed by the client. I explain this process in more detail in the 
“Understanding Content Formatting” section. 

 CUSTOMIZING API RESULTS

 One of the most appealing aspects of API controllers is that you can just return C# objects from action 
methods and let MVC figure out what to do with them. MVC is pretty good at working out what to do. For 
example, if you return  null  from an API controller action method, then the client will be sent a  204 – No 
Content  response. 

 But API controllers are able to use the features available to regular controllers, too, and that means 
you can override the default behavior by returning an  IActionResult  from your action methods that 
specifies what kind of result you want to send. As an example, here is an implementation of an action 
method from the example controller that sends a  404 – Not Found  response for queries that don’t 
correspond to an object in the model: 

   ... 
 [HttpGet("{id}")] 
 public IActionResult Get(int id) { 
     Reservation result = repository[id]; 
     if (result == null) { 
         return NotFound(); 
     } else { 
         return Ok(result); 
     } 
 } 
 ... 

   If there is no object in the repository for the specified ID, then I call the  NotFound  method, which creates 
a  NotFoundResult  object that, in turn, leads to a  404 – Not Found  response being sent to the client. 
If there is an object in the repository, then I call the  Ok  method to create an  ObjectResult  object. The 
 Ok  method allows me to send an object to the client within an action that returns an  IActionResult , as 
described in Chapter   17    . You won’t often need to override the default API controller responses, but the 
full range of action results are available if the need does arise.    

     Testing an API Controller 
 There are lots of tools available to help test web application APIs. Good examples include Fiddler (   www.
telerik.com/fiddler     ), which is a standalone HTTP debugging tool, and Swashbuckle (   http://github.
com/domaindrivendev/Swashbuckle     ), which is a NuGet package that adds a summary page to an application 
that describes its API operations and allows them to be tested. 

 But the simplest way to make sure that an API controller is to use PowerShell, which makes it easy 
to create HTTP requests from the Windows command line and which lets you focus on the results of 
API operations without needing to dig into the details. In the sections that follow, I show you how to use 
PowerShell to test each of the operations provided by the  Reservation  controller. You can open a new 
PowerShell window to run the test commands or use the Visual Studio Package Manager Console window, 
which uses PowerShell). 

http://dx.doi.org/10.1007/978-1-4842-0397-2_17
http://www.telerik.com/fiddler
http://www.telerik.com/fiddler
http://github.com/domaindrivendev/Swashbuckle
http://github.com/domaindrivendev/Swashbuckle


CHAPTER 20 ■ API CONTROLLERS

636

   Testing the GET Operations 
 To test the  GET  operation provided by the  Reservation  API controller, open a PowerShell window and type 
the following command: 

   Invoke-RestMethod http://localhost:7000/api/reservation -Method GET 

   This command uses the  Invoke-RestMethod  PowerShell cmdlet to send a  GET  request to the  /api/
reservation  URL. The result is parsed and formatted to make the data easy to read, as follows: 

   reservationId clientName location 
 ------------- ---------- -------- 
             0 Alice      Board Room 
             1 Bob        Lecture Hall 
             2 Joe        Meeting Room 1 

   The server responds to the GET request with a JSON representation of the  Reservation  objects 
contained in the model, which the  Invoke-RestMethod  cmdlet presents in a table format. 

 UNDERSTANDING JSON

    The  JavaScript Object Notation  (JSON) has become the standard data format for web applications. JSON 
has become popular because it is simple, concise, and easy to work with. It is especially easy to process 
JSON data in JavaScript code because the JSON format is similar to the way that literal objects are 
expressed in JavaScript code. Modern browsers include built-in support for generating and parsing JSON 
data, and popular JavaScript libraries, such as jQuery, will automatically convert to and from JSON. 

 Although JSON has evolved from JavaScript, its structure is easy for C# developers to read and 
understand. As an example, here is a response from the API controller in the example application: 

   ... 
 [{"reservationId":0,"clientName":"Alice","location":"Board Room"}, 
  {"reservationId":1,"clientName":"Bob","location":"Lecture Hall"}, 
  {"reservationId":2,"clientName":"Joe","location":"Meeting Room 1"}] 
 ... 

   This JSON string describes an array of objects. The array is denoted by the  [  and  ]  characters, and 
each object is denoted using the  {  and  }  characters. The objects are a collection of key/value pairs, 
where each key is separated from its value with a colon (the  :  character) and pairs are separated 
with commas (the  ,  character). This is loosely similar to the C# literal syntax that I used in the 
 MemoryRepository  class to define the data in Listing  20-3 . 

   ... 
 new List<Reservation> { 
     new Reservation { ClientName = "Alice", Location = "Board Room" }, 
     new Reservation { ClientName = "Bob", Location = "Lecture Hall" }, 
     new Reservation { ClientName = "Joe", Location = "Meeting Room 1" } 
 ... 



CHAPTER 20 ■ API CONTROLLERS

637

   Notice, however, that MVC changes the capitalization of property names from the C# convention 
( ClientName , with an initial uppercase letter) to the JavaScript convention ( clientName , with an initial 
lowercase letter). 

 Even though the formats are not identical, there is sufficient similarity that a C# developer can read 
and understand JSON data with little effort. You don’t need to get into the detail of JSON for most web 
applications because MVC does all the heavy lifting, but you can learn more about JSON at    www.json.org     .  

 There are two  GET  operations provided by the  Reservation  controller. When a  GET  request is sent to  /
api/reservation , then a response containing all the objects is model is returned. To retrieve a single object, 
its  ReservationId  value is specified as the final segment in the URL, like this: 

   Invoke-RestMethod http://localhost:7000/api/reservation/1 -Method GET 

   This command requests the  Reservation  object whose  ReservationId  value is 1 and produces the 
following result: 

   reservationId clientName location 
 ------------- ---------- -------- 
             1 Bob        Lecture Hall 

      Testing the POST Operation 
 All the operations provided by the API controller can be tested using PowerShell, although the format of the 
commands can be a little awkward. Here is a command that sends a  POST  request to the API controller to 
create a new  Reservation  object in the repository and writes out the data sent back in the response: 

   Invoke-RestMethod http://localhost:7000/api/reservation -Method POST -Body (@
{clientName = "Anne"; location = "Meeting Room 4"} | ConvertTo-Json) -ContentType "application/
json" 

   This command uses the  -Body  argument to specify the body for the request, which is encoded as JSON. 
The  -ContentType  argument is used to set the  Content-Type  header for the request. The command will 
produce the following result: 

   reservationId clientName location 
 ------------- ---------- -------- 
             3 Anne       Meeting Room 4 

   The  POST  operation uses the  clientName  and  location  values to create a  Reservation  object and 
returns a JSON representation of the new object to the client, which includes the  ReservationId  value 
that has been assigned to the new object. This may seem like the client is simply receiving data values that 
it has sent to the server in the request, but this approach ensures that the client is working with the same 
data that the server is using and caters for any formatting or translations that the server performs on the 
data it receives from the client. To see the effect of the  POST  request, send another get request to the  /api/
reservation  API, like this: 

   Invoke-RestMethod http://localhost:7000/api/reservation -Method GET 

http://www.json.org/


CHAPTER 20 ■ API CONTROLLERS

638

   The data that is returned by the client reflects the addition of the new  Reservation  object. 

   reservationId clientName location 
 ------------- ---------- -------- 
             0 Alice      Board Room 
             1 Bob        Lecture Hall 
             2 Joe        Meeting Room 1 
              3 Anne       Meeting Room 4  

      Testing the PUT Operation 
 The  PUT  method is used to change existing objects in the model. The  ReservationId  of the object is specified 
as part of the request URL, and the  clientName  and  location  values are provided in the request body. Here 
is a PowerShell command that sends a  PUT  request to modify a  Reservation  object: 

   Invoke-RestMethod http://localhost:7000/api/reservation -Method PUT -Body (@
{reservationId = "1"; clientName = "Bob"; location = "Media Room"} | ConvertTo-Json) 
-ContentType "application/json" 

   This request changes the  Reservation  object whose  ReservationId  value is 1 and specifies a new value 
for the  Location  property. If you run the command, you will see the following response, which indicates that 
the change has been made: 

   reservationId clientName location 
 ------------- ---------- -------- 
             1 Bob        Media Room 

   To see the effect of the  PUT  request, send another get request to the  /api/reservation  API, like this: 

   Invoke-RestMethod http://localhost:7000/api/reservation -Method GET 

   The data that is returned by the client reflects the addition of the new  Reservation  object. 

   reservationId clientName location 
 ------------- ---------- -------- 
             0 Alice      Board Room 
              1 Bob        Media Room  
             2 Joe        Meeting Room 1 
             3 Anne       Meeting Room 4 

      Testing the Delete Operation 
 The final test is to send a  DELETE  request, which will remove a  Reservation  from the repository, as follows: 

   Invoke-RestMethod http://localhost:7000/api/reservation/2 -Method DELETE 



CHAPTER 20 ■ API CONTROLLERS

639

   The action that accepts  DELETE  requests in the  Reservation  controller doesn’t return a result, so no data 
is displayed when the command has completed. To see the effect of the deletion, request the contents of the 
repository using the following command: 

   Invoke-RestMethod http://localhost:7000/api/reservation -Method GET 

   The  Reservation  whose  ReservationId  value is  2  was removed from the repository. 

   reservationId clientName location 
 ------------- ---------- -------- 
             0 Alice      Board Room 
             1 Bob        Media Room 
             3 Anne       Meeting Room 4 

         Using the API Controller in the Browser 
 Defining an API controller has addressed the openness issue for my application, but it hasn’t done anything 
for my speed or efficiency issues. For this, I need to update the HTML part of the application so that it relies 
on JavaScript to make HTTP requests to the API controller to perform data operations. 

 In the browser, asynchronous HTTP requests are typically known as  Ajax requests , where Ajax used to 
be an acronym for  Asynchronous JavaScript and XML . The XML data format has lost popularity in recent 
years, but the name Ajax is still used to refer to asynchronous HTTP requests, even when they return JSON 
data. More broadly, the technique described in this section is the foundation for single page applications, 
where JavaScript in a single HTML page is used to pull in the data for multiple sections of the application, 
generating the content to display dynamically. 

 ■   Note    Client-side development is a topic in its own right and outside the scope of this book. In this section, I 
create only a basic asynchronous HTTP request without detailed explanations, just to give a sense of how it is done. 
See my  Pro ASP.NET Core MVC Client Development  book, also published by Apress, for detailed coverage of how 
JavaScript and jQuery can be used to create single page applications that consume services from API controllers.  

 There is a JavaScript API provided by browsers for making Ajax requests, but it is a little awkward to 
deal with, and there are some differences in the way that browsers implement some optional features. The 
simplest way to make Ajax requests is to use the jQuery library, which is an endlessly useful tool for client-
side development. In Listing  20-12 , I added the jQuery package to the  bower.json  file. 

       Listing 20-12.    Adding jQuery in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
     "bootstrap": "3.3.6", 
      "jquery": "2.2.4"  
   } 
 } 



CHAPTER 20 ■ API CONTROLLERS

640

   In fact, since some Bootstrap features depend on jQuery, Bower will have already installed the package 
in the  wwwroot/lib  folder. The addition in Listing  20-12  has the effect of making the dependency explicit. 

 ■   Note    You won’t always get the version numbers you expect when adding packages to a project using 
Bower. NPM will download multiple versions of packages and manage them side-by-side to ensure that 
everything works as expected, but Bower can’t do this because browsers have no way of dealing with different 
versions of the same code at runtime. As I write this, the latest version of the jQuery library is 3.0.0, but I have 
specified version 2.2.4 in Listing  20-12  because that’s the version that Bootstrap 3.3.6 works with. Specifying 
jQuery 3.0.0 in the  bower.json  file won’t cause Bower to upgrade jQuery because doing so would cause a 
version mismatch between the specified version and the version that Bootstrap requires.  

 To use the features provided by jQuery, I created the  wwwroot/js  folder and added a JavaScript file 
called  client.js , the contents of which are shown in Listing  20-13 . 

     Listing 20-13.    The Contents of the client.js file in the wwwroot/js Folder   

  $(document).ready(function () { 

       $("form").submit(function (e) { 
         e.preventDefault(); 
         $.ajax({ 
             url: "api/reservation", 
             contentType: "application/json", 
             method: "POST", 
             data: JSON.stringify({ 
                 clientName: this.elements["ClientName"].value, 
                 location: this.elements["Location"].value 
             }), 
             success: function(data) { 
                 addTableRow(data); 
             } 
         }) 
     }); 
 }); 

   var addTableRow = function (reservation) { 
     $("table tbody").append("<tr><td>" + reservation.reservationId + "</td><td>" 
         + reservation.clientName + "</td><td>" 
         + reservation.location + "</td></tr>"); 
 } 

    The JavaScript file in this file responds when the user submits the form in the browser, encodes the form 
data as JSON, and sends it to the server using an HTTP  POST  request. The JSON data that is returned by the 
server is automatically parsed by jQuery and then used to add a row to the HTML table. In Listing  20-14 , I 
have updated the layout to include script elements for the jQuery library for the  client.js  file. 



CHAPTER 20 ■ API CONTROLLERS

641

     Listing 20-14.    Adding JavaScript References in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>RESTful Controllers</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
      <script src="lib/jquery/dist/jquery.js"></script>  
      <script src="js/client.js"></script>  
 </head> 
 <body class="panel-body"> 
     @RenderBody() 
 </body> 
 </html> 

   The first  script  element tells the browser to load the jQuery library, and the second specifies the file 
that will contain my custom code. 

 There is no obvious visual difference if you run the application and use the HTML form to create a 
 Reservation  in the application repository, but if you examine the HTTP request that is sent by the browser, 
you will see that it requires much less data than the synchronous version of the application did. In my 
simple testing the asynchronous request required 480 bytes of data, which is about 40 percent of what the 
synchronous request required. The improvement is more substantial in real applications where the size of 
data tends to be much less than the size of the HTML document that is used to display it.   

     Understanding Content Formatting 
    When an action method returns a C# object as its result, MVC has to work out which data format should be 
used to encode the object and send it to the client. In this section, I explain what the default process is and 
how it is influenced by the request sent by the client and the configuration of the application. To help explain 
how the process works, I added a class file called  ContentController.cs  to the  Controllers  folder and used 
it to define the API controller shown in Listing  20-15 . 

     Listing 20-15.    The Contents of the ContentController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 
 using ApiControllers.Models; 

   namespace ApiControllers.Controllers { 

       [Route("api/[controller]")] 
     public class ContentController : Controller { 

           [HttpGet("string")] 
         public string GetString() => "This is a string response"; 

           [HttpGet("object")] 
         public Reservation GetObject() => new Reservation { 



CHAPTER 20 ■ API CONTROLLERS

642

             ReservationId = 100, 
             ClientName = "Joe", 
             Location = "Board Room" 
         }; 
     } 
 } 

    I specified static segment variables as the arguments to the  HttpGet  attribute for two of the actions 
in this controller, which means that they can be reached by the  /api/controller/string  and  /api/
controller/object  URLs. The  Content  controller doesn’t follow the REST pattern even loosely, but it will 
make it easy to understand how content negotiation works. 

 The content format selected by MVC depends on four factors: the formats that the client will accept, the 
formats that MVC can produce, the content policy specified by the action, and the type returned by the action 
method. Figuring out how everything fits together can be daunting, but the good news is that the default 
policy works just fine for most applications, and you only need to understand what happening behind the 
scenes when you need to make a change or when you are not getting results in the format that you expect. 

     Understanding the Default Content Policy 
 The starting point is the standard application configuration that is used when neither the client nor the 
action method applies any restrictions to the formats that can be used. In this situation, the outcome is 
simple and predictable.

    1.    If the action method returns a  string , the string is sent unmodified to the client, 
and the  Content-Type  header of the response is set to  text/plain .  

    2.    For all other data types, including other simple types such as  int , the data 
is formatted as JSON, and the  Content-Type  header of the response is set to 
 application/json .     

 The reason that strings get special treatment is that they cause problems when they are encoded as 
JSON. When you encode other simple types, such as the C#  int  value  2 , then the result is a quoted string, 
such as  "2" . When you encode a string, you end up with two sets of quotes so that  "Hello"  becomes 
 ""Hello"" . Not all clients cope well with this double encoding, so it is more reliable to use the  text/plain  
format and sidestep the issue entirely. This is rarely an issue because few applications send  string  values; it 
is more common to send objects in the JSON format. You can see both outcomes by using PowerShell. Here 
is a command that invokes the  GetString  method, which returns a  string : 

   Invoke-WebRequest http://localhost:7000/api/content/string | select @{n = 'Content-Type';e = { 
$_.Headers."Content-Type" }}, Content 

   This command sends a  GET  request to the  /api/content/string  URL and processes the response to 
display the  Content-Type  header and the content from the response. 

 ■   Tip    You may receive an error when you use the  Invoke-WebRequest  cmdlet if you have not performed the 
initial setup for Internet Explorer. This is especially likely on a Windows 10 machine where Edge has replaced it. 
The problem can be fixed by running IE and selecting the initial configurations you require.  



CHAPTER 20 ■ API CONTROLLERS

643

 The command produces the following output: 

   Content-Type              Content 
 ------------              ------- 
 text/plain; charset = utf-8 This is a string response 

   The same command can also be used to show the JSON format by changing just the URL that is 
requested, like this: 

   Invoke-WebRequest http://localhost:7000/ api/content/object  | select @{n = 'Content-Type';e = { 
$_.Headers."Content-Type" }}, Content 

   This command produces output, formatted for clarity, that shows that the response has been encoded 
as JSON: 

   Content-Type                    Content 
 ------------                    ------- 
 application/json; charset = utf-8 {"reservationId":100, 
                                  "clientName":"Joe", 
                                  "location":"Board Room"} 

        Understanding Content Negotiation 
    Most clients will include an  Accept  header in a request, which specifies the set of formats that they are 
willing to receive in the response, expressed as a set of MIME types. Here is the  Accept  header that Google 
Chrome sends in requests: 

   Accept: text/html,application/xhtml + xml,application/xml;q = 0.9,image/webp,*/*;q = 0.8 

   This header indicates that Chrome can handle the HTML and XHTML formats (XHTML is an XML-
compliant dialect of HTML), XML, and the WEBP image format. The  q  values in the header specify relative 
preference, where value is 1.0 by default. Specifying a  q  value for 0.9 for  application/xml  tells the server that 
Chrome will accept XML data but prefers to deal with HTML or XHTML. The final item,  */* , tells the server 
that Chrome will accept any format, but its  q  value specifies that it is the lowest preference of the specified 
types. Putting all of this together means that the  Accept  header sent by Chrome provides the server with the 
following information:

    1.    Chrome prefers to receive HTML or XHTML data or WEBP images.  

    2.    If those formats are not available, then the next most preferred format is XML.  

    3.    If none of the preferred formats is available, then Chrome will accept any format.     

 You might assume from this that you can change the format a request receives from an MVC application 
by setting the  Accept  header, but it doesn’t work that way—or, rather, it doesn’t work that way just yet 
because there is some preparation required. First, here is a PowerShell command that sends a  GET  request to 
the  GetObject  method with an  Accept  header that specifies that the client will only accept XML data: 

   Invoke-WebRequest http://localhost:7000/api/content/object  -Headers @{Accept="application/
xml"}  | select @{n = 'Content-Type';e = { $_.Headers."Content-Type" }}, Content 



CHAPTER 20 ■ API CONTROLLERS

644

   Here are the results, which show that the server has sent an  application/json  response: 

   Content-Type                    Content 
 ------------                    ------- 
 application/json; charset = utf-8 {"reservationId":100, 
                                  "clientName":"Joe", 
                                  "location":"Board Room"} 

   Including the  Accept  header has no effect on the format, even though the server has sent the client a 
format that it hasn’t specified. The problem is that, by default, MVC is configured to support JSON only, so it 
has no other formats it can use. Rather than return an error, MVC sends JSON data in the hope that the client 
can process it, even though it was not one of the formats specified by the request  Accept  header. 

 CONFIGURING THE JSON SERIALIZER

 ASP.NET Core MVC uses a popular third-party JSON package called Json.Net to serialize objects into 
JSON. The default configuration is suitable for most projects but can be changed if you need to create 
JSON in a specific way. The  AddMvc().AddJsonOptions  extension method is used in the  Startup  class 
and provides access to an  MvcJsonOptions  object, through which the Json.Net package is configured. 
See    www.newtonsoft.com/json      for details of the configuration options available.  

   Enabling XML Formatting 
    To see content negotiation at work, you have to give MVC some choice in the formats it uses to encode 
response data. Although JSON has become the default format for web applications, MVC can also support 
encoding data as XML. I added the NuGet package that contains the XML support to the  dependencies  
section of the  project.json  file, as shown in Listing  20-16 . 

     Listing 20-16.    Adding the XML Formatting Package in the project.json File   

 ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
   "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
   "Microsoft.AspNetCore.Mvc": "1.0.0", 
   "Microsoft.AspNetCore.StaticFiles": "1.0.0", 
   "Microsoft.AspNetCore.Razor.Tools": { 
     "version": "1.0.0-preview2-final", 
     "type": "build" 
   }, 
    "Microsoft.AspNetCore.Mvc.Formatters.Xml": "1.0.0"  
 }, 
 ... 

http://www.newtonsoft.com/json


CHAPTER 20 ■ API CONTROLLERS

645

   Adding the  Microsoft.AspNetCore.Mvc.Formatters.Xml  package provides extension methods that can 
be used to enable XML formatting in the  Startup.cs  file, as shown in Listing  20-17 . 

 ■   Tip    You can create your own content format by deriving from the  Microsoft.AspNetCore.Mvc.Formatters.
OutputFormatter  class. This is rarely useful because creating a custom data format isn’t a useful way of exposing 
the data in your application and the most common formats—JSON and XML—are already implemented.  

      Listing 20-17.    Enabling XML Formatting in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using ApiControllers.Models; 

   namespace ApiControllers { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<IRepository, MemoryRepository>(); 
              services.AddMvc().AddXmlDataContractSerializerFormatters();  
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    When MVC had only the JSON format available, it had no choice but to encode responses as JSON. Now 
that there is a choice, you can see the content negotiation process working more fully. 

 ■   Tip    I used the  AddXmlDataContractSerializerFormatters  extension method in Listing  20-17 , but 
you can also use the  AddXmlSerializerFormatters  extension method, which provides access to an older 
serialization class. The difference can be helpful if you are generating XML content for older .NET clients.  

 Here is the PowerShell command that requests XML data again: 

   Invoke-WebRequest http://localhost:7000/api/content/object -Headers @{Accept = "application/
xml"} | select @{n = 'Content-Type';e = { $_.Headers."Content-Type" }}, Content 



CHAPTER 20 ■ API CONTROLLERS

646

   Run this command and you will see that now the server returns XML data, rather than JSON, as follows 
(I have omitted the XML namespace attributes for brevity): 

   Content-Type                   Content 
 ------------                   ------- 
 application/xml; charset = utf-8 < Reservation >  
                                    <ClientName > Joe</ClientName >  
                                    <Location > Board Room</Location >  
                                    <ReservationId > 100</ReservationId >  
                                </Reservation> 

         Specifying an Action Data Format 
 You can override the content negotiation system and specify a data format directly on an action method by 
applying the  Produces  attribute, as shown in Listing  20-18 . 

     Listing 20-18.    Specifying a Data Format in the ContentController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using ApiControllers.Models; 

   namespace ApiControllers.Controllers { 

       [Route("api/[controller]")] 
     public class ContentController : Controller { 

           [HttpGet("string")] 
         public string GetString() => "This is a string response"; 

           [HttpGet("object")] 
          [Produces("application/json")]  
         public Reservation GetObject() => new Reservation { 
             ReservationId = 100, 
             ClientName = "Joe", 
             Location = "Board Room" 
         }; 
     } 
 } 

    The  Produces  attribute is a filter that changes the content type of  ObjectResult  objects, which are used 
behind the scenes by MVC to represent action results in API controllers. The argument for the attribute 
specifies the format that will be used for the result from the action, and additional allowed types can also be 
specified. The  Produces  attribute forces the format used by the response, which can be seen by running the 
following PowerShell command: 

   (Invoke-WebRequest http://localhost:7000/api/content/object -Headers @{Accept = "application/
xml"}).Headers."Content-Type" 

   This command displays the value of the  Content-Type  header from the response to a  GET  request to the 
 /api/content/object  URL. Running the command shows that JSON is used, as specified by the  Produces  
attribute, even though the  Accept  header of the request specifies that XML should be used.  



CHAPTER 20 ■ API CONTROLLERS

647

     Getting the Data Format from the Route or Query String 
 The  Accept  header isn’t always under the control of the programmer who is writing the client, especially 
if development is being done using an old browser or toolkit. For such situations, it can be helpful to allow 
the data format for the response to be requested through the route used to target an action method or in the 
query string section of the request URL. The first step is to define shorthand values in the  Startup  class that 
can be used to refer to formats in the route or the query string. There is one mapping by default, in which 
 json  is used as shorthand for  application/json . In Listing  20-19 , I have added an additional mapping for 
XML. 

     Listing 20-19.    Adding a Format Shorthand in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using ApiControllers.Models; 
  using Microsoft.Net.Http.Headers;  

   namespace ApiControllers { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<IRepository, MemoryRepository>(); 
             services.AddMvc() 
                 .AddXmlDataContractSerializerFormatters() 
                  .AddMvcOptions(opts => {  
                      opts.FormatterMappings.SetMediaTypeMappingForFormat("xml",  
                          new MediaTypeHeaderValue("application/xml"));  
                  });  
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    The  MvcOptions.FormatterMappings  property is used to set and manage the mappings. In the listing, 
I used the  SetMediaTypeMappingForFormat  method to create a new mapping so that the shorthand  xml  
will refer to the  application/xml  format. The next step is to apply the  FormatFilter  attribute to an action 
method and, optionally, adjust the route for the action so that it includes a  format  segment variable, as 
shown in Listing  20-20 . 

     Listing 20-20.    Applying the FormatFilter Attribute in the ContentController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using ApiControllers.Models; 

   namespace ApiControllers.Controllers { 



CHAPTER 20 ■ API CONTROLLERS

648

       [Route("api/[controller]")] 
     public class ContentController : Controller { 

           [HttpGet("string")] 
         public string GetString() => "This is a string response"; 

            [HttpGet("object/{format?}")]  
          [FormatFilter]  
          [Produces("application/json", "application/xml")]  
         public Reservation GetObject() => new Reservation { 
             ReservationId = 100, 
             ClientName = "Joe", 
             Location = "Board Room" 
         }; 
     } 
 } 

    I have applied the  FormatFilter  attribute to the  GetObject  method and modified the route for the 
action so that it includes an optional  format  segment. You don’t have to use the  Produces  attribute in 
conjunction with the  FormatFilter  attribute, but if you do, only requests that specify formats for which the 
 Produces  attribute has been configured will work. Requests that specify a format for which the  Produces  
attribute has not been configured will receive a  404 – Not Found  response. If you don’t apply the  Produces  
attribute, then the request can specify any format that MVC has been configured to use. 

 I also added the  application/xml  format to the  Produces  attribute so that the action method will 
support requests for both JSON and XML. 

 This PowerShell command specifies the  xml  format as part of the request URL: 

   (Invoke-WebRequest http://localhost:7000/api/content/object/xml).Headers."Content-Type" 

   Running this command shows the content type of the response, as follows: 

   application/xml; charset = utf-8 

   The  FormatFilter  attribute looks for a routing segment variable called  format , gets the shorthand value 
that it contains, and retrieves the associated data format from the application configuration. This format is 
then used for the response. If there is no routing data available, then the query string is inspected as well. 
Here is a PowerShell command that requests XML using the query string: 

   (Invoke-WebRequest http://localhost:7000/api/content/object?format=xml).Headers."Content-
Type" 

   The format found by the  FormatFilter  attribute overrides any formats specified by the  Accept  header, 
which puts the format selection in the hands of the client developer, even when working with toolkits and 
browsers that don’t allow the  Accept  header to be set.  

     Enabling Full Content Negotiation 
 For most applications, sending JSON data when there is no other format available is a sensible policy since 
a web application client is more likely to have incorrectly set its  Accept  header than be unable to process 
JSON. That said, some applications will have to deal with clients that cause problems if JSON is returned 
regardless of what the  Accept  headers say. Getting content negotiation working requires two configuration 
changes in the  Startup  class, as shown in Listing  20-21 . 



CHAPTER 20 ■ API CONTROLLERS

649

     Listing 20-21.    Enabling Full Content Negotiation in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using ApiControllers.Models; 
 using Microsoft.Net.Http.Headers; 
  using Microsoft.AspNetCore.Mvc.Formatters;  

   namespace ApiControllers { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<IRepository, MemoryRepository>(); 
             services.AddMvc() 
                 .AddXmlDataContractSerializerFormatters() 
                 .AddMvcOptions(opts => { 
                     opts.FormatterMappings.SetMediaTypeMappingForFormat("xml", 
                         new MediaTypeHeaderValue("application/xml")); 
                      opts.RespectBrowserAcceptHeader = true;  
                      opts.ReturnHttpNotAcceptable = true;  
                 }); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    The  RespectBrowserAcceptHeader  option is used to control whether the  Accept  header is fully 
respected. The  ReturnHttpNotAcceptable  option is used to control whether a 406 - Not Acceptable response 
will be sent to the client if there is no suitable format available. 

 I also have to remove the  Produces  attribute from the action method so that the content negotiation 
process isn’t overridden, as shown in Listing  20-22 . 

     Listing 20-22.    Removing the Produces Attribute in the ContentController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using ApiControllers.Models; 

   namespace ApiControllers.Controllers { 

       [Route("api/[controller]")] 
     public class ContentController : Controller { 

           [HttpGet("string")] 
         public string GetString() => "This is a string response"; 



CHAPTER 20 ■ API CONTROLLERS

650

           [HttpGet("object/{format?}")] 
         [FormatFilter] 
          //[Produces("application/json", "application/xml")]  
         public Reservation GetObject() => new Reservation { 
             ReservationId = 100, 
             ClientName = "Joe", 
             Location = "Board Room" 
         }; 
     } 
 } 

    Here is a PowerShell command that sends a  GET  request to the  /api/content/object  URL with an 
 Accept  header that specifies a content type that the application cannot provide: 

   Invoke-WebRequest http://localhost:7000/api/content/object -Headers @{Accept = "application/
custom"} 

   If you run this command, you will see that the 406 error message is displayed, indicating to the client 
that the server has been unable to provide the requested format.  

     Receiving Different Data Formats 
 When the client sends data to the controller, such as in a  POST  request, you can specify different action 
methods to handle specific data formats using the  Consumes  attribute, as shown in Listing  20-23 . 

     Listing 20-23.    Handling Different Data Formats in the ContentController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using ApiControllers.Models; 

   namespace ApiControllers.Controllers { 

       [Route("api/[controller]")] 
     public class ContentController : Controller { 

           [HttpGet("string")] 
         public string GetString() => "This is a string response"; 

           [HttpGet("object/{format?}")] 
         [FormatFilter] 
         //[Produces("application/json", "application/xml")] 
         public Reservation GetObject() => new Reservation { 
             ReservationId = 100, 
             ClientName = "Joe", 
             Location = "Board Room" 
         }; 

            [HttpPost]  
          [Consumes("application/json")]  
          public Reservation ReceiveJson([FromBody] Reservation reservation) {  
              reservation.ClientName = "Json";  



CHAPTER 20 ■ API CONTROLLERS

651

              return reservation;  
          }  

            [HttpPost]  
          [Consumes("application/xml")]  
          public Reservation ReceiveXml([FromBody] Reservation reservation) {  
              reservation.ClientName = "Xml";  
              return reservation;  
          }  
     } 
 } 

    The  ReceiveJson  and  ReceiveXml  actions both accept  POST  requests, and the difference between them 
is the data format that is specified with the  Consumes  attribute, which examines the  Content-Type  header 
to work out whether the action method can process the request. The result is that when there is a request 
whose  Content-Type  is set to  application/json , the  ReceiveJson  method will be used, but if the  Content-
Type  header is set to  application/xml , then the  ReceiveXml  method will be used.   

     Summary 
 In this chapter, I explained the role that an API controller plays in an MVC application. I demonstrated how 
to create and test an API controller, briefly demonstrated how to make asynchronous HTTP requests using 
jQuery, and explained the content formatting process. In the next chapter, I explain how views and view 
engines work in more detail.     



653© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_21

    CHAPTER 21   

 Views                          

    In Chapter   17    , you saw how action methods can return  ViewResult  objects, which tells MVC to render a view 
and return an HTML response to the client. 

 Throughout this book, you have seen views being used in many examples already, so you know roughly 
what they do, but I dig into the details in this chapter. 

 I begin by showing you how MVC handles  ViewResult  objects using  view engines , including 
demonstrating how to create a custom view engine. I also describe techniques for working effectively with 
the built-in Razor view engine, including the use of partial views and layout sections, which are essential 
topics for effective MVC development. Table  21-1  puts views into context.  

   Table 21-1.    Putting Views in Context   

 Question  Answer 

 What are they?  Views are the part of the MVC pattern used to display content to the user. In an 
ASP.NET Core MVC application, a view is a file that contains HTML elements 
and C# code, which is processed to generate a response. 

 Why are they useful?  Views allow the presentation of data to be separated from the logic that 
processes requests. Views also allow the same presentation to be applied 
throughout the application, since many controllers can use the same view. 

 How are they used?  Most MVC applications use the Razor view engine, which makes it easy to mix 
HTML and C# content. Views are selected by returning a  ViewResult  object as 
the result of an action method, as described in Chapter   17    . 

 Are there any pitfalls or 
limitations? 

 It can take a while to get used to using Razor and its mix of HTML and C#. In 
this chapter, I explain how Razor works, which helps demystify some of its 
operations. 

 Are there any 
alternatives? 

 There are a number of third-party view engines available for MVC, but their 
use is limited. 

 Have they changed since 
MVC 5? 

 Razor remains the default view engine in MVC, but behind the scenes there 
have been some changes to the APIs. The most important change is that 
views, partial views, and sections are all rendered asynchronously to improve 
performance. The biggest change is that child actions are no longer supported 
and have been replaced by view components (which I describe in Chapter   22    ). 

http://dx.doi.org/10.1007/978-1-4842-0397-2_17
http://dx.doi.org/10.1007/978-1-4842-0397-2_17
http://dx.doi.org/10.1007/978-1-4842-0397-2_22


CHAPTER 21 ■ VIEWS

654

 Table  21-2  summarizes the chapter.  

   Table 21-2.    Chapter Summary   

 Problem  Solution  Listing 

 Create a custom view engine  Implement the  IViewEngine  and  IView  
interfaces 

 1–6 

 Define regions of content for use in a layout  Use Razor sections  7–19 

 Create reusable fragments of markup  Use partial views  20–23 

 Add JSON content to views  Use the  @Json.Serialze  expression  24–26 

 Change the locations that Razor searches 
for views 

 Create a view location expander  27–31 

     Preparing the Example Project 
 For this part of the chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new 
Empty project called Views. I added the MVC packages to the dependencies section of the  project.json  file, 
as shown in Listing  21-1 . 

     Listing 21-1.    Adding Packages to the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
      "Microsoft.AspNetCore.Mvc": "1.0.0",  
      "Microsoft.AspNetCore.StaticFiles": "1.0.0",  
      "Microsoft.AspNetCore.Razor.Tools": {  
        "version": "1.0.0-preview2-final",  
        "type": "build"  
      }  
   }, 

     "tools": { 
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final", 
      "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final"  
   }, 

     "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6", "portable-net45+win8"] 
     } 
   }, 



CHAPTER 21 ■ VIEWS

655

     "buildOptions": { 
     "emitEntryPoint": true, "preserveCompilationContext": true 
   }, 

     "runtimeOptions": { 
     "configProperties": { "System.GC.Server": true } 
   } 
 } 

    Listing  21-2  shows the  Startup  class, which configures the features provided by the NuGet packages. 

     Listing 21-2.    The Contents of the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace Views { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app) { 
              app.UseStatusCodePages();  
              app.UseDeveloperExceptionPage();  
              app.UseStaticFiles();  
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

    I created the  Controllers  folder, added a class file called  HomeController.cs , and used it to define the 
controller shown in Listing  21-3 . 

     Listing 21-3.    The Contents of the HomeController.cs File in the Controllers Folder   

  using System; 
 using Microsoft.AspNetCore.Mvc; 

   namespace Views.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() { 
             ViewBag.Message = "Hello, World"; 
             ViewBag.Time = DateTime.Now.ToString("HH:mm:ss"); 
             return View("DebugData"); 
         } 

           public ViewResult List() => View(); 
     } 
 } 



CHAPTER 21 ■ VIEWS

656

         Creating a Custom View Engine 
    I am going to dive in at the deep end and create a custom view engine. You do not need to do this for most 
projects because MVC includes the Razor view engine, whose syntax I described in Chapter   5     and which I 
have been using for all the examples so far in this book (and will continue to use again shortly). 

 The value in creating a custom view engine is to see what happens behind the scenes and expand your 
knowledge of how MVC works, including understanding just how much freedom view engines have in 
translating a  ViewResult  into a response to the client. 

 View engines are classes that implement the  IViewEngine  interface, which is defined in the  Microsoft.
AspNetCore.Mvc.ViewEngines  namespace. Here is the definition of the  IViewEngine  interface: 

    namespace Microsoft.AspNetCore.Mvc.ViewEngines { 

           ViewEngineResult GetView(string executingFilePath, string viewPath, 
             bool isMainPage); 

           ViewEngineResult FindView(ActionContext context, string viewName, 
             bool isMainPage); 
     } 
 } 

    The role of a view engine is to translate requests for views into  ViewEngineResult  objects. When MVC 
needs a view, it starts by calling the  GetView  method, which gives the view engine the opportunity to provide 
the view just using its name. 

 If the  GetView  method cannot provide the view, then the  FindView  method is called so that the view 
engine has a chance to search for the view using the  ActionContext  object, which provides information 
about the action method that created the  ViewResult  object. 

 The job of the view engine is to provide MVC with  ViewEngineResult  objects that can be used to 
generate responses. The  ViewEngineResult  class cannot be instantiated directly but provides static methods 
that are used to create instances, as described in Table  21-3 .  

    Table 21-3.    The Static Methods of the ViewEngineResult Class   

 Name  Description 

  Found(name, view)   Calling this method provides MVC with the requested view, which is set using the 
 view  parameter. Views implement the  IView  interface. 

  NotFound(name, 
locations)  

 Calling this method creates a  ViewEngineResult  object that tells MVC that the 
requested view could not be found. The  locations  parameter is an enumeration of 
 string  values that describe where the view engine has looked for the view. 

 When writing a view engine, you choose one of the methods described in Table  21-3  to indicate the 
outcome of a request for a view. The  Found  method creates a  ViewEngineResult  that indicates a successful 
request and provides MVC with a view to process. The  NotFound  method creates a  ViewEngineResult  that 
indicates an unsuccessful request and provides MVC with a list of locations that the view engine searched 
when looking for the view (and which will be displayed to the developer as part of an error message). 

 The other building block of the view engine system is the  IView  interface, which is used to describe the 
functionality provided by views, regardless of the view engine that created them. Here is the  IView  interface: 

    using Microsoft.AspNetCore.Mvc.Rendering; 
 using System.Threading.Tasks; 

http://dx.doi.org/10.1007/978-1-4842-0397-2_5


CHAPTER 21 ■ VIEWS

657

   namespace Microsoft.AspNetCore.Mvc.ViewEngines { 

       public interface IView { 

           string Path { get; } 
         Task RenderAsync(ViewContext context); 
     } 
 } 

    The  Path  property returns the path of the view, which assumes that views are defined as files on disk. 
The  RenderAsync  method is called by MVC to generate the response to the client. Context data is provided 
to the view through an instance of the  ViewContext  class, which is derived from  ActionContext . In addition 
to the context properties inherited from its parent (which provide access to the request, the routing data, the 
controller, and so on), the  ViewContext  class provides properties that are useful in rendering responses, the 
most useful of which I have described in Table  21-4 .  

    Table 21-4.    Useful ViewContext Properties   

 Name  Description 

  ViewData   This property returns a  ViewDataDictionary  object that contains the view data provided 
by the controller. 

  TempData   This property returns a dictionary containing the temp data (as described in Chapter   17    ). 

  Writer   This property returns a  TextWriter  that should be used to write the output from the view. 

 The most interesting of these properties is  ViewData , which returns a  ViewDataDictionary  object. The 
 ViewDataDictionary  class defines a number of useful properties that give access to the view model, the view 
bag, and the view model metadata. I have described the most useful of these properties in Table  21-5 .  

   Table 21-5.    Useful ViewDataDictionary Properties   

 Name  Description 

  Model   This  object  property returns the model data provided by the controller. 

  ModelMetadata   This property returns a  ModelMetadata  object that can be used to reflect on the type of 
the model data. 

  ModelState   This property returns the state of the model, which I describe in Chapter   27    . 

  Keys   This property returns an enumeration of key values that can be used to access view bag 
data. 

 The simplest way to see how this works—how  IViewEngine ,  ViewEngineResult , and  IView  fit 
together—is to create a view engine. I am going to create a simple view engine that returns one kind of view. 
This view will render a result that contains information about the request and the view data produced by 
the action method. This approach lets me demonstrate the way that view engines operate without getting 
bogged down in parsing view templates and re-creating other features that Razor provides. 

     Creating a Custom IView 
 I am going to start by creating an implementation of the  IView  interface. I added an  Infrastructure  folder to 
the example project and created a new classs file called  DebugDataView.cs , which is shown in Listing  21-4 . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_17
http://dx.doi.org/10.1007/978-1-4842-0397-2_27


CHAPTER 21 ■ VIEWS

658

     Listing 21-4.    The Contents of the DebugDataView.cs in the Infrastructure Folder   

  using System; 
 using System.Text; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Mvc.Rendering; 
 using Microsoft.AspNetCore.Mvc.ViewEngines; 

   namespace Views.Infrastructure { 

       public class DebugDataView : IView { 
         public string Path => String.Empty; 

           public async Task RenderAsync(ViewContext context) { 
             context.HttpContext.Response.ContentType = "text/plain"; 

               StringBuilder sb = new StringBuilder(); 

               sb.AppendLine("---Routing Data---"); 
             foreach (var kvp in context.RouteData.Values) { 
                 sb.AppendLine($"Key: {kvp.Key}, Value: {kvp.Value}"); 
             } 

               sb.AppendLine("---View Data---"); 
             foreach (var kvp in context.ViewData) { 
                 sb.AppendLine($"Key: {kvp.Key}, Value: {kvp.Value}"); 
             } 

               await context.Writer.WriteAsync(sb.ToString()); 
         } 
     } 
 } 

    When this view is rendered, it writes out details of the routing data and the view data, obtained using 
the  ViewContext  argument to the  RenderAsync  method. The response is simple text, so I have used the 
context objects to set the  Content-Type  header on the response to  text/plain . Without this, ASP.NET 
defaults to using  text/html , which will cause the browser to display the data as a single unbroken line of 
characters.  

     Creating an IViewEngine Implementation 
 The purpose of the view engine is to produce a  ViewEngineResult  object that contains either an  IView  or a 
list of the places that searched for a suitable view. Now that I have an  IView  implementation to work with, 
I can create the view engine. I added a class file called  DebugDataViewEngine.cs  in the  Infrastructure  
folder, the contents of which are shown in Listing  21-5 . 

     Listing 21-5.    The Contents of the DebugDataViewEngine.cs File in the Infrastructure Folder   

  using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.ViewEngines; 

   namespace Views.Infrastructure { 



CHAPTER 21 ■ VIEWS

659

       public class DebugDataViewEngine : IViewEngine { 

           public ViewEngineResult GetView(string executingFilePath, string viewPath, 
                 bool isMainPage) { 
             return ViewEngineResult.NotFound(viewPath, 
                 new string[] { "(Debug View Engine - GetView)" }); 
         } 

           public ViewEngineResult FindView(ActionContext context, string viewName, 
                 bool isMainPage) { 
             if (viewName == "DebugData") { 
                 return ViewEngineResult.Found(viewName, new DebugDataView()); 
             } else { 
                 return ViewEngineResult.NotFound(viewName, 
                     new string[] { "(Debug View Engine - FindView)" }); 
             } 
         } 
     } 
 } 

    The  GetView  method in this view engine always returns a  NotFound  response. The  FindView  method 
supports only a single view, which is called  DebugData . When it receives a request for a view with that name, 
it returns a new instance of the  DebugDataView  class, like this: 

   ... 
 if ( viewName == "DebugData" ) { 
     return ViewEngineResult.Found(viewName, new DebugDataView()); 
 } 
 ... 

   If I were implementing a more complete view engine, I would use this opportunity to search for 
templates. As it is, this simple example only requires a new instance of the  DebugDataView  class. If I receive a 
request for a view other than  DebugData , I create a  NotFound  response, like this: 

   ... 
 return ViewEngineResult.NotFound(viewName, 
     new string[] { "(Debug View Engine - FindView)" }); 
 ... 

   The  ViewEngineResult.NotFound  method assumes that the view engine has places it needs to look 
to find views. This is a reasonable assumption, because views are typically template files that are stored as 
files in the project. In this case, I do not have anywhere to look, so I just return a dummy location, which will 
indicate which method was invoked to locate the view.  

     Registering a Custom View Engine 
 View engines are registered in the  Startup  class by configuring the  MvcViewOptions  object, as shown in 
Listing  21-6 . 



CHAPTER 21 ■ VIEWS

660

      Listing 21-6.    Registering a Custom View Engine in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Mvc; 
  using Views.Infrastructure;  

   namespace Views { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
              services.Configure<MvcViewOptions>(options => {  
                  options.ViewEngines.Insert(0, new DebugDataViewEngine());  
              });  
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    The  MvcViewOptions  class defines a  ViewEngines  property, which is a collection of  IViewEngine  
objects. Razor is added to the  ViewEngine  collection by the  AddMvc  method, and I supplemented the default 
view engine with my custom class. 

 When MVC receives a  ViewResult  from an action method, it calls the  FindView  methods of each view 
engine contained in the  MvcViewOptions.ViewEngines  collection until it receives a  ViewEngineResult  that 
has been created using the  Found  method. 

 The order in which engines are added to the  ViewEngines.Engines  collection is significant if two or 
more engines are able to service a request for the same view name. If you want your view to take precedence, 
then it should be inserted at the start of view engines collection, as shown in Listing  21-6 .  

     Testing the View Engine 
 When the application is started, the browser will automatically navigate to the root URL for the project, 
which will be mapped to the  Index  action in the  Home  controller. The action method uses the  View  method to 
return a  ViewResult  that specifies the  DebugData  view. 

 MVC will turn to the collection of view engines and start calling their  FindView  methods. Since the 
requested view is the one that the custom view engine is set up to handle, it provides MVC with a view that 
produces the results shown in Figure  21-1 .  



CHAPTER 21 ■ VIEWS

661

 To see what happens when no view engine can provide a view, request the  /Home/List  URL. This will 
create a  ViewResult  that specifies a view called  List , which neither Razor nor the custom view engine can 
provide. You will see the error shown in Figure  21-2 .  

  Figure 21-1.    Using a custom view engine       

  Figure 21-2.    Requesting a view that cannot be provided       

 You can see that the messages produced by the custom view engine are reported in the list of locations 
that have been searched for the  List  view, alongside the locations that Razor has checked. 

 If I want to ensure that only my view engine is used, then I have to call the  Clear  method on the 
collection of view engines to remove Razor, as shown in Listing  21-7 . 

 

 



CHAPTER 21 ■ VIEWS

662

     Listing 21-7.    Removing Other View Engines in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Mvc; 
 using Views.Infrastructure; 

   namespace Views { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
             services.Configure<MvcViewOptions>(options => { 
                  options.ViewEngines.Clear();  
                 options.ViewEngines.Insert(0, new DebugDataViewEngine()); 
             }); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    If you start the application and navigate to  /Home/List  again, only the custom view engine will be used, 
as shown in Figure  21-3 .    

  Figure 21-3.    Using only the custom view engine in the example application       

 



CHAPTER 21 ■ VIEWS

663

     Working with the Razor Engine 
    In the previous section, I was able to create a custom view engine by implementing just two interfaces. 
Admittedly, I ended up with something simple that generated ugly content, but you saw how easy MVC 
makes it to add or replace core functionality. 

 The complexity in a view engine comes from the system of view templates that includes code fragments, 
support layouts, and performance optimization. I did not do any of these things in the simple custom view 
engine—and there isn’t much need to—because the built-in Razor engine provides all of these features 
and more. In fact, the functionality that almost all MVC applications require is available in Razor. Only a 
vanishingly small number of projects need to go to the trouble of creating a custom view engine. 

 I gave you a primer on the Razor syntax in Chapter   5    , and in this section, I show you how to use other 
features to create and render Razor views. You will also learn how to customize the Razor engine. 

     Preparing the Example Project 
 Some changes are required to prepare the example project to take advantage of Razor. First, I changed the 
 Index  action of the  Home  controller so that it selects the default view and provides some model data, as 
shown in Listing  21-8 . 

     Listing 21-8.    Changing the Index Action in the HomeController.cs File   

  using System; 
 using Microsoft.AspNetCore.Mvc; 

   namespace Views.Controllers { 

       public class HomeController : Controller { 

            public ViewResult Index() =>  
              View(new string[] { "Apple", "Orange", "Pear" });  

           public ViewResult List() => View(); 
     } 
 } 

    To provide the  Index  action method with a view, I created the  Views/Home  folder and added a view file 
called  Index.cshtml  with the content shown in Listing  21-9 . 

     Listing 21-9.    The Contents of the Index.cshtml File in the Views/Home Folder   

  @model string[] 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Razor</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 

http://dx.doi.org/10.1007/978-1-4842-0397-2_5


CHAPTER 21 ■ VIEWS

664

     This is a list of fruit names: 
     @foreach (string name in Model) { 
         <span><b>@name</b></span> 
     } 
 </body> 
 </html> 

    The view relies on the Bootstrap CSS library. To add Bootstrap to the example project, I used the Bower 
Configuration File template to create the  bower.json  file in the root folder of the project, with the addition 
shown in Listing  21-10 . 

     Listing 21-10.    The Contents of the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6"  
   } 
 } 

   I created a view imports file called  _ViewImports.cshtml  in the  Views  folder, with the expression shown 
in Listing  21-11  to enable the built-in tag helpers. 

     Listing 21-11.    The Contents of the _ViewImports.cshtml File in the Views Folder   

 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

   The final preparatory step is to reset the view engines in the  Startup  class to remove the custom engine 
and remove the call to the  Clear  method that disabled Razor, as shown in Listing  21-12 . 

     Listing 21-12.    Resetting the View Engines in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Mvc; 
 using Views.Infrastructure; 

   namespace Views { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
              //services.Configure<MvcViewOptions>(options => {  
              //    options.ViewEngines.Clear();  
              //    options.ViewEngines.Insert(0, new DebugDataViewEngine());  
              //});  
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 



CHAPTER 21 ■ VIEWS

665

             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    If you run the project, you will see the result shown in Figure  21-4 .   

  Figure 21-4.    Running the example application       

     Demystifying Razor Views 
 Understanding a little of how Razor works can help put a lot of functionality into context and take the 
mystery out of how CSHTML files are processed. 

 So, how does Razor take the mix of HTML elements and C# statements and produce content for an 
HTTP response? The answer is simple and clever and builds on MVC functionality that you have already 
learned about in earlier chapters. Razor converts CSHTML files into C# classes, compiles them, and then 
creates new instances each time a view is required to generate a result. Here is the C# class that Razor creates 
for the  Index.cshtml  view shown in Listing  21-12 : 

     using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.Razor; 
 using Microsoft.AspNetCore.Mvc.Razor.Internal; 
 using Microsoft.AspNetCore.Mvc.Rendering; 

   namespace Asp { 

       public class ASPV_Views_Home_Index_cshtml : RazorPage<string[]> { 

           public IUrlHelper Url { get; private set; } 

           public IViewComponentHelper Component { get; private set; } 

           public IJsonHelper Json { get; private set; } 

           public IHtmlHelper<string[]> Html { get; private set; } 

           public override async Task ExecuteAsync() { 

 



CHAPTER 21 ■ VIEWS

666

             Layout = null; 

               WriteLiteral(@"<!DOCTYPE html><html><head>    
                  <meta name=""viewport"" content=""width=device-width"" /> 
                  <title>Razor</title> 
                  <link asp-href-include=""lib/bootstrap/dist/css/*.min.css"" 
                      rel=""stylesheet"" /> 
                  </head><body class=""panel-body"">This is a list of fruit names:");     

               foreach (string name in Model) { 
                 WriteLiteral("<span><b>"); 
                 Write(name); 
                 WriteLiteral("</b></span>"); 
             } 
             WriteLiteral("</body></html>"); 
         } 
     } 
 } 

    I have tidied up the code in the class to make it easier to read and removed some C# statements that 
Razor adds for instrumentation when it generates the class. I’ll break down the class in the sections that 
follow and explain how compiled views work. 

 ■   Note    It used to be easy to look at the classes created by earlier versions of Razor because each view 
produced a C# file on disk that was then compiled for use in the application. Inspecting the class was just a 
matter of finding the right file. The current version of Razor relies on advances in the C# compiler that allow 
code to be generated and compiled in memory, which offers performance enhancements but makes it more 
difficult to see what’s happening. To get the class shown previously, I had to repurpose some of the unit 
tests included with the ASP.NET Core MVC source code, which provided me with fake implementations of the 
classes that Razor relies on to locate and process view files. This isn’t something you need to do in day-to-day 
development, but it is a process that reveals much about how views work.  

   Understanding the Class Name 
 The best place to start is with the name of the class that Razor creates: 

   ... 
 public class  ASPV_Views_Home_Index_cshtml  : RazorPage<string[]> { 
 ... 

   Razor needs some way to translate the name and path of a CSHTML file into the class that it creates 
when it parses the file, and it does this by encoding the information in the class name. Razor prefixes the 
class name with ASPV, followed by the project name, the controller name, and finally the view file name; this 
combination makes it easy to check to see whether a class is available when MVC requests a view through 
the  IViewEngine  described earlier in the chapter.  



CHAPTER 21 ■ VIEWS

667

   Understanding the Base Class 
 A lot of the core features of Razor, such as being able to refer to the view model as  @Model  are possible 
because of the base class that the generated classes are derived from: 

   ... 
 public class ASPV_Views_Home_Index_cshtml :  RazorPage<string[]>  { 
 ... 

   View classes inherit from the  RazorPage  class or the  RazorPage<T  > class if the  @model  directive has 
been used to specify a model type. The  RazorPage  class provides methods and properties that can be used in 
CSHTML files to access MVC features, the most useful of which are described in Table  21-6 .  

    Table 21-6.    Useful RazorPage < T > Properties for View Development   

 Name  Description 

  Model   This property returns the model data provided by the action method. 

  ViewData   This property returns a  ViewDataDictionary  object that provides access to other 
view data features. 

  ViewContext   This property returns a  ViewContext  object, which is described in Table  21-4 . 

  Layout   This property is used to specify a layout, as described in Chapter   5     and revisited 
in the “Using Layout Sections” section of this chapter. 

  ViewBag   This property provides access to the view bag object, as described in Chapter   17    . 

  TempData   This property provides access to the temp data, as described in Chapter   17    . 

  Context   This property returns an  HttpContext  object that describes the current request 
and the response that is being prepared. 

  User   This property returns the profile of the user associated with this request. See 
Chapter   28     for details of user authentication and authorization. 

  RenderSection()   This method is used to insert a section of content from the view into a layout, as 
described in the “Using Layout Sections” section of this chapter. 

  RenderBody()   This method inserts all the content in a view that is not contained in a section 
into a layout. See “Using Layout Sections” for details. 

  IsSectionDefined()   This method is used to determine whether a view defines a section. 

 Razor also provides some helper properties that can be used in views to generate content, as described 
in Table  21-7 .  

    Table 21-7.    The Razor Helper Properties   

 Name  Description 

  HtmlEncoder   This property returns an  HtmlEncoder  object that can be used to safely encode HTML 
content in a view. 

  Component   This property returns a view component helper, as described in Chapter   22    . 

  Json   This property returns a JSON helper, as described in the “Adding JSON Content to Views” 
section. 

(continued)

http://dx.doi.org/10.1007/978-1-4842-0397-2_5
http://dx.doi.org/10.1007/978-1-4842-0397-2_17
http://dx.doi.org/10.1007/978-1-4842-0397-2_17
http://dx.doi.org/10.1007/978-1-4842-0397-2_28
http://dx.doi.org/10.1007/978-1-4842-0397-2_22


CHAPTER 21 ■ VIEWS

668

 The properties described in Table  21-6  and Table  21-7  are the ones that you will use in everyday 
MVC development to access model data, configure views, and perform other important tasks. These 
properties take the mystery out of using Razor and put it firmly back into the well-understood world 
of C#. When you access the view model object using the  @Model  directive or retrieve a temp data 
value using  @TempData , for example, you are referring to the properties that are defined by the 
 RazorPage  class.  

   Understanding the View Rendering 
 In addition to the properties and methods that provide features to developers, the  RazorPage  class is also 
responsible for generating response content through its  ExecuteAsyc  method. This method shows how 
Razor processed the  Index.cshtml  file into a set of C# statements: 

   ... 
 public override async Task ExecuteAsync() { 
     Layout = null; 
     WriteLiteral(@"<!DOCTYPE html><html><head>    
             <meta name=""viewport"" content=""width=device-width"" /> 
             <title>Razor</title> 
             <link asp-href-include=""lib/bootstrap/dist/css/*.min.css"" 
                 rel=""stylesheet"" /> 
             </head><body class=""panel-body"">This is a list of fruit names:");             
     foreach (string name in Model) { 
         WriteLiteral("<span><b>"); 
         Write(name); 
         WriteLiteral("</b></span>"); 
     } 
     WriteLiteral("</body></html>"); 
 } 
 ... 

   Data values, such as the values from the  Model  property, are sent to the client using the  Write  
method, which escapes strings so that they won’t be interpreted as HTML elements by the browser. 
This is important because it prevents malicious data values from adding content to the output of your 
application. The  WriteLiteral  method doesn’t escape strings and is used for the static content in the 
 Index.cshtml  file, which, of course, the browser should interpret as HTML elements. The result is that 
the static and dynamic content of a CSHTML file is contained in a regular C# class and emitted through 
a simple method call.    

 Name  Description 

  Url   This property returns a URL helper that can be used to generate URLs using the routing 
configuration, as described in Chapter   16    . 

  Html   This property returns an HTML helper, which can be used to generate dynamic content. 
This feature has been largely superseded by tag helpers but is still used for partial views, 
as described in the “Using Partial Views” section of this chapter. 

Table 21-7. (continued) 

http://dx.doi.org/10.1007/978-1-4842-0397-2_16


CHAPTER 21 ■ VIEWS

669

     Adding Dynamic Content to a Razor View 
 The whole purpose of views is to allow you to render parts of your domain model to the user. To do that, 
you need to be able to add  dynamic content  to views. Dynamic content is generated at runtime and can be 
different for every request. This is opposed to  static content , such as HTML, which you create when you are 
writing the application and is the same for each and every request. You can add dynamic content to views in 
the different ways described in Table  21-8 .  

   Table 21-8.    Adding Dynamic Content to a View   

 Technique  When to Use 

 Inline code  Use for small, self-contained pieces of view logic, such as if and foreach statements. This 
is the fundamental tool for creating dynamic content in views, and some of the other 
approaches are built on it. I introduced this technique in Chapter   5    , and you have seen 
countless examples in the chapters since. 

 Tag helpers  Used to generate attributes on HTML elements. I describe tag helpers in Chapters   23    –  25    . 

 Sections  Use for creating sections of content that will be inserted into layout at specific locations, 
as described later in this section. 

 Partial views  Use for sharing subsections of view markup between views. Partial views can contain 
inline code, HTML helper methods, and references to other partial views. Partial views 
do not invoke an action method, so they cannot be used to perform business logic. 
Partial views are described later in this section. 

 View 
components 

 Use for creating reusable UI controls or widgets that need to contain business logic. I 
describe view components in Chapter   22    . 

     Using Layout Sections 
    The Razor view engine supports the concept of  sections , which allow you to provide regions of content within 
a layout. Razor sections give greater control over which parts of the view are inserted into the layout and 
where they are placed. To demonstrate the sections feature, I have edited the  /Views/Home/Index.cshtml  
file, as shown in Listing  21-13 . 

     Listing 21-13.    Defining Sections in the Index.cshtml File   

  @model string[] 
  @{ Layout = "_Layout"; }  

    @section Header {  
      <div class="bg-success">  
          @foreach (string str in new [] {"Home", "List", "Edit"}) {  
              <a class="btn btn-sm btn-primary" asp-action="str">@str</a>  
          }  
      </div>  
  }  

   This is a list of fruit names: 
 @foreach (string name in Model) { 
     <span><b>@name</b></span> 
 } 

http://dx.doi.org/10.1007/978-1-4842-0397-2_5
http://dx.doi.org/10.1007/978-1-4842-0397-2_23
http://dx.doi.org/10.1007/978-1-4842-0397-2_25
http://dx.doi.org/10.1007/978-1-4842-0397-2_22


CHAPTER 21 ■ VIEWS

670

    @section Footer {  
      <div class="bg-success">  
          This is the footer  
      </div>  
  }  

    I have removed some of the HTML elements from the view and set the  Layout  property to specify that a 
layout file called  _Layout.cshtml  should be used to render the content. 

 I have also added some sections to the view. Sections are defined using the Razor  @section  expression 
followed by a name for the section. I created sections called  Header  and  Footer . The content of a section contains 
the usual mix of HTML markup and Razor expressions that you have seen outside sections in other examples. 

 Sections are defined in the view but applied in a layout with the  @RenderSection  expression. To 
demonstrate how this works, I created the  Views/Shared  folder and added a layout called  _Layout.cshtml  
file with the content shown in Listing  21-14 . 

     Listing 21-14.    The Contents of the _Layout.cshtml File in the Views/Shared Folder   

  <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>@ViewBag.Title</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     @RenderSection("Header") 

       <div class="bg-info"> 
         This is part of the layout 
     </div> 

       @RenderBody() 

       <div class="bg-info"> 
         This is part of the layout 
     </div> 

       @RenderSection("Footer") 

       <div class="bg-info"> 
         This is part of the layout 
     </div> 
 </body> 
 </html> 

    When Razor parses the layout, the  RenderSection  helper method is replaced with the contents of the 
section in the view with the specified name. The parts of the view that are not contained with a section are 
inserted into the layout using the  RenderBody  helper. 

 You can see the effect of the sections by starting the application, as shown in Figure  21-5 . I used some 
Bootstrap styles to help make it clear which sections of the output are from the view and which are from the 
layout. This result is not pretty, but it neatly demonstrates how you can put regions of content from the view 
into specific locations in the layout.  



CHAPTER 21 ■ VIEWS

671

 ■   Note    A view can define only the sections that are referred to in the layout. MVC will throw an exception if 
you attempt to define sections in the view for which there is no corresponding  @RenderSection  expression in 
the layout.  

 Mixing the sections in with the rest of the view is unusual. The convention is to define the sections 
at either the start or the end of the view to make it easier to see which regions of content will be treated as 
sections and which will be captured by the  RenderBody  helper. Another approach is to define the view solely 
in terms of sections, including one for the body, as shown in Listing  21-15 . 

     Listing 21-15.    Defining a View in Terms of Razor Sections in the Index.cshtml File   

  @model string[] 
 @{ Layout = "_Layout"; } 

   @section Header { 
     <div class="bg-success"> 
         @foreach (string str in new [] {"Home", "List", "Edit"}) { 
             <a class="btn btn-sm btn-primary" asp-action="str">@str</a> 
         } 
     </div> 
 } 

    @section Body {      
      This is a list of fruit names:  
      @foreach (string name in Model) {  
          <span><b>@name</b></span>  
      }  
  }  

  Figure 21-5.    Using sections in a view to locate content in a layout       

 



CHAPTER 21 ■ VIEWS

672

   @section Footer { 
     <div class="bg-success"> 
         This is the footer 
     </div> 
 } 

    I find this makes for clearer views and reduces the chances of extraneous content being captured 
by  RenderBody . To use this approach, I have to replace the call to the  RenderBody  helper with 
 RenderSection("Body") , as shown in Listing  21-16 . 

     Listing 21-16.    Rendering the Body as a Section in the _Layout.cshtml File   

  <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>@ViewBag.Title</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     @RenderSection("Header") 

       <div class="bg-info"> 
         This is part of the layout 
     </div> 

        @RenderSection("Body")  

       <div class="bg-info"> 
         This is part of the layout 
     </div> 

       @RenderSection("Footer") 

       <div class="bg-info"> 
         This is part of the layout 
     </div> 
 </body> 
 </html> 

      Testing for Sections 
 You can check to see whether a view has defined a specific section from the layout. This is a useful way 
to provide default content for a section if a view does not need or want to provide specific content. I 
have modified the  _Layout.cshtml  file to check to see whether a  Footer  section is defined, as shown in 
Listing  21-17 . 

     Listing 21-17.    Checking Whether a Section Is Defined in the _Layout.cshtml File   

  <!DOCTYPE html> 
 <html> 
 <head> 



CHAPTER 21 ■ VIEWS

673

     <meta name="viewport" content="width=device-width" /> 
     <title>@ViewBag.Title</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     @RenderSection("Header") 

       <div class="bg-info"> 
         This is part of the layout 
     </div> 

       @RenderSection("Body") 

       <div class="bg-info"> 
         This is part of the layout 
     </div> 

        @if (IsSectionDefined("Footer")) {  
          @RenderSection("Footer")  
      } else {  
          <h4>This is the default footer</h4>  
      }  

       <div class="bg-info"> 
         This is part of the layout 
     </div> 
 </body> 
 </html> 

    The  IsSectionDefined  helper takes the name of the section you want to check and returns  true  if the 
view you are rendering defines that section. In the example, I used this helper to determine whether I should 
render some default content when the view does not define the  Footer  section.  

   Rendering Optional Sections 
    By default, a view has to contain all the sections for which there are  RenderSection  calls in the layout. 
If sections are missing, then MVC will report an exception to the user. To demonstrate, I added a new 
 RenderSection  call to the  _Layout.cshtml  file for a section called  scripts , as shown in Listing  21-18 . 

     Listing 21-18.    Rendering a Section that Does Not Exist in the _Layout.cshtml File   

  <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>@ViewBag.Title</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     @RenderSection("Header") 



CHAPTER 21 ■ VIEWS

674

       <div class="bg-info"> 
         This is part of the layout 
     </div> 

       @RenderSection("Body") 

       <div class="bg-info"> 
         This is part of the layout 
     </div> 

       @if (IsSectionDefined("Footer")) { 
         @RenderSection("Footer") 
     } else { 
         <h4>This is the default footer</h4> 
     } 

        @RenderSection("scripts")  

       <div class="bg-info"> 
         This is part of the layout 
     </div> 
 </body> 
 </html> 

    When you start the application and the Razor engine attempts to render the layout and the view, you 
will see the error shown in Figure  21-6 .  

  Figure 21-6.    The error shown when there is a missing section       

 



CHAPTER 21 ■ VIEWS

675

 You can use the  IsSectionDefined  method to avoid making  RenderSection  calls for sections that the 
view does not define, but a more elegant approach is to use optional sections, which you do by passing an 
additional  false  argument to the  RenderSection  method, as shown in Listing  21-19 . 

     Listing 21-19.    Making a Section Optional   

 ... 
 @RenderSection("scripts",  false ) 
 ... 

   This creates an optional section, the contents of which will be inserted into the result if the view defines 
it and which will not throw an exception otherwise.   

     Using Partial Views 
    You will often need to use the same fragments of Razor tags and HTML markup in several different places in 
the application. Rather than duplicate the content, you can use  partial views , which are separate view files 
that contain fragments of tags and markup that can be included in other views. In this section, I show you 
how to create and use partial views, explain how they work, and demonstrate the techniques available for 
passing view data to a partial view. 

   Creating a Partial View 
 Partial views ae just regular CSHTML files, and it is their use that differentiates them from regular Razor views. 
Visual Studio provides some tooling support for creating prepopulated partial views, but the simplest way 
to create a partial view is to create a regular view using the MVC View Page item template. To demonstrate, I 
added a file called  MyPartial.cshtml  to the  Views/Home  folder and added the content shown in Listing  21-20 . 

     Listing 21-20.    The Contents of the MyPartial.cshtml File in the Views/Home Folder   

 <div class="bg-info"> 
     <div>This is the message from the partial view.</div> 
     <a asp-action="Index">This is a link to the Index action</a> 
 </div> 

   I want to demonstrate that you can mix static and dynamic content in a partial view, so I have defined a 
simple message and added an anchor element that uses a tag helper.  

   Applying a Partial View 
 A partial view is consumed by calling the  @Html.Partial  expression from within another view. To 
demonstrate, I created a new file called  List.cshtml  in the  Views/Home  folder and added the content shown 
in Listing  21-21 . 

     Listing 21-21.    The Contents of the List.cshtml File in the Views/Home Folder   

  @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 



CHAPTER 21 ■ VIEWS

676

 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Razor</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     This is the List View 
     @Html.Partial("MyPartial") 
 </body> 
 </html> 

    The  Partial  method is an extension method that is applied to the  Html  property added to the class that 
Razor generates from the view file. This is an example of an HTML helper, which used to be the way that 
dynamic content was generated in views in earlier versions of MVC but which has largely been replaced by 
tag helpers. The argument passed to the  Partial  method is the name of the partial view, the contents of 
which are inserted into the output sent to the client. 

 ■   Tip    Razor looks for partial views in the same way that it looks for regular views (in the 
 Views/<controller  > and  Views/Shared  folders). This means you can create specialized versions of partial 
views that are controller-specific and override partial views of the same name in the  Shared  folder.  

 You can see the effect of consuming the partial view by starting the application and navigating to the  /
Home/List  URL, as shown in Figure  21-7 .   

  Figure 21-7.    Using a partial view       

   Using Strongly Typed Partial Views 
 You can create strongly typed partial views and provide them with view model objects to be used 
when the partial view is rendered. To demonstrate this feature, I created a new view file called 
 MyStronglyTypedPartial.cshtml  in the  Views/Home  folder and added the content shown in Listing  21-22 . 

 



CHAPTER 21 ■ VIEWS

677

     Listing 21-22.    The Contents of the MyStronglyTypedPartial.cshtml File in the Views/Home Folder   

  @model IEnumerable<string> 

   <div class="bg-info"> 
     This is the message from the partial view. 
     <ul> 
         @foreach (string str in Model) { 
             <li>@str</li> 
         } 
     </ul> 
 </div> 

    The view model type is defined using the standard  @model  expression, and I used a  @foreach  loop to 
display the contents of the view model object as items in an HTML list. To demonstrate the use of this partial 
view, I updated the  /Views/Common/List.cshtml  file, as shown in Listing  21-23 . 

     Listing 21-23.    Using a Strongly Typed Partial View in the List.cshtml File   

  @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Razor</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     This is the List View 
      @Html.Partial("MyStronglyTypedPartial",  
          new string[] { "Apple", "Orange", "Pear" })  
 </body> 
 </html> 

    The difference from the previous example is that I pass an additional argument to the  Partial  helper 
method that supplies the view model. You can see the strongly typed partial view in use by starting the 
application and navigating to the  /Home/List  URL, as shown in Figure  21-8 .    



CHAPTER 21 ■ VIEWS

678

     Adding JSON Content to Views 
    JSON is often included in views to provide client-side JavaScript code with data that can be used to generate 
content dynamically. To prepare for this example, I added the jQuery package to the application by editing 
the  bower.json  file, as shown in Listing  21-24 . This will make it easy to process the JSON data when it is 
received by the browser as part of the HTML document. 

     Listing 21-24.    Adding jQuery in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
     "bootstrap": "3.3.6", 
      "jquery": "2.2.4"  
   } 
 } 

   Listing  21-25  shows additions to the  List.cshtml  view that uses Razor to include JSON data in the 
response sent to the browser. 

     Listing 21-25.    Working with JSON Data in the List.cshtml File   

  @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Razor</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
      <script id="jsonData" type="application/json">  

  Figure 21-8.    Using a strongly typed partial view       

 



CHAPTER 21 ■ VIEWS

679

          @Json.Serialize(new string[] { "Apple", "Orange", "Pear" })  
      </script>  
 </head> 
 <body class="panel-body"> 
     This is the List View 
      <ul id="list"></ul>  
 </body> 
 </html> 

    The  @Json.Serialize  expression accepts an object and serializes it into the JSON format. In the listing, 
I have added a  script  element to the view that contains the JSON data. When the view is rendered and sent 
to the browser, it includes an element like this: 

   ... 
 <script id="jsonData" type="application/json">["Apple","Orange","Pear"]</script> 
 ... 

   To make use of the JSON data, Listing  21-26  shows the addition of the jQuery library and some inline 
JavaScript code that uses jQuery to parse the JSON data and creates some HTML elements dynamically. 

     Listing 21-26.    Using the JSON Data in the List.cshtml File   

  @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Razor</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
     <script id="jsonData" type="application/json"> 
         @Json.Serialize(new string[] { "Apple", "Orange", "Pear" }) 
     </script> 
      <script asp-src-include="lib/jquery/dist/*.min.js"></script>  
      <script type="text/javascript">  
          $(document).ready(function () {  
              var list = $("#list")  
              JSON.parse($("#jsonData").text()).forEach(function (val) {  
                  console.log("Val: " + val);  
                  list.append($("<li>").text(val));  
              });  
          });  
      </script>  
 </head> 
 <body class="panel-body"> 
     This is the List View 
     <ul id="list"></ul> 
 </body> 
 </html> 



CHAPTER 21 ■ VIEWS

680

    If you run the example application and request the  /Home/List  URL, you will see the content shown 
in Figure  21-9 . This isn’t the most exciting use of JSON data, but it does demonstrate how it can be 
included in views.    

  Figure 21-9.    Using JSON data in a view       

     Configuring Razor 
    Razor can be configured using the  RazorViewEngineOptions  class, which is defined in the  Microsoft.
AspNetCore.Mvc.Razor  namespace. This class defines two configuration properties, which are described in 
Table  21-9 .  

   Table 21-9.    The RazorViewEngineOptions Properties   

 Name  Description 

  FileProvider   This property is used to set the object that provides Razor with the contents 
of files and directories. The functionality is defined by the  Microsoft.
AspNetCore.FileProviders.IFileProvider  interface, and the default 
implementation is the  PhysicalFileProvider , which reads files from a disk. 

  ViewLocationExpanders   The property is used to configure the view expanders, which are used to 
change how Razor locates a view. 

 ■   Tip    If you really want to dig deep, then you can replace the internal Razor components by creating classes 
that implement interfaces in the  Microsoft.AspNetCore.Mvc.Razor  namespace and registering them with the 
service provider in the  Startup  class. This is something that most developers will never need to do and shouldn’t 
be undertaken lightly. Download the Razor source code from    http://github.com/aspnet      to get started.  

 The  FileProvider  property isn’t one that many applications will need to change because reading view 
files from disk is exactly what most projects require, and Razor only uses the provider to load the views so 
they can be compiled when the application first runs. The  ViewLocationExpanders  property is more useful, 
however, because it allows applications to apply custom logic to the way that Razor locates views. 

 

http://github.com/aspnet


CHAPTER 21 ■ VIEWS

681

     Understanding View Location Expanders 
    Razor uses view location expanders to build up a list of locations that should be searched for a view. View 
location expanders implement the  IViewLocationExpander  interface, which is defined as follows: 

    using System.Collections.Generic; 

   namespace Microsoft.AspNetCore.Mvc.Razor { 

       public interface IViewLocationExpander { 

           void PopulateValues(ViewLocationExpanderContext context); 

           IEnumerable<string> ExpandViewLocations(ViewLocationExpanderContext context, 
             IEnumerable<string> viewLocations); 
     } 
 } 

    In the sections that follow, I explain how view location expanders work and create a custom 
implementation of the  IViewLocationExpander  interface. To prepare for creating view location expanders, 
in Listing  21-27  I have changed the  Index  action method of the  Home  controller so that it requests a 
nonexistent view. The error message that this causes will show the locations that Razor searches for the view 
and the effect on them that the view location expanders have. 

     Listing 21-27.    Requesting a Nonexistent View in the HomeController.cs File   

  using System; 
 using Microsoft.AspNetCore.Mvc; 

   namespace Views.Controllers { 

       public class HomeController : Controller { 

            public ViewResult Index() =>  
              View("MyView", new string[] { "Apple", "Orange", "Pear" });  

           public ViewResult List() => View(); 
     } 
 } 

    If you start the application and request the default URL, you will see the default view search locations 
displayed in the error message, as follows: 

   /Views/Home/MyView.cshtml 
 /Views/Shared/MyView.cshtml 

     Creating a Simple View Location Expander 
 The simplest view location expanders simply change the set of locations where Razor looks for all views. 
This is done by implementing the  ExpandViewLocations  method and returning the list of locations that you 
want to support. To demonstrate, I added a class file  SimpleExpander.cs  to the  Infrastructure  folder and 
created the class shown in Listing  21-28 . 



CHAPTER 21 ■ VIEWS

682

     Listing 21-28.    The Contents of the SimpleExpander.cs File in the Infrastructure Folder   

  using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc.Razor; 

   namespace Views.Infrastructure { 

       public class SimpleExpander : IViewLocationExpander { 

           public void PopulateValues(ViewLocationExpanderContext context) { 
             // do nothing - not required 
         } 

           public IEnumerable<string> ExpandViewLocations( 
                 ViewLocationExpanderContext context, 
                 IEnumerable<string> viewLocations) { 

               foreach (string location in viewLocations) { 
                 yield return location.Replace("Shared", "Common"); 
             } 
             yield return "/Views/Legacy/{1}/{0}/View.cshtml"; 
         } 
     } 
 } 

    Razor calls the  ExpandViewLocations  method when it requires the list of search locations, and it 
provides the default locations as a sequence of strings in the  viewLocations  parameter. Locations are 
expressed as templates with placeholders for the name of the action and controller. Here are the location 
templates that are used by default in an application that doesn’t use routing areas: 

   "/Views/{1}/{0}.cshtml" 
 "/Views/Shared/{0}.cshtml" 

   The placeholder  {0}  is used to refer to the name of the action method, and  {1}  is the placeholder for 
the controller name. The job of the view location expander is to return the set of locations that should be 
searched, and in the listing, I use the  string.Replace  method to change  Shared  with  Common  in the default 
locations as well as adding my own location that follows a different file and folder structure. 

   Applying the View Location Expander 

 In Listing  21-29 , I set up my view location expander by configuring Razor in the  Startup  class. The 
 ViewLocationExpanders  property returns a  List<IViewLocationExpander  > object on which I call the  Add  
method. 

     Listing 21-29.    Configuring Razor in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.AspNetCore.Mvc; 
 using Views.Infrastructure; 
  using Microsoft.AspNetCore.Mvc.Razor;  

   namespace Views { 



CHAPTER 21 ■ VIEWS

683

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
              services.Configure<RazorViewEngineOptions>(options => {  
                  options.ViewLocationExpanders.Add(new SimpleExpander());  
              });  
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    If you run the example, the error message will show the set of locations that the custom view location 
expander has provided to Razor. 

   /Views/Home/MyView.cshtml 
 /Views/Common/MyView.cshtml 
 /Views/Legacy/Home/MyView/View.cshtml 

       Selecting Specific Views for Requests 
    View location expanders make it easy to change the search locations for all requests but can also change 
the search locations for individual requests. I implemented only the  ExpandViewLocations  method in the 
previous example, but the real power comes through the  PopulateValues  method, which is other method in 
the  IViewLocationExpander  interface. 

 Each time that Razor requires a view, it calls the  PopulateValues  method of its view location expanders, 
providing a  ViewLocationExpanderContext  object for context data. The  ViewLocationExpanderContext  
class defines the properties shown in Table  21-10 .  

   Table 21-10.    The ViewLocationExpanderContext Properties   

 Name  Description 

  ActionContext   This property returns an  ActionContext  object that describes the action method that 
has requested a view and also includes details about the request and response. 

  ViewName   This property returns the name of the view that the action method has requested 

  ControllerName   This property returns the name of the controller that contains the action method. 

  AreaName   This property returns the name of the area that contains the controller, if areas have 
been defined. 

  IsMainPage   This property returns  false  if Razor is looking for a partial view and  true  otherwise. 

  Values   This property returns an  IDictionary<string, string  > to which the view location 
expander adds key/value pairs that uniquely identify the category of request, as 
explained in the following text. 



CHAPTER 21 ■ VIEWS

684

 The purpose of the  PopulateValues  method is to categorize the request by adding key/value pairs to 
the dictionary returned by the  Values  property of the context object. Razor doesn’t care how the request is 
categorized, and the method used to populate the dictionary is left entirely to the view location expander. 
This is most readily explained by an example, so I added a class file called  ColorExpander.cs  to the 
 Infrastructure  folder and used it to define the class shown in Listing  21-30 . 

     Listing 21-30.    The Contents of the ColorExpander.cs File in the Infrastructure Folder   

  using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc.Razor; 

   namespace Views.Infrastructure { 

       public class ColorExpander : IViewLocationExpander { 
         private static Dictionary<string, string> Colors 
             = new Dictionary<string, string> { 
                 ["red"] = "Red", ["green"] = "Green", ["blue"] = "Blue" 
             }; 

           public void PopulateValues(ViewLocationExpanderContext context) { 

               var routeValues = context.ActionContext.RouteData.Values; 
             string color; 

               if (routeValues.ContainsKey("id") 
                     && Colors.TryGetValue(routeValues["id"] as string, out color) 
                     && !string.IsNullOrEmpty(color)) { 
                 context.Values["color"] = color; 
             } 
         } 

           public IEnumerable<string> ExpandViewLocations( 
                 ViewLocationExpanderContext context, 
                 IEnumerable<string> viewLocations) { 

               string color; 
             context.Values.TryGetValue("color", out color); 
             foreach (string location in viewLocations) { 
                 if (!string.IsNullOrEmpty(color)) { 
                     yield return location.Replace("{0}", color); 
                 } else { 
                     yield return location; 
                 } 
             } 
         } 
     } 
 } 



CHAPTER 21 ■ VIEWS

685

    The  PopulateValues  method uses the  ActionContext  to get the routing data and looks for the value 
of the  id  URL segment. If there is an  id  segment and its value is  red ,  green , or  blue , then the view location 
expander adds a  color  property to the  Values  dictionary. This is the categorization process: requests whose 
 id  segment matches a color are categorized with a  color  key whose value is derived from the segment value. 

 Next, Razor calls the  ExpandViewLocations  method and provides the same context object that was 
used for the  PopulateValues  method. This allows the view location expander to look at the categorization 
performed previously and generate the set of locations that Razor should look in for views. In the example, I 
using the  string.Replace  method to swap the  {0}  placeholder with the color name. 

 ■   Tip    Razor calls the  PopulateValues  method for every view request but caches the set of search 
locations returned by the  ExpandViewLocations  method. This means that subsequent requests for which 
the  PopulateValues  method generates the same set of categorization keys and values won’t require the 
 ExpandViewLocations  method to be called.  

 In Listing  21-31 , I have configured Razor to use the  ColorExpander  class. 

     Listing 21-31.    Adding a View Location Expander in the Startup.cs File   

 ... 
 public void ConfigureServices(IServiceCollection services) { 
     services.AddMvc(); 
     services.Configure<RazorViewEngineOptions>(options => { 
         options.ViewLocationExpanders.Add(new SimpleExpander()); 
          options.ViewLocationExpanders.Add(new ColorExpander());  
     }); 
 } 
 ... 

   You can see the effect of the new view location expander by starting the application and requesting the  /
Home/Index/red  URL, which will cause Razor to search in the following locations: 

   /Views/Home/Red.cshtml 
 /Views/Common/Red.cshtml 
 /Views/Legacy/Home/Red/View.cshtml 

   Similarly, a request for the  /Home/Index/green  URL will cause Razor to search in these locations: 

   /Views/Home/Green.cshtml 
 /Views/Common/Green.cshtml 
 /Views/Legacy/Home/Green/View.cshtml 

   The order in which view location expanders are registered is important because the set of locations 
generated by the  ExpandViewLocations  method of one expander are used as the  viewLocations  argument 
for the next expander in the list. You can see this in the locations shown previously, where  Views/Common  and 
 Views/Legacy  locations are generated by the  SimpleExpander  class, which appears before  ColorExpander  in 
the  Startup  class.    



CHAPTER 21 ■ VIEWS

686

     Summary 
 In this chapter, I demonstrated how to create a custom view engine and explained how Razor works by 
translating CSHTML files into C# classes. I showed you how to use layout sections and partial views and 
demonstrated how to change the locations that Razor uses to locate view files. In the next chapter, I describe 
view components, which are used to provide logic to support partial views.     



687© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_22

    CHAPTER 22   

 View Components                          

    I describe  view components  in this chapter, which are a new addition in ASP.NET Core MVC and replace the 
child action feature from previous versions. View components are classes that provide action-style logic to 
support partial views, which means complex content to be embedded in views while allowing the C# code 
that supports it to be easily maintained and unit tested. Table  22-1  puts view components in context.  

   Table 22-1.    Putting View Components in Context   

 Question  Answer 

 What are they?  View components are classes that provide application logic to support 
partial views or to inject small fragments of HTML or JSON data into a 
parent view. 

 Why are they useful?  Without view components, it is hard to create embedded functionality 
such as shopping baskets or login panels in a way that is easy to 
maintain and unit test. 

 How are they used?  View components are typically derived from the  ViewComponent  
class and are applied in a parent view using the  @await Component.
InvokeAsync  expression. 

 Are there any pitfalls or 
limitations? 

 No, view components are a simple and predictable feature. The main 
pitfall is not using them and trying to include application logic within 
views where it is difficult to test and maintain. 

 Are there any alternatives?  You could put the data access and processing logic directly in a partial 
view, but the result is difficult to work with and hard to test effectively. 

 Have they changed since MVC 5?  View components are a new feature in ASP.NET Core MVC, replacing 
the child actions feature from previous versions. 



CHAPTER 22 ■ VIEW COMPONENTS

688

     Preparing the Example Project 
 For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty 
project called UsingViewComponents. I added the NuGet packages I required to the  dependencies  section 
of the  project.json  file and set up the Razor tooling in the  tools  section, as shown in Listing  22-1 . I 
removed the sections that are not required for this chapter. 

 Table  22-2  summarizes the chapter.  

   Table 22-2.    Chapter Summary   

 Problem  Solution  Listing 

 Provide a partial view with its own 
logic and data 

 Use a view component  1–13 

 Invoke a view component  Use the  @await Component.InvokeAsync  
expression in a view 

 14 

 Simplify access to context data and 
results 

 Derive from the  ViewComponent  class  15, 16 

 Select a partial view  Use the  View  method to create and return a 
 ViewViewComponentResult  object 

 17–19 

 Create a fragment of HTML  Return the  Content  method to create a 
 ContentViewComponentResult  or explicitly create 
an  HtmlContentViewComponentResult  if you don’t 
want the fragment to be encoded. 

 20, 21 

 Use details of the request to generate 
the result 

 Use the view component context data  22 

 Provide context data when invoking a 
view component 

 Provide arguments to the  InvokeAsync  method  23–25 

 Create an asynchronous view 
component 

 Implement the  InvokeAsync  method and return a 
 Task  that yields the result you require 

 26–29 

 Create a hybrid controller/view 
component 

 Apply the  ViewComponent  attribute to a controller 
class 

 30–33 



CHAPTER 22 ■ VIEW COMPONENTS

689

     Listing 22-1.    Adding Packages in the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
      "Microsoft.AspNetCore.Mvc": "1.0.0",  
      "Microsoft.AspNetCore.StaticFiles": "1.0.0",  
      "Microsoft.AspNetCore.Razor.Tools": {  
        "version": "1.0.0-preview2-final",  
        "type": "build"  
      }  
   }, 

     "tools": { 
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final", 
      "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final"  
   }, 

     "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6", "portable-net45+win8"] 
     } 
   }, 

     "buildOptions": { 
     "emitEntryPoint": true, 
     "preserveCompilationContext": true 
   }, 

     "runtimeOptions": { 
     "configProperties": { "System.GC.Server": true } 
   } 
 } 

        Creating the Models and Repositories 
 I need two different sources of data to demonstrate how view components work. Part of the application will 
operate on a set of product descriptions; to prepare for this, I created the  Models  folder and added a file 
called  Product.cs , which I used to define the class shown in Listing  22-2 . 



CHAPTER 22 ■ VIEW COMPONENTS

690

     Listing 22-2.    The Contents of the Product.cs File in the Models Folder   

  namespace UsingViewComponents.Models { 

       public class Product { 
         public string Name { get; set; } 
         public decimal Price { get; set; } 
     } 
 } 

    To create a repository for the  Product  objects, I added a file called  ProductRepository.cs  to the  Models  
folder and defined the interface and implementation class shown in Listing  22-3 . 

     Listing 22-3.    The Contents of the ProductRepository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace UsingViewComponents.Models { 

       public interface IProductRepository { 
         IEnumerable<Product> Products { get; } 
         void AddProduct(Product newProduct); 
     } 

       public class MemoryProductRepository : IProductRepository { 
         private List<Product> products = new List<Product> { 
                 new Product { Name = "Kayak", Price = 275 M }, 
                 new Product { Name = "Lifejacket", Price = 48.95 M }, 
                 new Product { Name = "Soccer ball", Price = 19.50 M } 
         }; 

           public IEnumerable<Product> Products => products; 

           public void AddProduct(Product newProduct) { 
             products.Add(newProduct); 
         } 
     } 
 } 

    The  IProductRepository  interface defines a limited set of repository features, and the 
 MemoryProductRepository  class implements the interface using an in-memory  List . 

 The other part of the application will operate on descriptions of cities. To that end, I added a class file 
called  City.cs  to the  Models  folder and used it to define the class shown in Listing  22-4 . 

     Listing 22-4.    The Contents of the City.cs File in the Models Folder   

  namespace UsingViewComponents.Models { 

       public class City { 
         public string Name { get; set; } 
         public string Country { get; set; } 
         public int Population { get; set; } 
     } 
 } 



CHAPTER 22 ■ VIEW COMPONENTS

691

    For the repository of  City  objects, I created a class file called  CityRepository.cs  and used it to define 
the interface and implementation class shown in Listing  22-5 . 

     Listing 22-5.    The Contents of the CityRepository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace UsingViewComponents.Models { 

       public interface ICityRepository { 
         IEnumerable<City> Cities { get; } 

           void AddCity(City newCity); 
     } 

       public class MemoryCityRepository : ICityRepository { 

           private List<City> cities = new List<City> { 
             new City { Name = "London", Country = "UK", Population = 8539000}, 
             new City { Name = "New York", Country = "USA", Population = 8406000 }, 
             new City { Name = "San Jose", Country = "USA", Population = 998537 }, 
             new City { Name = "Paris", Country = "France", Population = 2244000 } 
         }; 

           public IEnumerable<City> Cities => cities; 

           public void AddCity(City newCity) { 
             cities.Add(newCity); 
         } 
     } 
 } 

    The  ICityRepository  interface provides a limited set of repository features, and the 
 MrmoryCityRepository  class implements the interface using an in-memory list.  

     Creating the Controller and Views 
 I need only one controller to get started, so I created the  Controllers  folder, added a file called 
 HomeController.cs  to the  Controllers  folder, and used it to define the class shown in Listing  22-6 . 

     Listing 22-6.    The Contents of the HomeController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 
 using UsingViewComponents.Models; 

   namespace UsingViewComponents.Controllers { 

       public class HomeController : Controller { 
         private IProductRepository repository; 

           public HomeController(IProductRepository repo) { 
             repository = repo; 
         } 



CHAPTER 22 ■ VIEW COMPONENTS

692

           public ViewResult Index() => View(repository.Products); 

           public ViewResult Create() => View(); 

           [HttpPost] 
         public IActionResult Create(Product newProduct) { 
             repository.AddProduct(newProduct); 
             return RedirectToAction("Index"); 
         } 
     } 
 } 

    The  Home  controller uses its constructor to declare a dependency on the  IProductRepository  interface, 
which will be resolved by the service provider when the controller is used to handle requests. The  Index  
action retrieves all the  Product  objects from the repository and renders them using the default view. The two 
 Create  methods used the Post/Redirect/Get pattern to add new objects to the repository using form data 
provided by the client. 

 The views for this example will share a common layout. I created the  Views/Shared  folder, and I added 
a file called  _Layout.cshtml  with the markup shown in Listing  22-7 . 

     Listing 22-7.    The Contents of the _Layout.cshtml File in the Views/Shared Folder   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>@ViewBag.Title</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     <div class="bg-primary panel-body"> 
         <div class="row"> 
             <div class="col-xs-7"><h1>Products</h1></div> 
             <div class="col-xs-5"> 
                 <div class="bg-info text-primary panel-body">City Placeholder</div> 
             </div> 
         </div> 
     </div> 
     <div class="panel-body">@RenderBody()</div> 
 </body> 
 </html> 

   The layout defines a header that includes a placeholder for content that I will create later in the chapter 
using the city repository. Next, I created the  Views/Home  folder and added a file called  Index.cshtml  with the 
markup shown in Listing  22-8 , which lists the details of  Product  objects in a table. 



CHAPTER 22 ■ VIEW COMPONENTS

693

     Listing 22-8.    The Contents of the Index.cshtml File in the Views/Home Folder   

  @model IEnumerable<Product> 
 @{ 
     ViewData["Title"] = "Products"; 
     Layout = "_Layout"; 
 } 

   <table class="table table-condensed table-striped table-bordered"> 
     <thead> 
         <tr><th>Name</th><th>Price</th></tr> 
     </thead> 
     <tbody> 
         @foreach (var product in Model) { 
             <tr> 
                 <td>@product.Name</td> 
                 <td>@product.Price</td> 
             </tr> 
         } 
     </tbody> 
 </table> 
 <a asp-action="Create" class="btn btn-primary">Create</a> 

    The final element in the  Index  view is an  a  element that I have styled as a button and that targets the 
 Create  action so the user can create a new  Product  object in the repository. To provide the form that user 
fills in, I added a  Create.cshtml  file to the  Views/Home  folder and added the markup shown in Listing  22-9 . 

     Listing 22-9.    The Contents of the Create.cshtml File in the Views/Home Folder   

  @model Product 
 @{ 
     ViewData["Title"] = "Create Product"; 
     Layout = "_Layout"; 
 } 

   <form method="post" asp-action="Create"> 
     <div class="form-group"> 
         <label asp-for="Name">Name:</label> 
         <input class="form-control" asp-for="Name" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Price">Price:</label> 
         <input class="form-control" asp-for="Price" /> 
     </div> 
     <button type="submit" class="btn btn-primary">Create</button> 
     <a class="btn btn-default" asp-action="Index">Cancel</a> 
 </form> 

    The views use the built-in tag helpers, which I enabled by creating the  _ViewImports.cshtml  file in the 
 Views  folder and adding the expressions shown in Listing  22-10 , which also make the classes in the  Models  
folder available without namespaces. 



CHAPTER 22 ■ VIEW COMPONENTS

694

     Listing 22-10.    The Contents of the _ViewImports.cshtml File in the Views Folder   

 @using UsingViewComponents.Models 
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

   The views also rely on the Bootstrap CSS package to style content. I used the Bower Configuration File 
item template to create the  bower.json  file in the root folder of the project and added the Bootstrap package 
to the  dependencies  section, as shown in Listing  22-11 . 

     Listing 22-11.    Adding Bootstrap to the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6"  
   } 
 } 

        Configuring the Application 
 The final preparatory step is to configure the application, as shown in Listing  22-12 . In addition to setting up 
the MVC services and middleware, I have created singleton services for the two data repositories. 

     Listing 22-12.    The Contents of the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
  using UsingViewComponents.Models;  

   namespace UsingViewComponents { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddSingleton<IProductRepository, MemoryProductRepository>();  
              services.AddSingleton<ICityRepository, MemoryCityRepository>();  
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app) { 
              app.UseStatusCodePages();  
              app.UseDeveloperExceptionPage();  
              app.UseStaticFiles();  
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

    If you run the application, you will see a list of the  Product  objects in the product repository. You can 
add new products by clicking the Create button, filling in the form, and submitting it to the server, which will 
then redirect the browser back to the list, as shown in Figure  22-1 . Since the views in the application share a 
common layout, there is a placeholder for city data shown throughout this process.    



CHAPTER 22 ■ VIEW COMPONENTS

695

     Understanding View Components 
 Applications commonly need to embed content in views that isn’t related to the main purpose of the 
application. Common examples include site navigation tools, tag clouds, and authentication panels that let 
the user log in without visiting a separate page. 

 The common thread that all these examples have is that the data required to display the embedded 
content isn’t part of the model data passed from the action to the view. It is for this reason that I have created 
two repositories in the example application: I am going to display some content generated using the  City  
repository, which isn’t easily done in a view that receives data from the  Product  repository from its actions. 

 In Chapter   21    , I described how partial views are used to create reusable markup that is required in 
views, avoiding the need to duplicate the same content in multiple places in the application. Partial views 
are a useful feature, but they just contain fragments of HTML and Razor directives, and the data they operate 
on is received from the parent view. If you need to display different data, then you run into a problem. You 
could access the data you need directly from the partial view, but this breaks the separation of concerns 
that underpins the MVC pattern and results in data retrieval and processing logic being placed in a view file 
where it cannot be unit tested. Alternatively, you could extend the view models used by the application so 
that it includes the data you require, but this means you have to change every action method and makes it 
hard to isolate the functionality of action methods for effective testing. 

 This is where view components come in. A view component is a C# class that provides a partial view 
with the data that it needs, independently from the parent view and the action that renders it. In this regard, 
a view component can be thought of as a specialized action, but one that is used only to provide a partial 
view with data; it cannot receive HTTP requests, and the content that it provides will always be included in 
the parent view.  

  Figure 22-1.    Running the example application       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_21


CHAPTER 22 ■ VIEW COMPONENTS

696

     Creating a View Component 
 View components can be created in three different ways: by defining a POCO view component, by deriving 
from the  ViewComponent  base class, and by using the  ViewComponent  attribute. I describe the POCO and 
base class techniques in the sections that follow and explain the use of the attribute in the “Creating Hybrid 
Controller/View Component Classes” section, later in the chapter. 

     Creating POCO View Components 
    A  POCO view component  is a class that provides view component functionality without relying on any of 
the MVC APIs. As with POCO controllers, this kind of view component is awkward to work with but can 
be helpful in understanding how they work. A POCO view component is any class whose name ends with 
 ViewComponent  and that defines an  Invoke  method. View component classes can be defined anywhere in an 
application, but the convention is to group them together in a folder called  Components  at the root level of 
the project. I created this folder and added a class file called  PocoViewComponent.cs , which I used to define 
the class shown in Listing  22-13 . 

     Listing 22-13.    The Contents of the PocoViewComponent.cs File in the Components Folder   

  using System.Linq; 
 using UsingViewComponents.Models; 

   namespace UsingViewComponents.ViewComponents { 

       public class PocoViewComponent { 
         private ICityRepository repository; 

           public PocoViewComponent(ICityRepository repo) { 
             repository = repo; 
         } 

           public string Invoke() { 
             return $"{repository.Cities.Count()} cities, " 
                 + $"{repository.Cities.Sum(c => c.Population)} people"; 
         } 
     } 
 } 

    View components can take advantage of dependency injection to receive the services they require. In 
this example, the POCO view component declares a dependency on the  ICityRepository  interface, which 
is then used in the  Invoke  method to create a  string  that describes the number of cities and the population 
total. 

 To use a view component, the Razor  @await Component.Invoke  expression is required. The view 
component is selected by providing the name of the class, without the  ViewComponent  ending, as an 
argument. In Listing  22-14 , I have removed the placeholder in the shared layout and applied the POCO view 
component instead. 



CHAPTER 22 ■ VIEW COMPONENTS

697

     Listing 22-14.    Applying a View Component in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>@ViewBag.Title</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     <div class="bg-primary panel-body"> 
         <div class="row"> 
             <div class="col-xs-7"><h1>Products</h1></div> 
              <div class="col-xs-5">@await Component.InvokeAsync("Poco")</div>  
         </div> 
     </div> 
     <div class="panel-body">@RenderBody()</div> 
 </body> 
 </html> 

   To apply the view component, I specified  Poco  as the argument to the  Invoke  method. When the layout 
is used by a view, it locates the  PocoViewController  class, calls its  Invoke  method, and inserts the result into 
the parent view’s output, as shown in Figure  22-2 .  

  Figure 22-2.    Using a simple view component       

 



CHAPTER 22 ■ VIEW COMPONENTS

698

 This is a simple example, but it illustrates some important characteristics of view components. First, 
the  PocoViewComponent  class was able to get access to the data it required without depending on the 
action handling the HTTP request or its parent view. Second, defining the logic required to obtain and 
process the  City  summary in a C# class means that it can be readily unit tested (see the “Unit Testing View 
Components” sidebar later in the chapter for an example). And, third, the application hasn’t been twisted 
out of shape trying to include  City  objects in view models that are focused on  Product  objects. In short, 
a view component is a self-contained chunk of reusable functionality that can be applied throughout the 
application and can be developed and tested in isolation. 

 ■   Caution    You must include the  await  keyword when you apply a view component in a view. You won’t see 
an error if you just call  @Component.Invoke  but a string representation of a  Task will be displayed , similar 
to this:  System.Threading.Tasks.Task`1[Microsoft.AspNetCore.Html.IHtmlContent].    

     Deriving from the ViewComponent Base Class 
    POCO view components are limited in functionality unless they take advantage of the MVC API, which 
is possible but requires a lot more effort than the more common approach, which is to derive from the 
 ViewComponent  class. The  ViewComponent  class, which is defined in the  Microsoft.AspNetCore.Mvc  
namespace, provides convenient access to context data and makes it easier to generate results. Listing  22-15  
shows the contents of the  CitySummary.cs  file, which I added to the  Components  folder. 

      Listing 22-15.    The Contents of the CitySummary.cs File in the Components Folder   

  using System.Linq; 
 using Microsoft.AspNetCore.Mvc; 
 using UsingViewComponents.Models; 

   namespace UsingViewComponents.Components { 

       public class CitySummary : ViewComponent { 
         private ICityRepository repository; 

           public CitySummary(ICityRepository repo) { 
             repository = repo; 
         } 

           public string Invoke() { 
             return $"{repository.Cities.Count()} cities, " 
             + $"{repository.Cities.Sum(c => c.Population)} people"; 
         } 
     } 
 } 

    You don’t need to include  ViewComponent  in the class name when you derive from the base class. Aside 
from using the base class, this view component is functionality identical to the POCO. In the sections that 
follow, I’ll show you how to use the convenience features provided by the base class to use different view 
component features. 



CHAPTER 22 ■ VIEW COMPONENTS

699

 ■   Tip    Notice that the  Invoke  method isn’t overridden in Listing  22-15 . The  ViewComponent  class doesn’t 
provide a default implementation of the  Invoke  method, which must be defined explicitly.  

 In preparation for demonstrating the view component features, I changed the component used in 
the shared layout, as shown in Listing  22-16 . Instead of using a literal string to specify the view component 
name, I used  nameof , as described in Chapter   4    , which reduces the chances of mistyping the class name. 

     Listing 22-16.    Changing the View Component in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>@ViewBag.Title</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     <div class="bg-primary panel-body"> 
         <div class="row"> 
             <div class="col-xs-7"><h1>Products</h1></div> 
             <div class="col-xs-5"> 
                  @await Component.InvokeAsync("CitySummary")  
             </div> 
         </div> 
     </div> 
     <div class="panel-body">@RenderBody()</div> 
 </body> 
 </html> 

        Understanding View Component Results 
    The ability to insert simple string values into a parent view isn’t especially useful, but fortunately, view 
components are capable of much more. More complex effects can be achieved by having the  Invoke  method 
returning an object that implements the  IViewComponentResult  interface. There are three built-in classes 
that implement the  IViewComponentResult  interface, and they are described in Table  22-3 , along with the 
convenience methods for creating them provided by the  ViewComponent  base class. I describe the use of 
each result type in the sections that follow.  

 ■   Note   If you are using POCO view components, you can create instances of these classes directly, although 
they can be awkward to work with because they have complex constructor arguments that the convenience 
methods provided by the  ViewComponent  class provide.  

http://dx.doi.org/10.1007/978-1-4842-0397-2_4


CHAPTER 22 ■ VIEW COMPONENTS

700

 There is special handling for two result types. If a view component returns a  string , then it is used to create 
a  ContentViewComponentResult  object, which is what I relied on in earlier examples. If a view component 
returns an  IHtmlContent  object, then it is used to create an  HtmlContentViewComponentResult  object. 

   Returning a Partial View 
    The most useful response is the awkwardly named  ViewViewComponentResult  object, which tells Razor to 
render a partial view and include the result in the parent view. The  ViewComponent  base class provides the 
 View  method for creating  ViewViewComponentResult  objects, and there are four versions of the method 
available, as described in Table  22-4 .  

   Table 22-3.    The Built-in IViewComponentResult Implementation Classes   

 Name  Description 

  ViewViewComponentResult   This class is used to specify a Razor view, with optional view model 
data. Instances of this class are created using the  View  method. 

  ContentViewComponentResult   This class is used to specify a text result that will be safely encoded 
for inclusion in an HTML document. Instances of this class are 
created using the  Content  method. 

  HtmlContentViewComponentResult   This class is used to specify a fragment of HTML that will be 
included in the HTML document without further encoding. There 
is no  ViewComponent  method to create this type of result. 

   Table 22-4.    The ViewComponent.View Methods   

 Name  Description 

  View()   Using this method selects the default view for the view component and does 
not provide a view model. 

  View(model)   Using the method selects the default view and uses the specified object as the 
view model. 

  View(viewName)   Using this method selects the specified view and does not provide a view 
model. 

  View(viewName, model)   Using this method selects the specified view and uses the specified object as 
the view model. 

 These methods correspond to those provided by the  Controller  base class and are used in much the 
same way. I added a class file called  CityViewModel.cs  to the  Models  folder and used it to define the view 
model shown in Listing  22-17 . 

     Listing 22-17.    The Contents of the CityViewModel.cs File in the Models Folder   

  namespace UsingViewComponents.Models { 

       public class CityViewModel { 
         public int Cities { get; set; } 
         public int Population { get; set; } 
     } 
 } 



CHAPTER 22 ■ VIEW COMPONENTS

701

    In Listing  22-18 , I have modified the  Invoke  method of the  CitySummary  view component so that it uses 
the  View  method to select a partial view and provides view data using a  CityViewModel  object. 

     Listing 22-18.    Selecting a Partial View in the CitySummary.cs File   

  using System.Linq; 
 using Microsoft.AspNetCore.Mvc; 
 using UsingViewComponents.Models; 

   namespace UsingViewComponents.Components { 

       public class CitySummary : ViewComponent { 
         private ICityRepository repository; 

           public CitySummary(ICityRepository repo) { 
             repository = repo; 
         } 

           public IViewComponentResult Invoke() { 
              return View(new CityViewModel{  
                  Cities = repository.Cities.Count(),  
                  Population = repository.Cities.Sum(c => c.Population)  
              });  
         } 
     } 
 } 

    Selecting a partial view in a view component is similar to selecting a view in a controller but with two 
important differences: Razor looks for views in different locations and uses a different default view name if 
one isn’t specified. 

 Since I have not created a partial view for the view component, you will see an error message when you 
run the application that reveals the files that Razor is looking for.

•     /Views/Home/Components/CitySummary/Default.cshtml   

•    /Views/Shared/Components/CitySummary/Default.cshtml     

 If no name is specified, then Razor looks for a file called  Default.cshtml . Razor looks in two locations 
for the partial view. The first location takes into account the name of the controller handling the HTTP 
request, which allows each controller to have its own custom view. The second location is shared between 
all controllers. 

 ■   Tip    Notice that shared partial views are still distinguished by view component, which means that view 
components do not share partial views. You can override this behavior by including a path in the name of the 
view when you call the  View  method, such that calling  View("Views/Shared/Components/Common/Default.
html")  will override the normal search locations.  



CHAPTER 22 ■ VIEW COMPONENTS

702

 To complete the example, I created the  Views/Home/Components/CitySummary  folder and added to it a 
new file called  Default.cshtml , to which I added the markup shown in Listing  22-19 . 

     Listing 22-19.    The Content of the Default.cshtml File in the Views/Home/Components/CitySummary 
Folder   

  @model CityViewModel 

   <table class="table table-condensed table-bordered"> 
     <tr> 
         <td>Cities:</td> 
         <td class="text-right"> 
             @Model.Cities 
         </td> 
     </tr> 
     <tr> 
         <td>Population:</td> 
         <td class="text-right"> 
             @Model.Population.ToString("#,###") 
         </td> 
     </tr> 
 </table> 

    Partial views for view components work in the same way as they do for controllers. In this case, I have 
created a strongly typed view that expects a  CityViewModel  object and displays its  Cities  and  Population  
values in a table, as shown in Figure  22-3 .   

  Figure 22-3.    Rendering a view using a view component       

 



CHAPTER 22 ■ VIEW COMPONENTS

703

   Returning HTML Fragments 
    The  ContentViewComponentResult  class is used to include fragments of HTML in the parent view without 
using a view. Instances of the  ContentViewComponentResult  class are created using the  Content  method 
inherited from the  ViewComponent  base class, which accepts a  string  value. Listing  22-20  demonstrates the 
use of the  Content  method. In addition to the  Content  method, the  Invoke  method can return a  string , and 
MVC will automatically convert to a  ContentViewComponentResult . 

     Listing 22-20.    Using the Content Method in the CitySummary.cs File   

  using System.Linq; 
 using Microsoft.AspNetCore.Mvc; 
 using UsingViewComponents.Models; 

   namespace UsingViewComponents.Components { 

       public class CitySummary : ViewComponent { 
         private ICityRepository repository; 

           public CitySummary(ICityRepository repo) { 
             repository = repo; 
         } 

           public IViewComponentResult Invoke() { 
              return Content("This is a <h3><i>string</i></h3>");  
         } 
     } 
 } 

    The string received by the  Content  method is encoded to make it safe to include in an HTML document. 
This is particularly important when dealing with content that has been provided by users or external systems 
because it prevents JavaScript content from being embedded into the HTML generated by the application. 
In this example, the  string  that I passed to the  Content  method contains some basic HTML tags, and if you 
run the application, you will see that they have been encoded safely, as shown in Figure  22-4 .  

  Figure 22-4.    Returning an encoded HTML fragment using a view component       

 



CHAPTER 22 ■ VIEW COMPONENTS

704

 If you look at the HTML that the view component produced, you will see that the angle brackets have 
been replaced so that the browser doesn’t interpret the content as HTML elements, as follows: 

   ... 
 <div class="col-xs-5">This is a & lt;h3&gt;&lt;i&gt; string& lt;/i&gt;&lt;/h3&gt; </div> 
 ... 

   You don’t need to encode content if you trust its source and want it to be interpreted as HTML. The 
 Content  method always encodes its argument, so you must create the  HtmlContentViewComponentResult  
object directly and provide its constructor with an  HtmlString  object, which represents a string that you 
know is safe to display, either because it comes from a source that you trust or because you are confident 
that it has already been encoded, as shown in Listing  22-21 . 

     Listing 22-21.    Returning a Trusted HTML Fragment in the CitySummary.cs File   

  using System.Linq; 
 using Microsoft.AspNetCore.Mvc; 
 using UsingViewComponents.Models; 
  using Microsoft.AspNetCore.Mvc.ViewComponents;  
  using Microsoft.AspNetCore.Html;  

   namespace UsingViewComponents.Components { 

       public class CitySummary : ViewComponent { 
         private ICityRepository repository; 

           public CitySummary(ICityRepository repo) { 
             repository = repo; 
         } 

           public IViewComponentResult Invoke() { 
              return new HtmlContentViewComponentResult(  
                  new HtmlString("This is a <h3><i>string</i></h3>"));  
         } 
     } 
 } 

    This technique should be used with caution and only with sources of content that cannot be tampered 
with and that perform their own encoding. If you run the application, you will see that the angle brackets 
have been included in the parent view without modification, which allows the browser to interpret the 
output of the view component as HTML elements, illustrated in Figure  22-5 .    



CHAPTER 22 ■ VIEW COMPONENTS

705

     Getting Context Data 
    Details about the current request and the parent view are provided to a view component through properties 
of the  ViewComponentContext  class; Table  22-5  describes the most useful properties it provides.  

   Table 22-5.    The ViewComponentContext Properties   

 Name  Description 

  Arguments   This property returns a dictionary of the arguments provided by the view, 
which can also be received via the  Invoke  method. 

  HtmlEncoder   This property returns an  HtmlEncoder  object that can be used to safely 
encode HTML fragments. 

  ViewComponentDescriptor   This property returns a  ViewComponentDescriptor , which provides a 
description of the view component. 

  ViewContext   This property returns the  ViewContext  object from the parent view. See 
Chapter   21     for details of the features this class provides. 

  ViewData   This property returns a  ViewDataDictionary , which provides access to the 
view data provided for the view component. 

  Figure 22-5.    Returning an unencoded HTML fragment using a view component       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_21


CHAPTER 22 ■ VIEW COMPONENTS

706

 The  ViewComponent  base class provides a set of convenience properties that make it easier to access 
specific context information, as described in Table  22-6 .  

   Table 22-6.    The ViewComponent Convenience Properties   

 Name  Description 

  ViewComponentContext   This property returns the  ViewComponentContext  object. 

  HttpContext   This property returns an  HttpContext  object that describes the current request 
and the response that is being prepared. 

  Request   This property returns an  HttpRequest  object that describes the current HTTP 
request. 

  User   This property returns an  IPrincipal  object that describes the current user, as 
described in Chapter   28    . 

  RouteData   This property returns a  RouteData  object that describes the routing data for the 
current request, as described in Chapter   15    . 

  ViewBag   This property returns the  dynamic  view bag object, which can be used to pass 
data between the view component and the view. 

  ModelState   This property returns a  ModelStateDictionary , which provides details of the 
model binding process, as described in Chapter   26    . 

  ViewContext   This property returns the  ViewContext  object that was provided to the parent 
view, as described in Chapter   21    . 

  ViewData   This property returns a  ViewDataDictionary , which provides access to the view 
data provided for the view component. 

  Url   This property returns an  IUrlHelper  object that can be used to generate URLs, 
as described in Chapter   15    . 

 The context data can be used in whatever way helps the view component do its work, including varying 
the way that data is selected or rendering different content or views. In Listing  22-22 , I have used the routing 
data to narrow the selection of  City  objects. 

     Listing 22-22.    Using Context Data in the CitySummary.cs File   

  using System.Linq; 
 using Microsoft.AspNetCore.Mvc; 
 using UsingViewComponents.Models; 
 using Microsoft.AspNetCore.Mvc.ViewComponents; 
 using Microsoft.AspNetCore.Mvc.Rendering; 

   namespace UsingViewComponents.Components { 

       public class CitySummary : ViewComponent { 
         private ICityRepository repository; 

           public CitySummary(ICityRepository repo) { 
             repository = repo; 
         } 

http://dx.doi.org/10.1007/978-1-4842-0397-2_28
http://dx.doi.org/10.1007/978-1-4842-0397-2_15
http://dx.doi.org/10.1007/978-1-4842-0397-2_26
http://dx.doi.org/10.1007/978-1-4842-0397-2_21
http://dx.doi.org/10.1007/978-1-4842-0397-2_15


CHAPTER 22 ■ VIEW COMPONENTS

707

           public IViewComponentResult Invoke() { 
              string target = RouteData.Values["id"] as string;  
              var cities = repository.Cities  
                  .Where(city => target == null ||  
                      string.Compare(city.Country, target, true) == 0);  
              return View(new CityViewModel{  
                  Cities = cities.Count(),  
                  Population = cities.Sum(c => c.Population)  
              });  
         } 
     } 
 } 

    The browser uses the  id  segment from the route to specify the country that is used by LINQ to filter the 
objects in the repository. All the cities are displayed if you start the application and request the default URL. 
You can narrow the selection by requesting a URL such as  /Home/Index/USA , which will narrow the selection 
to cities in the USA, as shown in Figure  22-6 .  

  Figure 22-6.    Using context data in a view component       

   Providing Context from the Parent View Using Arguments 
 Parent views can provide additional context data as arguments to the  @await Component.Invoke  expression. 
This feature can be used to provide data from the parent view model or to give guidance about the type of 
content that the view component should produce. To demonstrate this feature, I created a view file called 
 CityList.cshtml  in the  Views/Home/Component/CitySummary  folder and added the markup shown in 
Listing  22-23 . 

 



CHAPTER 22 ■ VIEW COMPONENTS

708

     Listing 22-23.    The Contents of the CityList.cshtml File in the Views/Home/Component/CitySummary 
Folder   

  @model IEnumerable<City> 

   <table class="table table-condensed table-bordered"> 
     @foreach (var city in Model) { 
         <tr> 
             <td>@city.Name</td> 
             <td class="text-right"> 
                 @city.Population.ToString("#,###") 
             </td> 
         </tr> 
     } 
     <tr> 
         <th>Total:</th> 
         <td class="text-right"> 
             @Model.Sum(p => p.Population).ToString("#,###") 
         </td> 
     </tr> 
 </table> 

    Adding a second view allows the view component to choose between them, which it does based on an 
argument added to the  Invoke  method, as shown in Listing  22-24 . 

     Listing 22-24.    Selecting Views in the CitySummary.cs File   

  using System.Linq; 
 using Microsoft.AspNetCore.Mvc; 
 using UsingViewComponents.Models; 
 using Microsoft.AspNetCore.Mvc.ViewComponents; 
 using Microsoft.AspNetCore.Mvc.Rendering; 

   namespace UsingViewComponents.Components { 

       public class CitySummary : ViewComponent { 
         private ICityRepository repository; 

           public CitySummary(ICityRepository repo) { 
             repository = repo; 
         } 

            public IViewComponentResult Invoke(bool showList) {  
              if (showList) {  
                  return View("CityList", repository.Cities);  
              } else {  
                  return View(new CityViewModel {  
                      Cities = repository.Cities.Count(),  
                      Population = repository.Cities.Sum(c => c.Population)  
                  });  
              }  
          }  
     } 
 } 



CHAPTER 22 ■ VIEW COMPONENTS

709

    If the  showList  argument to the  Invoke  method is  true , then the view component selects the  CityList  
and passes all of the  City  objects in the repository as the view model. If the  showList  argument is  false , 
then the default view is selected and provided with a  CitySummary  object for the view model. 

 The final step is to provide context data when applying the view component in the parent view, which is 
done by passing an anonymous object to the  Invoke  method, as shown in Listing  22-25 . 

     Listing 22-25.    Providing Context Data When Applying a View Component in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>@ViewBag.Title</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     <div class="bg-primary panel-body"> 
         <div class="row"> 
             <div class="col-xs-7"><h1>Products</h1></div> 
             <div class="col-xs-5"> 
                  @await Component.InvokeAsync("CitySummary",  
                      new { showList = true })  
             </div> 
         </div> 
     </div> 
     <div class="panel-body">@RenderBody()</div> 
 </body> 
 </html> 

   If you run the application, the view component will receive the value specified by the parent view and 
respond accordingly, as shown in Figure  22-7 .  



CHAPTER 22 ■ VIEW COMPONENTS

710

  Figure 22-7.    Providing context data to a view component       

 UNIT TESTING VIEW COMPONENTS

    View components follow the general MVC approach of separating out the logic that selects and 
processes the model data from the view markup that formats and presents it, which makes it easy to 
perform unit tests. Here is an example unit test for the  CitySummary  from the example application: 

    using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc.ViewComponents; 
 using Moq; 
 using UsingViewComponents.Models; 
 using UsingViewComponents.Components; 
 using Xunit; 

   namespace UsingViewComponents.Tests { 

       public class SummaryViewComponentTests { 

 



CHAPTER 22 ■ VIEW COMPONENTS

711

           [Fact] 
         public void TestSummary() { 

               // Arrange 
             var mockRepository = new Mock<ICityRepository>(); 
             mockRepository.SetupGet(m => m.Cities).Returns(new List<City> { 
                 new City { Population = 100 }, 
                 new City { Population = 20000 }, 
                 new City { Population = 1000000 }, 
                 new City { Population = 500000 } 
             }); 
             var viewComponent 
                 = new CitySummary(mockRepository.Object); 

               // Act 
             ViewViewComponentResult result 
                 = viewComponent.Invoke(false) as ViewViewComponentResult; 

               // Assert 
             Assert.IsType(typeof(CityViewModel), result.ViewData.Model); 
             Assert.Equal(4, ((CityViewModel)result.ViewData.Model).Cities); 
             Assert.Equal(1520100, 
                 ((CityViewModel)result.ViewData.Model).Population); 
         } 
     } 
 } 

    To arrange the test, I created a fake repository and passed it to the constructor of the  CitySummary  
class to create a new instance of the view component. For the act section of the test, I called the  Invoke  
method, which provided me with a result object. The view component selects a Razor view, so I cast the 
result to a  ViewViewComponentResult  and access the view model object through the  ViewData.Model  
property it provides. For the assert section of the test, I check the type of the view model data and the 
values it contains.    

     Creating Asynchronous View Components 
    All of the examples so far in this chapter have been synchronous view components, which can be recognized 
because they define the  Invoke  method. If your view component relies on asynchronous APIs, then you can 
create an asynchronous view component by defining an  InvokeAsync  method that returns a  Task . When 
Razor receives the  Task  from the  InvokeAsync  method, it will wait for it to complete and then insert the 
result into the main view. To prepare for this example, I added a package to the example project, as shown in 
Listing  22-26 . 



CHAPTER 22 ■ VIEW COMPONENTS

712

     Listing 22-26.    Adding a Package in the project.json File   

  ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 

     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
   "Microsoft.AspNetCore.Mvc": "1.0.0", 
   "Microsoft.AspNetCore.StaticFiles": "1.0.0", 
   "Microsoft.AspNetCore.Razor.Tools": { 
     "version": "1.0.0-preview2-final", 
     "type": "build" 
   }, 
    "System.Net.Http": "4.1.0"  
 }, 
 ... 

    The  System.Net.Http  package provides an API for making asynchronous HTTP requests, which I will 
use to query the Apress.com website. Listing  22-27  shows the contents of a class file called  PageSize.cs , 
which I added to the  Components  folder and used to create an asynchronous view component. 

     Listing 22-27.    The Contents of the PageSize.cs File in the Components Folder   

  using System.Net.Http; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Mvc; 

   namespace UsingViewComponents.Components { 

       public class PageSize : ViewComponent { 

           public async Task<IViewComponentResult> InvokeAsync() { 
             HttpClient client = new HttpClient(); 
             HttpResponseMessage response 
                 = await client.GetAsync("http://apress.com"); 
             return View(response.Content.Headers.ContentLength); 
         } 
     } 
 } 

    The  InvokeAsync  method uses the  async  and  await  keywords, described in Chapter   4    , to consume the 
asynchronous API provided by the  HttpClient  class and get the length of the content returned by sending 
a  GET  request to Apress.com. The length is passed to the  View  method, which selects the default partial view 
associated with the view component. 

 To create the view, I added the  Views/Home/Components/PageSize  folder to the project and added a 
view file called  Default.cshtml , with the content shown in Listing  22-28 . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_4


CHAPTER 22 ■ VIEW COMPONENTS

713

     Listing 22-28.    The Contents of the Default.cshtml File in the Views/Home/Components/PageSize Folder   

 @model long 
 <div class="panel-body bg-info">Page size: @Model</div> 

   The final step is to use the component, which I have done in the  _Layout.cshtml  file, as shown in 
Listing  22-29 . 

     Listing 22-29.    Using an Asynchronous View Component in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>@ViewBag.Title</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     <div class="bg-primary panel-body"> 
         <div class="row"> 
             <div class="col-xs-7"><h1>Products</h1></div> 
             <div class="col-xs-5"> 
                 @await Component.InvokeAsync("CitySummary", 
                     new { showList = true }) 
             </div> 
         </div> 
     </div> 
     <div class="panel-body">@RenderBody()</div> 
      @await Component.InvokeAsync("PageSize")  
 </body> 
 </html> 

   If you start the application, you will see a new addition in the content presented by the browser, as 
shown in Figure  22-8 . The number displayed may change when you run the example, since Apress updates 
its website often.    

  Figure 22-8.    Creating an asynchronous view component       

 



CHAPTER 22 ■ VIEW COMPONENTS

714

     Creating Hybrid Controller/View Component Classes 
    View components often provide a summary or snapshot of functionality that is handled in-depth by a 
controller. For a view component that summarizes a shopping basket, for example, there will often be a link 
that targets a controller that provides a detailed list of the products in the basket and that can be used to 
check out and complete the purchase. 

 In this situation, you can create a class that is a controller and a view component, which allows for related 
functionality to be grouped together and reduce code duplication. To demonstrate, I added a class file called 
 CityController.cs  to the  Controllers  folder and used it to define the controller shown in Listing  22-30 . 

     Listing 22-30.    The Contents of the CityController.cs File in the Controllers Folder   

  using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.ViewComponents; 
 using Microsoft.AspNetCore.Mvc.ViewFeatures; 
 using UsingViewComponents.Models; 

   namespace UsingViewComponents.Controllers { 

       [ViewComponent(Name = "ComboComponent")] 
     public class CityController : Controller { 
         private ICityRepository repository; 

           public CityController(ICityRepository repo) { 
             repository = repo; 
         } 

           public ViewResult Create() => View(); 

           [HttpPost] 
         public IActionResult Create(City newCity) { 
             repository.AddCity(newCity); 
             return RedirectToAction("Index", "Home"); 
         } 

           public IViewComponentResult Invoke() => new ViewViewComponentResult() { 
             ViewData = new ViewDataDictionary<IEnumerable<City>>(ViewData, 
                 repository.Cities) 
         }; 
     } 
 } 

    The  ViewComponent  attribute is applied to classes that don’t inherit from the  ViewComponent  base 
class and whose name doesn’t end with  ViewComponent , meaning that the normal discovery process 
wouldn’t normally categorize the class as a view component. The  Name  property sets the name by which 
the class can be referred to when applying the class using the  @Component.Invoke  expression in the parent 
view. In this example, I used the  Name  property to set the name of the view component part of the class to 
 ComboComponent . This name will be used to invoke the view component and used to locate its views. 



CHAPTER 22 ■ VIEW COMPONENTS

715

 Since hybrid classes don’t inherit from the  ViewComponent  base class, they don’t have access to the 
convenience methods for creating  IViewComponentResult  objects, which means that I have to create the 
 ViewViewComponentResult  object directly, just as would be required in a POCO view component. 

     Creating the Hybrid Views 
 A hybrid class requires two sets of views: those that are rendered when the class is used as a controller and 
those that are rendered when the class is used as a view component. First, I created the  Views/City  folder 
and added a view file called  Create.cshtml , the contents of which are shown in Listing  22-31 . 

     Listing 22-31.    The Contents of the Create.cshtml File in the Views/City Folder   

  @model City 
 @{ 
     ViewData["Title"] = "Create City"; 
     Layout = "_Layout"; 
 } 

   <form method="post" asp-action="Create"> 
     <div class="form-group"> 
         <label asp-for="Name">Name:</label> 
         <input class="form-control" asp-for="Name" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Country">Country:</label> 
         <input class="form-control" asp-for="Country" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Population">Population:</label> 
         <input class="form-control" asp-for="Population" /> 
     </div> 
     <button type="submit" class="btn btn-primary">Create</button> 
     <a class="btn btn-default" asp-controller="Home" 
        asp-action="Index"> 
         Cancel 
     </a> 
 </form> 

    This view presents a simple form for creating new  City  objects. The Create button sends a  POST  request 
to the  Create  action on the  City  controller, while the Cancel button sends a  GET  request to the  Index  action 
on the  Home  controller. 

 Next, I created the  Views/Shared/Components/ComboComponent  folder and added a view file called 
 Default.cshtml  with the content shown in Listing  22-32 . I placed the partial view in the  Views/Shared  
folder because it will be the controller whose view uses the view component whose name will be included in 
the path used to locate the view. 



CHAPTER 22 ■ VIEW COMPONENTS

716

      Listing 22-32.    The Default.cshtml File in the Views/Shared/Components/ComboComponent Folder   

  @model IEnumerable<City> 

   <table class="table table-condensed table-bordered"> 
     <tr> 
         <td>Biggest City:</td> 
         <td> 
             @Model.OrderByDescending(c => c.Population).First().Name 
         </td> 
     </tr> 
 </table> 
 <a class="btn btn-sm btn-info" asp-controller="City" asp-action="Create"> 
     Create City 
 </a> 

    This partial view receives a sequence of  City  objects that it sorts using LINQ to select the one with the 
largest  Population  value. There is also an anchor element, formatted to appear as a button, which targets 
the  Create  action on the  City  controller. 

 ■   Tip    Notice that I explicitly specified the  City  controller for the  a  element in Listing  22-32 . URLs are 
generated using the context data provided by the parent view, which means that the default controller is the one 
that is handling the request, not the one that is also a view component. If I had omitted the  asp-controller  
attribute, the link would have targeted the  Create  method on the  Home  controller.   

     Applying the Hybrid Class 
 The final step is to apply the hybrid class as a view component in the shared layout using the name specified 
by the  ViewComponent  attribute, as shown in Listing  22-33 . 

     Listing 22-33.    Applying a Hybrid Class in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>@ViewBag.Title</title> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
 </head> 



CHAPTER 22 ■ VIEW COMPONENTS

717

 <body class="panel-body"> 
     <div class="bg-primary panel-body"> 
         <div class="row"> 
             <div class="col-xs-7"><h1>Products</h1></div> 
             <div class="col-xs-5"> 
                  @await Component.InvokeAsync("ComboComponent")  
             </div> 
         </div> 
     </div> 
     <div class="panel-body">@RenderBody()</div> 
 </body> 
 </html> 

   The result is a view component that is backed up by its own integrated controller (or, if you prefer, a 
controller that has its own integrated view component). If you run the application, you will see that  London  is 
listed as the most populous city. Click the Create City button and you will be presented with a form that lets 
you add a new  City  to the application. Fill in and submit the form and the controller will receive the data, 
update the repository, and redirect the browser to the default URL for the application. If you have added a 
 City  whose population exceeds the others in the repository, then the output from the view component will 
change, as shown in Figure  22-9 .    

  Figure 22-9.    Using a hybrid controller/view component class       

 



CHAPTER 22 ■ VIEW COMPONENTS

718

     Summary 
 I introduced view components in this chapter, which are a new feature in ASP.NET Core MVC and replace 
the child actions feature from previous MVC versions. I demonstrated how to create POCO view components 
and how to use the  ViewComponent  base class, and I showed you the three different types of result that view 
components can produce, including the selection of partial views for including in the parent view. I finished 
the chapter by demonstrating how to add view component functionality to a controller class to reduce 
code duplication and simplify an application. In the next chapter, I introduce tag helpers, which are used to 
transform HTML elements in views.     



719© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_23

    CHAPTER 23   

 Understanding Tag Helpers                          

    Tag helpers are a new feature that has been introduced in ASP.NET Core MVC and are C# classes that 
transform HTML elements in a view. Common uses for tag helpers include generating URLs for forms using 
the application’s routing configuration, ensuring that elements of a specific type are styled consistently, and 
replacing custom shorthand elements with commonly used fragments of content. In this chapter, I describe 
how tag helpers work and how custom tag helpers are created and applied. In Chapter   24    , I describe the 
built-in tag helpers that support HTML forms, and in Chapter   25     I describe the other built-in tag helpers that 
are provided by MVC. Table  23-1  puts tag helpers in context.  

   Table 23-1.    Putting Tag Helpers in Context   

 Question  Answer 

 What are they?  Tag helpers are classes that manipulate HTML elements, either to change 
them in some way, to supplement them with additional content, or to replace 
them entirely with new content. 

 Why are they useful?  Tag helpers allow view content to be generated or transformed using C# logic, 
ensuring that the HTML sent to the client reflects the state of the application. 

 How are they used?  The HTML elements to which tag helpers are applied are selected based on 
the name of the class or through the use of the  HTMLTargetElement  attribute. 
When a view is rendered, elements are transformed by tag helpers and 
included in the HTML sent to the client. 

 Are there any pitfalls or 
limitations? 

 It can be easy to get carried away and generate complex sections of HTML 
content using tag helpers, which is something that is more readily achieved 
using view components, as described in Chapter   22    . 

 Are there any alternatives?  You don’t have to use tag helpers, but they make it easy to generate complex 
HTML in MVC applications. 

 Have they changed since 
MVC 5? 

 Tag helpers are a new addition in ASP.NET Core MVC and replace the 
functionality provided by HTML helpers. 

 Table  23-2  summarizes the chapter.  

http://dx.doi.org/10.1007/978-1-4842-0397-2_24
http://dx.doi.org/10.1007/978-1-4842-0397-2_25
http://dx.doi.org/10.1007/978-1-4842-0397-2_22


CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

720

     Preparing the Example Project 
 For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty 
project called Cities. I added the NuGet packages I required to the  dependencies  section of the  project.
json  file and set up the Razor tooling in the  tools  section, as shown in Listing  23-1 . I removed the sections 
that are not required for this chapter. 

     Listing 23-1.    Adding Packages in the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
      "Microsoft.AspNetCore.Mvc": "1.0.0",  
      "Microsoft.AspNetCore.StaticFiles": "1.0.0",  
      "Microsoft.AspNetCore.Razor.Tools": {  
        "version": "1.0.0-preview2-final",  
        "type": "build"  
      }  
   }, 

     "tools": { 
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final", 
      "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final"  

   Table 23-2.    Chapter Summary   

 Problem  Solution  Listing 

 Transform an HTML element  Create a tag helper and register it using the  @
addTagHelper  expression in a view or in a view 
imports file 

 1–13 

 Manage the scope of a tag helper  Use the  HtmlTargetElement  attribute  14–18 

 Support a shorthand element  Use the  TagHelperOutput  object to generate 
replacements elements 

 19, 20 

 Insert content around or inside the target 
element 

 Use the Pre- and Post- properties provided by 
the  TagHelperOutput  class. 

 21–24 

 Receive context data in a tag helper  Decorate a property with the  ViewContext  and 
 HtmlAttributeNotBound  attributes. 

 25, 26 

 Access the view model  Use a  ModelExpression  property  27, 28 

 Coordinate tag helpers  Use the  TagHelperContext.Items  property  29, 30 

 Suppress an element  Use the  SuppressOutput  method  31, 32 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

721

   }, 

     "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6", "portable-net45+win8"] 
     } 
   }, 

     "buildOptions": { 
     "emitEntryPoint": true, "preserveCompilationContext": true 
   }, 

     "runtimeOptions": { 
     "configProperties": { "System.GC.Server": true } 
   } 
 } 

        Creating the Model and Repository 
 I created the  Models  folder, added a file called  City.cs , and used it to define the class shown in Listing  23-2 . 

     Listing 23-2.    The Contents of the City.cs File in the Models Folder   

  namespace Cities.Models { 

       public class City { 
         public string Name { get; set; } 
         public string Country { get; set; } 
         public int? Population { get; set; } 
     } 
 } 

    To create a repository for the  City  objects, I added a class file called  Repository.cs  to the  Models  folder 
and used it to define the interface and implementation class shown in Listing  23-3 . 

     Listing 23-3.    The Contents of the Repository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace Cities.Models { 

       public interface IRepository { 

           IEnumerable<City> Cities { get; } 
         void AddCity(City newCity); 
     } 

       public class MemoryRepository : IRepository { 

           private List<City> cities = new List<City> { 
             new City { Name = "London", Country = "UK", Population = 8539000}, 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

722

             new City { Name = "New York", Country = "USA", Population = 8406000 }, 
             new City { Name = "San Jose", Country = "USA", Population = 998537 }, 
             new City { Name = "Paris", Country = "France", Population = 2244000 } 
         }; 

           public IEnumerable<City> Cities => cities; 

           public void AddCity(City newCity) { 
             cities.Add(newCity); 
         } 
     } 
 } 

         Creating the Controller, Layout, and Views 
 Only one controller is required for the examples in this chapter. I created the  Controllers  folder, added a 
class file called  HomeController.cs , and used it to define the controller shown in Listing  23-4 . 

     Listing 23-4.    The Contents of the HomeController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 
 using Cities.Models; 

   namespace Cities.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           public ViewResult Index() => View(repository.Cities); 

           public ViewResult Create() => View(); 

           [HttpPost] 
         public IActionResult Create(City city) { 
             repository.AddCity(city); 
             return RedirectToAction("Index"); 
         } 
     } 
 } 

    The controller provides an  Index  action that lists the objects in the repository and a pair of  Create  
methods that will allow the user to use a form to create new  City  objects, following the same pattern as 
examples in earlier chapters. 

 The views in this application will use a shared layout. I created the  Views/Shared  folder, added a layout 
a file called  _Layout.cshtml  in the  Views/Shared  folder, and added the markup shown in Listing  23-5 . 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

723

 ■   Note    Since the purpose of this chapter is to demonstrate how tag helpers work, the layout and the views 
for the example application are written using standard HTML elements only, which will be replaced as different 
tag helpers are introduced.  

     Listing 23-5.    The Contents of the _Layout.cshtml File in the Views/Shared Folder   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   Next, I created the  Views/Home  folder and added a file called  Index.cshtml  with the markup shown in 
Listing  23-6 . 

     Listing 23-6.    The Contents of the Index.cshtml File in the Views/Home Folder   

  @model IEnumerable<City> 

   @{  Layout = "_Layout"; } 

   <table class="table table-condensed table-bordered"> 
     <thead class="bg-primary"> 
         <tr> 
             <th>Name</th> 
             <th>Country</th> 
             <th class="text-right">Population</th> 
         </tr> 
     </thead> 
     <tbody> 
         @foreach (var city in Model) { 
             <tr> 
                 <td>@city.Name</td> 
                 <td>@city.Country</td> 
                 <td class="text-right">@city.Population?.ToString("#,###")</td> 
             </tr> 
         } 
     </tbody> 
 </table> 
 <a href="/Home/Create" class="btn btn-primary">Create</a> 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

724

    This view uses the sequence of  City  objects to populate a table and includes an  a  element that targets 
the  /Home/Create  URL, styled as a button using Bootstrap. For the second view, I added a file called  Create.
cshtml  to the  Views/Home  folder, with the markup shown in Listing  23-7 . 

     Listing 23-7.    The Contents of the Create.cshtml File in the Views/Home Folder   

  @model City 

   @{  Layout = "_Layout"; } 

   <form method="post" action="/Home/Create"> 
     <div class="form-group"> 
         <label for="Name">Name:</label> 
         <input class="form-control" name="Name" /> 
     </div> 
     <div class="form-group"> 
         <label for="Country">Country:</label> 
         <input class="form-control" name="Country" /> 
     </div> 
     <div class="form-group"> 
         <label for="Population">Population:</label> 
         <input class="form-control" name="Population" /> 
     </div> 

       <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

    I created a view imports file called  _ViewImports.cshtml  in the  Views  folder and added the 
expression shown in Listing  23-8 . This allows me to refer to the classes in the  Models  folder without using 
namespaces. 

     Listing 23-8.    The Contents of the _ViewImports.cshtml File in the Views Folder   

 @using Cities.Models 

   The views in this example rely on the Bootstrap CSS package. To add Bootstrap to the example project, 
I used the Bower Configuration File item template to create a file called  bower.json  in the root folder of the 
project and added the package shown in Listing  23-9  to the  dependencies  section. 

     Listing 23-9.    Adding Bootstrap in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6"  
   } 
 } 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

725

        Configuring the Application 
 The final preparatory step is to configure the application, as shown in Listing  23-10 . This is the same basic 
configuration that I have been using in all the example projects in this part of the book, with an addition to 
register the repository as a service using the singleton life cycle. 

     Listing 23-10.    The Contents of the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
  using Cities.Models;  

   namespace Cities { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddSingleton<IRepository, MemoryRepository>();  
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app) { 
              app.UseStatusCodePages();  
              app.UseDeveloperExceptionPage();  
              app.UseStaticFiles();  
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

    If you run the application, you will see the list of the  City  objects that the repository creates by default. 
Click the Create button, fill out the form, and click the Add button; a new object will be added to the 
repository, as shown in Figure  23-1 .    

  Figure 23-1.    Running the application       

 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

726

     Creating a Tag Helper 
 As with many MVC features, the best way to understand tag helpers is to create one, which reveals how they 
operate and how they fit into an application. In the sections that follow, I go through the process of creating and 
applying a tag helper that will apply the  Bootstrap  CSS classes for a  button  element so that an element like this: 

   ... 
 <button type="submit" bs-button-color="danger">Add</button> 
 ... 

   will be transformed into this: 

   ... 
 <button type="submit" class="btn btn-danger">Add</button> 
 ... 

   The tag helper will recognize the  bs-button-color  attribute and use its value to set the  class  attribute 
on the element sent to the browser. This isn’t the most dramatic—or useful—transformation, but it provides 
a foundation for explaining how tag helpers work. 

     Defining the Tag Helper Class 
    Tag helpers can be defined anywhere in the project, but it helps to keep them together because, unlike most 
MVC components, they need to be registered before they can be used. I am going to create the tag helpers in 
the  Infrastructure/TagHelpers  folder, which I added to the project. 

 Tag helpers are derived from the  TagHelper  class, which is defined in the  Microsoft.AspNetCore.
Razor.TagHelpers  namespace. To create a tag helper, I added a file called  ButtonTagHelper.cs  file to the 
 Infrastructure/TagHelpers  folder and used it to define the class shown in Listing  23-11 . 

      Listing 23-11.    The Contents of the ButtonTagHelper.cs File in the Infrastructure/TagHelpers Folder   

  using Microsoft.AspNetCore.Razor.TagHelpers; 

   namespace Cities.Infrastructure.TagHelpers { 

       public class ButtonTagHelper : TagHelper { 

           public string BsButtonColor { get; set; } 

           public override void Process(TagHelperContext context, 
                                      TagHelperOutput output) { 

               output.Attributes.SetAttribute("class", $"btn btn-{BsButtonColor}"); 
         } 
     } 
 } 

    The  TagHelper  class defines a  Process  method, which is overridden by subclasses to implement the 
behavior that transforms elements. The name of the tag helper combines the name of the element it transforms 
followed by  TagHelper . In the case of the example, the class name  ButtonTagHelper  tells MVC that this is a 
tag helper that operates on  button  elements. The scope of a tag helper can be broadened or narrowed using 
attributes, which I describe in the “Managing the Scope of a Tag Helper” section, but this is the default behavior. 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

727

 ■   Tip    Asynchronous tag helpers can be created by overriding the  ProcessAsync  method instead of the 
 Process  method, but this isn’t required for most helpers, which tend to make small and focused changes to 
HTML elements. The default implementation of  ProcessAsync  calls the  Process  method anyway. You can see 
an example of an asynchronous tag helper in Chapter   24    .  

   Receiving Context Data 
    Tag helpers receive information about the element they are transforming through an instance of the 
 TagHelperContext  class, which is received as an argument to the  Process  method and which defines the 
properties described in Table  23-3 .  

   Table 23-3.    The TagHelperContext Properties   

 Name  Description 

  AllAttributes   This property returns a read-only dictionary of the attributes applied to the element 
being transformed, indexed by name and by index. 

  Items   This property returns a dictionary that is used to coordinate between tag helpers, as 
described in the “Coordinating Between Tag Helpers” section. 

  UniqueId   This property returns a unique identifier for the element being transformed. 

 Although you can access details of the element’s attributes through the  AllAttributes  dictionary, 
a more convenient approach is to define a property whose name corresponds to the attribute you are 
interested in, like this: 

   ... 
 public string  BsButtonColor  { get; set; } 
 ... 

   When a tag helper is being used, MVC inspects the properties it defines and sets the value of any 
whose name matches attributes applied to the HTML element. As part of this process, MVC will try to 
convert an attribute value to match the type of the C# property so that  bool  properties can be used to 
receive  true  and  false  attribute values and  int  properties can be used to receive numeric attribute 
values such as  1  and  2 . 

 WHAT HAPPENED TO HTML HELPERS?

    Earlier versions of ASP.NET MVC used HTML helpers to generate form elements. HTML helpers were 
methods accessed through Razor expressions that begin with  @Html  so that creating an  input  element 
for the  Population  property would be done like this: 

   ... 
 @Html.TextBoxFor(m => m.Population) 
 ... 

http://dx.doi.org/10.1007/978-1-4842-0397-2_24


CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

728

   The problem with HTML helper expressions is that they don’t fit with the structure of HTML elements, 
which leads to awkward expressions like this one, which adds Bootstrap styles to the element that is 
produced: 

   ... 
 @Html.TextBoxFor(m => m.Population,  new { @class = "form-control" } ) 
 ... 

   Attributes have to be expressed in a dynamic object and have to be prefixed with  @  if they are reserved 
C# words, such as  class . As the HTML elements that are required become more complex, the HTML 
helper expression becomes more awkward. Tag helpers remove the awkwardness by using HTML 
attributes, like this: 

   ... 
 <input class="form-control" asp-for="Population" /> 
 ... 

   The result is a more natural fit with the nature of HTML and produces views that are easier to read and 
understand. MVC still supports HTML helpers (and, in fact, tag helpers use HTML helpers behind the 
scenes), so you can use them for backward compatibility in views originally developed for MVC 5, but 
new views should take advantage of the more natural approach that tag helpers provide.  

 The name of the attribute is automatically converted from the default HTML style,  bs-button-color , to 
the C# style,  BsButtonColor . You can use any attribute prefix except  asp-  (which Microsoft uses) and  data-  
(which is reserved for custom attributes that are sent to the client). In the example, I use this attribute to 
receive the color scheme to apply to the  button  element in the  Process  method, as follows: 

   ... 
 output.Attributes.SetAttribute("class", $"btn btn-{ BsButtonColor }"); 
 ... 

   Properties for which there are no corresponding HTML element attributes are not set, which means you 
should check to ensure that you are not dealing with  null  or default values. See the “Managing the Scope of 
Tag Helper” section for details of changing the scope of a tag helper so that it is used only on elements that 
define the attributes you depend on. 

 ■   Tip    Using the HTML attribute name for tag helper properties doesn’t always lead to readable or 
understandable classes. You can break the link between the name of the property and the attribute it represents 
using the  HtmlAttributeName  attribute, which can be used to specify the HTML attribute that the property will 
represent.   

   Producing Output 
    The  Process  method transforms an element by configuring the  TagHelperOutput  object that is received as 
an argument. The  TagHelperOuput  starts out describing the HTML element as it appears in the Razor view 
and is modified through the properties and methods described in Table  23-4 .  



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

729

 In the  ButtonTagHelper  class, I used the  Attributes  dictionary to add a  class  attribute to the 
HTML element that specifies the Bootstrap styles for a button, including the value of the  BsButtonColor  
property, which means that different colors can be specified using the Bootstrap names such as  primary , 
 info , and  danger .   

     Registering Tag Helpers 
    Tag helper classes can be used only once they have been registered using the Razor  @addTagHelper  
expression. The set of views to which a tag helper will be applied depends on where the  @addTagHelper  
expression is used. For a single view, the expression appears in the view itself. For a subset of the views 
in an application, the expression appears in a  _ViewImports.cshtml  file in the folder that contains the 
views or a parent folder, such that the  @addTagHelper  expression in the  /Views/Home/_ViewImports.
cshtml  file registers tag helpers for all of the views associated with the  Home  controller. I want the tag 
helpers that I create in this chapter to be available in all the views in the application, so I used the final 
option, which is to add the  @addTagHelper  expression to the  Views/_ViewImports.cshtml  file, as shown 
in Listing  23-12 . 

     Listing 23-12.    Registering Tag Helpers in the _ViewImports.cshtml File   

 @using Cities.Models 
  @addTagHelper Cities.Infrastructure.TagHelpers.*, Cities  

   Table 23-4.    The TagHelperOutput Properties and Methods   

 Name  Description 

  TagName   This property is used to get or set the tag name for the output element. 

  Attributes   This property returns a dictionary containing the attributes for the output element. 

  Content   This property returns a  TagHelperContent  object that is used to set the content of the 
element. 

  PreElement   This property returns a  TagHelperContext  object that is used to insert content in the 
view before the output element. See the “Prepending and Appending Content and 
Elements” section. 

  PostElement   This property returns a  TagHelperContext  object that is used to insert content in 
the view after the output element. See the “Prepending and Appending Content and 
Elements” section. 

  PreContent   This property returns a  TagHelperContext  object that is used to insert content before 
the output element’s content. See the “Prepending and Appending Content and 
Elements” section. 

  PostContent   This property returns a  TagHelperContext  object that is used to insert content after the 
output element’s content. See the “Prepending and Appending Content and Elements” 
section. 

  TagMode   This property specifies how the output element will be written, using a value from the 
 TagMode  enumeration. See the “Creating Shorthand Elements” section. 

  SupressOuput()   Calling this method prevents the element being included in the view. See the 
“Suppressing the Output Element” section. 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

730

   The first part of the argument specifies the names of the tag helper classes, with support for wildcards, 
and the second part specifies the name of the assembly in which they are defined. In the listing, I have 
registered any tag helper in the  Cities.Infrastructure.TagHelpers  namespace from the  Cities  assembly.  

     Using a Tag Helper 
 The final step is to use the tag helper to transform an element. In Listing  23-13 , I have removed the  class  
attribute from the  button  element in the  Create.cshtml  view and replaced it with the attribute that the 
 ButtonTagHelper  class looks for. 

     Listing 23-13.    Using a Tag Helper in the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

   <form method="post" action="/Home/Create"> 
     <div class="form-group"> 
         <label for="Name">Name:</label> 
         <input class="form-control" name="Name" /> 
     </div> 
     <div class="form-group"> 
         <label for="Country">Country:</label> 
         <input class="form-control" name="Country" /> 
     </div> 
     <div class="form-group"> 
         <label for="Population">Population:</label> 
         <input class="form-control" name="Population" /> 
     </div> 

        <button type="submit" bs-button-color="danger">Add</button>  
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

    If you run the application and click the Create button, the browser will request the  /Home/Create  URL, 
and you will see that the style and color of the Add button has changed, as shown in Figure  23-2 .  

  Figure 23-2.    Using a tag helper to style a button       

 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

731

 UNIT TESTING A TAG HELPER

    Unit testing a tag helper class is a relatively simple process that hinges on providing the  Process  method 
with meaningful content to work with. Here is an example unit test for the tag helper in Listing  23-11 : 

    using System.Collections.Generic; 
 using System.Linq; 
 using System.Threading.Tasks; 
 using Cities.Infrastructure.TagHelpers; 
 using Microsoft.AspNetCore.Razor.TagHelpers; 
 using Xunit; 

   namespace Cities.Tests { 

       public class TagHelperTests { 

           [Fact] 
         public void TestTagHelper() { 
             // Arrange 
             var context = new TagHelperContext( 
                 new TagHelperAttributeList(), 
                 new Dictionary<object, object>(), 
                 "myuniqueid"); 

               var output = new TagHelperOutput("button", 
                 new TagHelperAttributeList(), (cache, encoder) => 
                     Task.FromResult<TagHelperContent> 
                         (new DefaultTagHelperContent())); 

               // Act 
             var tagHelper = new ButtonTagHelper { 
                 BsButtonColor = "testValue" 
             }; 
             tagHelper.Process(context, output); 

               // Assert 
             Assert.Equal($"btn btn-{tagHelper.BsButtonColor}", 
                 output.Attributes["class"].Value); 
         } 
     } 
 } 

    Most of the work in this unit test sets up the  TagHelperContext  and  TagHelperOutput  objects so they 
can be passed to the  Process  method of the tag helper and inspected to ensure that the HTML element 
has been transformed correctly. The amount of effort required to prepare a tag helper for testing 
depends, naturally enough, on the complexity of the HTML it operates on and the degree by which it is 
transformed. Most tag helpers are relatively simple, however, and can be tested by following the basic 
pattern shown earlier.   



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

732

     Managing the Scope of a Tag Helper 
    Tag helpers are applied to all the elements of a given type, which means that the  Process  method of the 
 ButtonTagHelper  class created in the previous section will be invoked for every  button  element in every 
view in the application. This isn’t always useful. To give an example of the problem, I added another button 
element to the  Create.cshtml  view, as shown in Listing  23-14 . 

     Listing 23-14.    Adding a Button Element in the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

   <form method="post" action="/Home/Create"> 
     <div class="form-group"> 
         <label for="Name">Name:</label> 
         <input class="form-control" name="Name" /> 
     </div> 
     <div class="form-group"> 
         <label for="Country">Country:</label> 
         <input class="form-control" name="Country" /> 
     </div> 
     <div class="form-group"> 
         <label for="Population">Population:</label> 
         <input class="form-control" name="Population" /> 
     </div> 

       <button type="submit" bs-button-color="danger">Add</button> 
      <button type="reset" class="btn btn-primary" >Reset</button>  
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

    The new button element already has a  class  attribute and doesn’t require the transformation 
performed by the  ButtonTagHelper  class. But if you run the application and request the  /Home/Create  URL, 
you will see that a problem has arisen, as illustrated by Figure  23-3 .  

  Figure 23-3.    The effect of the default scope of a tag helper       

 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

733

 You can see the cause of the poor formatting by looking at the HTML sent to the browser, which reveals 
a problem with the  class  attribute, as follows: 

   <button type="reset"  class="btn btn-" >Reset</button> 

   MVC applied the  ButtonTagHelper  to the new  button  element but doesn’t set a value for the 
 BsButtonColor  property because there is no corresponding  bs-button-color  attribute on the HTML 
element. As a consequence, the tag helper replaces the  class  attribute with one that doesn’t correctly 
specify Bootstrap styles and produces a poorly formatted element. 

   Narrowing the Scope of a Tag Helper 
 There are two possible approaches to solving this problem. The first is to modify the  ButtonTagHelper  class 
so that it is sensitive to the different button elements it might encounter. For the example application, this 
would invoke checking to see whether there is a  bs-button-color  attribute and making sure not to replace 
a  class  attribute if one has been defined. The problem with this approach is that the tag helper class gets 
more and more complicated as views that contain  button  elements are added to the application, and all 
of the new additional complexity describes the conditions under which the  ButtonTagHelper  class won’t 
perform its transformation. 

 The second approach is to allow a tag helper to describe restrictions on how it is used, narrowing the 
scope in which it will be applied. Tag helper restrictions are applied using the  HtmlTargetElement  attribute, 
as shown in Listing  23-15 . 

      Listing 23-15.    Narrowing the Scope in the ButtonTagHelper.cs File   

  using Microsoft.AspNetCore.Razor.TagHelpers; 

   namespace Cities.Infrastructure.TagHelpers { 

        [HtmlTargetElement("button", Attributes = "bs-button-color", ParentTag = "form")]  
     public class ButtonTagHelper : TagHelper { 

           public string BsButtonColor { get; set; } 

           public override void Process(TagHelperContext context, 
                                      TagHelperOutput output) { 

               output.Attributes.SetAttribute("class", $"btn btn-{BsButtonColor}"); 
         } 
     } 
 } 

    The  HtmlTargetElement  attribute describes the elements to which the tag helper applies. The 
first argument specifies the element type and supports the additional named properties described in 
Table  23-5 .  



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

734

 In Listing  23-15 , I restricted the  ButtonTagHelper  class so that it is applied only to  button  elements 
that have the  bs-button-color  attribute and whose parent is a  form  element. If you run the application and 
request the  /Home/Create  URL, you will see that the Reset button is no longer transformed since it lacks the 
required attribute, as shown in Figure  23-4 .   

  Figure 23-4.    Narrowing the scope of a tag helper       

   Table 23-5.    The HtmlTargetElement Properties   

 Name  Description 

  Attributes   This property is used to specify that a tag helper should be applied only to elements that 
have a given set of attributes, supplied as a comma-separated list. An element must have 
all of the specified attributes. An attribute name that ends with an asterisk will be treated 
like a prefix so that  bs-button-*  will match  bs-button-color ,  bs-button-size , and so on. 

  ParentTag   This property is used to specify that a tag helper should be applied only to elements that 
are contained within an element of a given type. 

  TagStructure   This property is used to specify that a tag helper should be applied only to elements whose 
tag structure corresponds to the given value from the  TagStructure  enumeration, which 
defines  Unspecified ,  NormalOrSelfClosing , and  WithoutEndTag . 

   Widening the Scope of a Tag Helper 
 The  HtmlTargetElement  attribute can also be used to widen the scope of a tag helper so that it matches a 
broader range of elements. This is useful when you need to perform the same transformation on multiple 
element types, which goes against the premise of matching elements based on the tag helper class name, as 
shown in Listing  23-16 . 

     Listing 23-16.    Widening the Scope of a Tag Helper in the ButtonTagHelper.cs File   

  using Microsoft.AspNetCore.Razor.TagHelpers; 

   namespace Cities.Infrastructure.TagHelpers { 

        [HtmlTargetElement(Attributes = "bs-button-color", ParentTag = "form")]  
     public class ButtonTagHelper : TagHelper { 

           public string BsButtonColor { get; set; } 

 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

735

           public override void Process(TagHelperContext context, 
                                      TagHelperOutput output) { 

               output.Attributes.SetAttribute("class", $"btn btn-{BsButtonColor}"); 
         } 
     } 
 } 

    This listing omits the element type for  HtmlTargetElement , which means that the tag helper will be 
applied to any element that has a  bs-button-color  attribute, regardless of the element type. In Listing  23-17 , 
I have modified the  a  element in the form, which uses the same set of Bootstrap styles as  button  elements so 
that it will be transformed by the tag helper. 

     Listing 23-17.    Modifying an Anchor Element in the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

   <form method="post" action="/Home/Create"> 
     <div class="form-group"> 
         <label for="Name">Name:</label> 
         <input class="form-control" name="Name" /> 
     </div> 
     <div class="form-group"> 
         <label for="Country">Country:</label> 
         <input class="form-control" name="Country" /> 
     </div> 
     <div class="form-group"> 
         <label for="Population">Population:</label> 
         <input class="form-control" name="Population" /> 
     </div> 

       <button type="submit" bs-button-color="danger">Add</button> 
     <button type="reset" class="btn btn-primary" >Reset</button> 
      <a bs-button-color="primary" href="/Home/Index">Cancel</a>  
 </form> 

    Broadening the scope of a tag helper means that you don’t have to create tag helpers that repeat the 
same operation on different element types. Some care is required, however, because it is easy to create a 
tag helper that will start matching elements too broadly in the future as the contents of the views in the 
application evolves. A more balanced approach is to apply the  HtmlTargetElement  attribute multiple times, 
specifying the complete set of elements that will be transformed as a combination of narrowly defined 
matches, as shown in Listing  23-18 . 

     Listing 23-18.    Balancing the Tag Helper Scope in the ButtonTagHelper.cs File   

  using Microsoft.AspNetCore.Razor.TagHelpers; 

   namespace Cities.Infrastructure.TagHelpers { 

        [HtmlTargetElement("button", Attributes = "bs-button-color", ParentTag = "form")]  



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

736

      [HtmlTargetElement("a", Attributes = "bs-button-color", ParentTag = "form")]  
     public class ButtonTagHelper : TagHelper { 

           public string BsButtonColor { get; set; } 

           public override void Process(TagHelperContext context, 
                                      TagHelperOutput output) { 

               output.Attributes.SetAttribute("class", $"btn btn-{BsButtonColor}"); 
         } 
     } 
 } 

    This configuration has the same effect on the application but ensures that the tag helper doesn’t cause 
problems if I start adding  bs-button-color  attributes to different element types for a different reason later in 
the development process. 

 ORDERING TAG HELPER EXECUTION

 As a general rule, it is a good idea to use only one tag helper on any given HTML element. That’s 
because it is easy to create a situation where one tag helper tramples on the transformation applied 
by another, overwriting attribute values or content. If you do need to apply multiple tag helpers, then 
you can control the sequence in which they execute by setting the  Order  property, which is inherited 
from the  TagHelper  base class. Managing the sequence can help minimize the conflicts between tag 
helpers, although it is still easy to encounter problems.     

     Advanced Tag Helper Features 
 The previous section demonstrated how to create a basic tag helper, but that just scratches the surface of what’s 
possible. In the sections that follow, I show more advanced uses for tag helpers and the features they provide. 

     Creating Shorthand Elements 
    Tag helpers are not restricted to transforming the standard HTML elements and can also be used to replace 
custom elements with commonly used content. This can be a useful feature for making views more concise 
and making their intent more obvious. To demonstrate, I replaced the  button  elements in the  Create.
cshtml  view with the custom elements shown in Listing  23-19 . 

     Listing 23-19.    Adding Custom HTML Elements in the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

   <form method="post" action="/Home/Create"> 
     <div class="form-group"> 
         <label for="Name">Name:</label> 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

737

         <input class="form-control" name="Name" /> 
     </div> 
     <div class="form-group"> 
         <label for="Country">Country:</label> 
         <input class="form-control" name="Country" /> 
     </div> 
     <div class="form-group"> 
         <label for="Population">Population:</label> 
         <input class="form-control" name="Population" /> 
     </div> 
      <formbutton type="submit" bg-color="danger" />  
      <formbutton type="reset" />  
     <a bs-button-color="primary" href="/Home/Index">Cancel</a> 
 </form> 

    The  formbutton  element isn’t part of the HTML specification and won’t be understood by browsers. 
Instead, I am going to use these elements as a shorthand for generating the button elements that the form 
requires. I added a class file called  FormButtonTagHelper.cs  to the  Infrastructure/TagHelper  folder and 
defined the class shown in Listing  23-20 . 

 ■   Tip    When dealing with custom elements that are not part of the HTML specification, you must apply the 
 HtmlTargetElement  attribute and specify the element name, as shown in Listing  23-20 . The convention of 
applying tag helpers to elements based on the class name works only for standard element names.  

        Listing 23-20.    The FormButtonTagHelper.cs File in the Infrastructure/TagHelpers Folder   

  using Microsoft.AspNetCore.Razor.TagHelpers; 

   namespace Cities.Infrastructure.TagHelpers { 

       [HtmlTargetElement("formbutton")] 
     public class FormButtonTagHelper : TagHelper { 

           public string Type { get; set; } = "Submit"; 

           public string BgColor { get; set; } = "primary"; 

           public override void Process(TagHelperContext context, 
                                      TagHelperOutput output) { 

               output.TagName = "button"; 
             output.TagMode = TagMode.StartTagAndEndTag; 
             output.Attributes.SetAttribute("class", $"btn btn-{BgColor}"); 
             output.Attributes.SetAttribute("type", Type); 
             output.Content.SetContent(Type == "submit" ? "Add" : "Reset"); 
         } 
     } 
 } 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

738

    The  Process  method uses the properties of the  TagHelperOuput  object to generate a completely 
different element: the  TagName  property is used to specify a  button  element, the  TagMode  property is used to 
specify that the element is written using start and end tags, the  Attributes.SetAttribute  method is used to 
define a class attribute with  Bootstrap  styles, and the  Content  property is used to set the element content. 

 ■   Tip    Notice that I set the  type  attribute on the output element in Listing  23-20 . This is because any 
attribute for which there is a property defined by a tag helper is omitted from the output element. This is usually 
a good idea because it stops the attributes used to configure tag helpers from appearing in the HTML sent 
to the browser. However, in this case, I used the  type  attribute to configure the tag helper, and I want it to be 
present in the output element as well.  

 Setting the  TagName  property is important because the output element is written in the same style as the 
custom element by default. In Listing  23-19 , I used a self-closing tag, like this: 

    ... 
 <formbutton type="submit" bg-color="danger" /> 
 ... 

   Since I want the output element to contain content, I have to explicitly specify the  TagMode.
StartTagAndEndTag  enumeration value so that separate start and end tags are used. 

 The  Content  property returns an instance of the  TagHelperContent  class, which is used to set the 
content of elements. Table  23-6  describes the most important  TagHelperContent  methods.  

   Table 23-6.    Useful TagHelperContent Methods   

 Name  Description 

  SetContent(text)   This method sets the content of the output element. The  string  argument is 
encoded so that it is safe for inclusion in an HTML element. 

  SetHtmlContent(html)   This method sets the content of the output element. The  string  argument is 
assumed to be safely encoded. Use with caution. 

  Append(text)   This method safely encodes the specified  string  and adds it to the content of 
the output element. 

  AppendHtml(html)   This method adds the specified  string  to the content of the output element 
without performing any encoding. Use with caution. 

  Clear()   This method removes the content of the output element. 

 In Listing  23-20 , the tag helper uses the  SetContent  method to set the content of the output element 
based on the value of the  type  attribute, which is provided through the  Type  property. If you run the 
application and request the  /Home/Create  URL, you will see that the custom  formbutton  elements have 
been replaced with standard HTML elements so that these elements: 

   ... 
 <formbutton type="submit" bg-color="danger" /> 
 <formbutton type="reset" /> 
 ... 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

739

   are transformed into these elements: 

   <button class="btn btn-danger" type="submit">Add</button> 
 <button class="btn btn-primary" type="reset">Reset</button> 

        Prepending and Appending Content and Elements 
 The  TagHelperOutput  class provides four properties that make it easy to inject new content into a view so 
that it surrounds an element or the element’s content, as described in Table  23-7 . In the sections that follow, 
I explain how you can insert content around and inside the target element.  

   Table 23-7.    The TagHelperOutput Properties for Appending Context and Elements   

 Name  Description 

  PreElement   This property is used to insert elements into the view before the target element. 

  PostElement   This property is used to insert elements into the view after the target element. 

  PreContent   This property is used to insert content into the target element, before any existing content. 

  PostContent   This property is used to insert content into the target element, after any existing content. 

   Inserting Content Around the Output Element 
 The first  TagHelperOuput  properties are  PreElement  and  PostElement , which are used to insert elements 
into the view before and after the output element. As a demonstration, I added a class file called 
 ContentWrapperTagHelper.cs  and used it to create the tag helper class shown in Listing  23-21 . 

     Listing 23-21.    The ContentWrapperTagHelper.cs File in the Infrastructure/TagHelpers Folder   

  using Microsoft.AspNetCore.Mvc.Rendering; 
 using Microsoft.AspNetCore.Razor.TagHelpers; 

   namespace Cities.Infrastructure.TagHelpers { 

       [HtmlTargetElement("div", Attributes = "title")] 
     public class ContentWrapperTagHelper : TagHelper { 

           public bool IncludeHeader { get; set; } = true; 
         public bool IncludeFooter { get; set; } = true; 

           public string Title { get; set; } 

           public override void Process(TagHelperContext context, 
                                      TagHelperOutput output) { 

               output.Attributes.SetAttribute("class", "panel-body"); 

               TagBuilder title = new TagBuilder("h1"); 
             title.InnerHtml.Append(Title); 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

740

               TagBuilder container = new TagBuilder("div"); 
             container.Attributes["class"] = "bg-info panel-body"; 

               container.InnerHtml.AppendHtml(title); 

               if (IncludeHeader) { 
                 output.PreElement.SetHtmlContent(container); 
             } 

               if (IncludeFooter) { 
                 output.PostElement.SetHtmlContent(container); 
             } 
         } 
     } 
 } 

    This tag helper transforms  div  elements that have a  title  attribute, and it works by using the 
 PreElement  and  PostElement  properties to add a header and a footer element that will surround the output 
element. 

 When generating new HTML elements, you can use standard C# string formatting to create the 
content you require, but this is an awkward and error-prone process for all but the simplest elements. A 
more robust approach is to use the  TagBuilder  class, which is defined in the  Microsoft.AspNetCore.
Mvc.Rendering  namespace and which allows elements to be created in a more structured manner. The 
 TagHelperContent  class defines methods that accept  TagBuilder  objects, which makes it easy to create 
HTML content in tag helpers. 

 This tag helper uses the  TagBuilder  class to create an  h1  element that is contained in a  div  element 
that has been styled with  Bootstrap  classes. There are optional  bool include-header  and  include-footer  
attributes used to specify where the content is injected, and the default is to add elements before and after 
the output element. In Listing  23-22 , I have updated the shared layout so that it contains an element that will 
be transformed by the tag helper. 

     Listing 23-22.    Enabling a Tag Helper in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
      <div title="Cities">@RenderBody()</div>  
 </body> 
 </html> 

   If you run the application, you will see that the tag helper is applied throughout the application and 
adds a header and footer to every page, as illustrated by Figure  23-5 .   



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

741

   Inserting Content Inside the Output Element 
 The  PreContent  and  PostContent  properties are used to insert content inside the output element, 
surrounding the original contents. As a demonstration, I added a class called  TableCellTagHelper.cs  to the 
 Infrastructure/TagHelpers  folder and used it to define the class shown in Listing  23-23 . 

     Listing 23-23.    The TableCellTagHelper.cs File in the Infrastructure/TagHelpers Folder   

  using Microsoft.AspNetCore.Razor.TagHelpers; 

   namespace Cities.Infrastructure.TagHelpers { 

       [HtmlTargetElement("td", Attributes = "wrap")] 
     public class TableCellTagHelper : TagHelper { 

  Figure 23-5.    Inserting HTML elements with a tag helper       

 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

742

           public override void Process(TagHelperContext context, 
                                      TagHelperOutput output) { 

               output.PreContent.SetHtmlContent("<b><i>"); 
             output.PostContent.SetHtmlContent("</i></b>"); 
         } 
     } 
 } 

    This tag helper operates on  td  elements with the  wrap  attribute and inserts  b  and  i  elements around 
the output element’s content. In Listing  23-24 , I have added the  wrap  attribute to one of the table cells in the 
 Index.cshtml  view file. 

     Listing 23-24.    Adding an HTML Attribute in the Index.cshtml File   

  @model IEnumerable<City> 

   @{  Layout = "_Layout"; } 

   <table class="table table-condensed table-bordered"> 
     <thead class="bg-primary"> 
         <tr> 
             <th>Name</th> 
             <th>Country</th> 
             <th class="text-right">Population</th> 
         </tr> 
     </thead> 
     <tbody> 
         @foreach (var city in Model) { 
             <tr> 
                  <td wrap>@city.Name</td>  
                 <td>@city.Country</td> 
                 <td class="text-right">@city.Population?.ToString("#,###")</td> 
             </tr> 
         } 
     </tbody> 
 </table> 
 <a href="/Home/Create" class="btn btn-primary">Create</a> 

    If you run the application, you will see that the first column of cells in the table that lists the  City  objects 
is shown in bold italic text. Examine the HTML sent to the browser and you will see how the content added 
through  PreContent  and  PostContent  properties appears on both sides of the element’s original content, as 
follows: 

   ... 
 <tr> 
      <td wrap><b><i>London</i></b></td>  
     <td>UK</td> 
     <td class="text-right">8,539,000</td> 
 </tr> 
 ... 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

743

 ■     Tip    Notice that the  wrap  attribute has been left on the output element. This is because I didn’t define a 
property in the tag helper class that corresponds to this attribute. If you want to prevent attributes from being 
included in the output, then define a property for them in the tag helper class, even if you don’t need to use the 
attribute value.    

     Getting View Context Data and Using Dependency Injection 
 One of the most common uses for tag helpers—including the built-in helpers that I described in Chapters   24     
and   25    —is to transform elements so they contain details of the current request or the current view model. 
As an example, I added a class file called  FormTagHelper.cs  to the  Infrastructure/TagHelpers  folder and 
defined the class shown in Listing  23-25 . 

     Listing 23-25.    The Contents of the FormTagHelper.cs File in the Infrastructure/TagHelpers Folder   

  using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.Rendering; 
 using Microsoft.AspNetCore.Mvc.Routing; 
 using Microsoft.AspNetCore.Mvc.ViewFeatures; 
 using Microsoft.AspNetCore.Razor.TagHelpers; 

   namespace Cities.Infrastructure.TagHelpers { 

       public class FormTagHelper : TagHelper { 
         private IUrlHelperFactory urlHelperFactory; 

           public FormTagHelper(IUrlHelperFactory factory) { 
             urlHelperFactory = factory; 
         } 

           [ViewContext] 
         [HtmlAttributeNotBound] 
         public ViewContext ViewContextData { get; set; } 

           public string Controller { get; set; } 
         public string Action { get; set; } 

           public override void Process(TagHelperContext context, 
                                      TagHelperOutput output) { 

               IUrlHelper urlHelper = urlHelperFactory.GetUrlHelper(ViewContextData); 

               output.Attributes.SetAttribute("action", urlHelper.Action( 
                 Action ?? 
                     ViewContextData.RouteData.Values["action"].ToString(), 
                 Controller ?? 
                     ViewContextData.RouteData.Values["controller"].ToString())); 
         } 
     } 
 } 

http://dx.doi.org/10.1007/978-1-4842-0397-2_24
http://dx.doi.org/10.1007/978-1-4842-0397-2_25


CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

744

    As its name suggests, the  FormTagHelper  class operates on  form  elements, setting their  action  attributes 
to specify where form data will be sent. If the  form  element has  controller  and  action  attributes, then 
these values will be used to generate the target URL; otherwise, the  controller  and  action  values from the 
routing data for the current request will be used. 

 To get context data, I added a property called  ViewContextData  and decorated it with two attributes, like this: 

   ... 
  [ViewContext]  
  [HtmlAttributeNotBound]  
 public ViewContext ViewContextData { get; set; } 
 ... 

   The  ViewContext  attribute denotes that the value of this property should be assigned a  ViewContext  
object when a new instance of the  FormTagHelper  class is created, as described in Chapter   18    . The 
 ViewContext  class provides details of the view that is being rendered, the routing data, and the current HTTP 
request, as described in Chapter   21    . 

 The  HtmlAttributeNotBound  attribute prevents MVC from assigning a value to this property if there is 
a  view-context  attribute on the  input  HTML element. This is good practice, especially if you are writing tag 
helpers for other developers to use. 

 ■   Tip    There is a built-in tag helper for the  form  class that can be used to target action methods and that you 
should use in real projects. The helper in this section is just to demonstrate how context data can be used. See 
Chapter   24     for details of the built-in tag helper.  

 Tag helpers can declare dependencies on services in their constructor, which are resolved using the 
dependency injection feature. In this example, I declared a dependency on the  IUrlHelperFactory  service, 
which allows outgoing URLs to be created from routing data (and is the service behind the  Url  property 
provided by the  Controller  class that I described in Chapter   16    ). Within the  Process  method, the tag helper 
uses the  IUrlHelperFactory.GetUrlHelper  method to get an  IUrlHelper  object that is configured using 
the  ViewContext  object and that is then used to create a URL for the  action  attribute on the output element. 
Listing  23-26  shows the preparation of the view, in which I have removed the  action  attribute so that it can 
be set by the tag helper. 

     Listing 23-26.    Removing a Form Element Attribute in the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

    <form method="post">  
     <div class="form-group"> 
         <label for="Name">Name:</label> 
         <input class="form-control" name="Name" /> 
     </div> 
     <div class="form-group"> 
         <label for="Country">Country:</label> 
         <input class="form-control" name="Country" /> 
     </div> 
     <div class="form-group"> 
         <label for="Population">Population:</label> 

http://dx.doi.org/10.1007/978-1-4842-0397-2_18
http://dx.doi.org/10.1007/978-1-4842-0397-2_21
http://dx.doi.org/10.1007/978-1-4842-0397-2_24
http://dx.doi.org/10.1007/978-1-4842-0397-2_16


CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

745

         <input class="form-control" name="Population" /> 
     </div> 
     <formbutton type="submit" bg-color="danger" /> 
     <formbutton type="reset" /> 
     <a bs-button-color="primary" href="/Home/Index">Cancel</a> 
 </form> 

    If you run the application, request the  /Home/Create  URL, and examine the HTML that is sent to the 
browser, you will see that the  form  element has an  action  attribute whose value is obtained using context 
data, as follows: 

   ... 
 <form method="post"  action="/Home/Create" > 
 ... 

        Working with the View Model 
 Tag helpers can operate on the view model, tailoring the transformations they perform or the output 
they create. To demonstrate, I added a file called  LabelAndInputTagHelper.cs  to the  Infrastructure/
TagHelpers  folder and used it to define the class shown in Listing  23-27 . 

     Listing 23-27.    The LabelAndInputTagHelper.cs File in the Infrastructure/TagHelpers Folder   

  using Microsoft.AspNetCore.Mvc.ViewFeatures; 
 using Microsoft.AspNetCore.Razor.TagHelpers; 

   namespace Cities.Infrastructure.TagHelpers { 

       [HtmlTargetElement("label", Attributes = "helper-for")] 
     [HtmlTargetElement("input", Attributes = "helper-for")] 
     public class LabelAndInputTagHelper : TagHelper { 

           public ModelExpression HelperFor { get; set; } 

           public override void Process(TagHelperContext context, 
                                      TagHelperOutput output) { 

               if (output.TagName == "label") { 
                 output.TagMode = TagMode.StartTagAndEndTag; 
                 output.Content.Append(HelperFor.Name); 
                 output.Attributes.SetAttribute("for", HelperFor.Name); 

               } else if (output.TagName == "input") { 
                 output.TagMode = TagMode.SelfClosing; 
                 output.Attributes.SetAttribute("name", HelperFor.Name); 
                 output.Attributes.SetAttribute("class", "form-control"); 
                 if (HelperFor.Metadata.ModelType == typeof(int?)) { 
                     output.Attributes.SetAttribute("type", "number"); 
                 } 
             } 
         } 
     } 
 } 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

746

    This tag helper transforms  label  and  input  elements that have a  helper-for  attribute. The important 
part of this tag helper is the type of the  HelperFor  property, which is used to receive the value of the  helper-
for  attribute. 

   ... 
 public  ModelExpression  HelperFor { get; set; } 
 ... 

   The  ModelExpression  class is used when you want to operate on part of the view model, which is most 
easily explained by jumping forward and showing how the tag helper is applied in the view, as shown in 
Listing  23-28 . 

     Listing 23-28.    Applying a Tag Helper that Operates on the Model in the Create.cshtml File   

  @model Cities.Models.City 

   @{  Layout = "_Layout"; } 

   <form method="post"> 
     <div class="form-group"> 
          <label helper-for="Name" />  
          <input helper-for="Name" />  
     </div> 
     <div class="form-group"> 
          <label helper-for="Country" />  
          <input helper-for="Country" />  
     </div> 
     <div class="form-group"> 
          <label helper-for="Population"/>  
          <input helper-for="Population" />  
     </div> 
     <formbutton type="submit" bg-color="danger" /> 
     <formbutton type="reset" /> 
     <a bs-button-color="primary" href="/Home/Index">Cancel</a> 
 </form> 

    The value of the  helper-for  attribute is a property from the  Model  class, which is detected by MVC and 
presented to the tag helper as a  ModelExpression  object. 

 I am not going to describe the  ModelExpression  class in any detail because any introspection on types 
lead to endless lists of classes and properties. Further, MVC comes with a useful set of built-in tag helpers 
that use the view model to transform elements, as described in Chapter   24     and which mean that you don’t 
need to create your own. 

 For the example tag helper, I use two basic features that are worth describing. The first is to get the 
name of the model property so that I can include it in the output element, like this: 

   ... 
 output.Content.Append( HelperFor.Name ); 
 output.Attributes.SetAttribute("for",  HelperFor.Name ); 
 ... 

   The  Name  property returns the name of the model property. The second feature is to get the type of the 
model property so that I can change the value of the  type  attribute on  input  elements, like this: 

http://dx.doi.org/10.1007/978-1-4842-0397-2_24


CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

747

   ... 
 if ( HelperFor.Metadata.ModelType == typeof(int?) ) { 
     output.Attributes.SetAttribute("type", "number"); 
 } 
 ... 

   If you run the example, request the  /Home/Create  URL, and examine the HTML sent to the browser, you 
will see that the following elements: 

   <div class="form-group"> 
     <label for="Name">Name</label> 
     <input name="Name" class="form-control" /> 
 </div> 
 <div class="form-group"> 
     <label for="Country">Country</label> 
     <input name="Country" class="form-control" /> 
 </div> 
 <div class="form-group"> 
     <label for="Population">Population</label> 
     <input name="Population" class="form-control" type="number" /> 
 </div> 

   The  type  attribute for the  Population input  element has been set to  number  to reflect the fact that the 
 City.Population  property in the C# class is an  int , showing how the HTML produced by a tag helper can 
reflect different characteristics of the model. Depending on which browser you use, this  input  element will 
only allow numbers to be entered.  

     Coordinating Between Tag Helpers 
 The  TagHelperContext.Items  property provides a dictionary that is used to coordinate between tag helpers 
that operate on elements and those that operate on their descendants. To demonstrate the use of the  Items  
collection, I added a class file called  CoordinatingTagHelpers.cs  to the  Infrastructure/TagHelpers  folder 
and used it to define the pair of tag helpers shown in Listing  23-29 . 

     Listing 23-29.    The CoordinatingTagHelpers.cs File in the Infrastructure/TagHelpers Folder   

  using Microsoft.AspNetCore.Razor.TagHelpers; 

   namespace Cities.Infrastructure.TagHelpers { 

       [HtmlTargetElement("div", Attributes = "theme")] 
     public class ButtonGroupThemeTagHelper : TagHelper { 

           public string Theme { get; set; } 

           public override void Process(TagHelperContext context, 
                                      TagHelperOutput output) { 
             context.Items["theme"] = Theme; 
         } 
     } 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

748

       [HtmlTargetElement("button", ParentTag = "div")] 
     [HtmlTargetElement("a", ParentTag = "div")] 
     public class ButtonThemeTagHelper : TagHelper { 

           public override void Process(TagHelperContext context, 
                                      TagHelperOutput output) { 

               if (context.Items.ContainsKey("theme")) { 
                 output.Attributes.SetAttribute("class", 
                     $"btn btn-{context.Items["theme"]}"); 
             } 
         } 
     } 
 } 

    The first tag helper is the  ButtonGroupThemeTagHelper  class, which operates on  div  elements that have 
a  theme  attribute. Coordinating tag helpers can transform their own elements, but this example simply adds 
the value of the  theme  attribute to the  Items  dictionary so that it is available to tag helpers that operate on 
elements contained within the  div  element. 

 The second tag helper is the  ButtonThemeTagHelper  class, which operates on  button  and  a  elements 
that are contained within a  div  element. This helper uses the  theme  value from the  Items  dictionary to set 
the Bootstrap style for its output elements. Listing  23-30  shows a set of elements to which these helpers will 
be applied. 

     Listing 23-30.    Applying Coordinating Tag Helpers in the Create.cshtml File   

  @model Cities.Models.City 

   @{  Layout = "_Layout"; } 

   <form method="post"> 
     <div class="form-group"> 
         <label helper-for="Name" /> 
         <input helper-for="Name" /> 
     </div> 
     <div class="form-group"> 
         <label helper-for="Country" /> 
         <input helper-for="Country" /> 
     </div> 
     <div class="form-group"> 
         <label helper-for="Population" /> 
         <input helper-for="Population" /> 
     </div> 
      <div theme="primary">  
          <button type="submit">Add</button>  
          <button type="reset">Reset</button>  
          <a href="/Home/Index">Cancel</a>          
      </div>  
 </form> 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

749

    If you run the application and request the  /Home/Create  URL, you will see that the group of buttons 
are all styled in the same way. If you change the value of the  theme  attribute on the  div  element to another 
Bootstrap theme setting, such as  info ,  danger , or  primary , and reload the page, you will see the change 
reflected in the styles of the buttons, as shown in Figure  23-6 .   

  Figure 23-6.    Coordinating tag helpers       

     Suppressing the Output Element 
 Tag helpers can be used to prevent an element from being included in the HTML sent to the browser by 
calling the  SuppressOuput  method on the  TagHelperOutput  object that is received as an argument to the 
 Process  method. In Listing  23-31 , I have added an element to the shared layout that displays a highly visible 
message but that I only want to be shown for requests to a given action. 

     Listing 23-31.    Adding a Visible Message in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
      <div show-for-action="Index" class="panel-body bg-danger">  
          <h2>Important Message</h2>  
      </div>  
     <div title="Cities">@RenderBody()</div> 
 </body> 
 </html> 

   The  show-for-action  attribute specifies the name of the action for which I want to display the warning. 
This wouldn’t be a useful way of controlling the inclusion of content in a real application, but it is sufficient 
for an example application with only one controller and two action names. Listing  23-32  shows the contents 
of the  SelectiveTagHelper.cs  class file, which I added to the  Infrastructure/TagHelpers  folder. 

 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

750

     Listing 23-32.    The SelectiveTagHelper.cs File in the Infrastructure/TagHelpers Folder   

  using System; 
 using Microsoft.AspNetCore.Mvc.Rendering; 
 using Microsoft.AspNetCore.Mvc.ViewFeatures; 
 using Microsoft.AspNetCore.Razor.TagHelpers; 

   namespace Cities.Infrastructure.TagHelpers { 

       [HtmlTargetElement(Attributes = "show-for-action")] 
     public class SelectiveTagHelper : TagHelper { 

           public string ShowForAction { get; set; } 

           [ViewContext] 
         [HtmlAttributeNotBound] 
         public ViewContext ViewContext { get; set; } 

           public override void Process(TagHelperContext context, 
                                      TagHelperOutput output) { 

               if (!ViewContext.RouteData.Values["action"].ToString() 
                     .Equals(ShowForAction, StringComparison.OrdinalIgnoreCase)) { 
                 output.SuppressOutput(); 
             } 
         } 
     } 
 } 

    This tag helper uses the  ViewContext  to get the  action  value from the routing data and compares 
it to the value of the  show-for-action  attribute on the HTML element. If they don’t match, then the 
 SuppressOutput  method is called. To see the effect, start the application and request the  /Home/Index  and  /
Home/Create  URLs. As Figure  23-7  shows, the message is displayed only when the  Index  action is targeted.    

  Figure 23-7.    Suppressing elements using a tag helper       

 



CHAPTER 23 ■ UNDERSTANDING TAG HELPERS

751

     Summary 
 In this chapter, I described the use of tag helpers, which are a new addition to ASP.NET Core MVC. I 
explained the role they play in a Razor view and demonstrated how custom tag helpers are created, 
registered, and applied. I showed you how to control the scope of a tag helper and described the different 
ways that tag helpers can transform HTML elements. In the next chapter, I describe the tag helpers that are 
used to work with HTML form elements.     



753© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_24

    CHAPTER 24   

 Using the Form Tag Helpers                          

    MVC provides a set of built-in tag helpers that are used to perform commonly required transformations on 
HTML elements. In this chapter, I describe the tag helpers that operate on HTML forms, which include the 
 form ,  input ,  label ,  select ,  option , and  textarea  elements. In Chapter   25    , I describe the other built-in tag 
helpers, which provide nonform features. Table  24-1  puts the form tag helpers in context.  

   Table 24-1.    Putting the Form Tag Helpers in Context   

 Question  Answer 

 What are they?  The form tag helpers are used to transform HTML form elements 
so that you don’t have to write custom tag helpers to solve the 
most common problems. 

 Why are they useful?  The form tag helpers ensure that HTML form elements, which 
include the elements inside forms, such as  label  and  input , are 
generated consistently. For the most part, the tag helpers ensure 
that important attributes like  id ,  name , and  for  are set directly 
using view model classes, but some of the tag helpers can generate 
content as well, such as populating  select  elements with  option  
elements. 

 How are they used?  The built-in tag helpers look for attributes prefixed with  asp- , such 
as  asp-for . 

 Are there any pitfalls or limitations?  The only limitation is the way that model data has to be provided 
to the tag helper that generates  option  elements inside of  select  
elements. In the “Working with Select and Option Elements,” 
I describe the problem and provide a custom tag helper that 
solves it. 

 Are there any alternatives?  You can write HTML forms in views without using the tag helper 
attributes at all. You could also write your own tag helpers, using 
the techniques that I described Chapter   23    . 

 Have they changed since MVC 5?  The form tag helpers are a new feature in ASP.NET Core MVC and 
provide a more elegant approach than the HTML helpers that 
delivered similar functionality in previous versions of MVC. See 
the “What Happened to HTML Helpers?” sidebar for more details. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_25
http://dx.doi.org/10.1007/978-1-4842-0397-2_23


CHAPTER 24 ■ USING THE FORM TAG HELPERS

754

 Table  24-2  summarizes the chapter.  

   Table 24-2.    Chapter Summary   

 Problem  Solution  Listing 

 Set the  action  attribute on a  form  element  Use the  form  element tag helper  1–5 

 Prevent cross-site request forgery  Apply the  ValidateAntiForgeryToken  attribute 
to the action method and, optionally, set the 
 asp-antiforgery  attribute to  true  on the  form  
element 

 6, 7 

 Set the  id ,  name , and  value  attributes 
on an  input  element 

 Apply the  asp-for  attribute  8 

 Format a value displayed by an  input  
element 

 Apply the  asp-format  attribute to the  input  
element or apply the  DisplayFormat  attribute 
in the model class 

 9–12 

 Set the  for  attribute and content of a 
 label  element 

 Apply the  asp-for  attribute  13 

 Change the content of  label  elements 
to which the  asp-for  attribute has been 
applied 

 Apply the  Display  attribute to the model class 
property and use the  Name  property to specify 
the content 

 14 

 Set the  id  and  name  attributes on a  select  
element 

 Apply the  asp-for  attribute  15 

 Generate  option  elements  Apply the  asp-items  attribute  16–21 

 Set the  id  and  name  attributes on a 
 textarea  element 

 Apply the  asp-for  attribute  22, 23 

     Preparing the Example Project 
 In this chapter, I continue using the Cities project that I created in Chapter   23    . A little preparation is required 
to disable the custom tag helpers, to reset the views to standard HTML, and to add a NuGet package that I 
rely on later in the chapter. 

     Changing the Tag Helper Registration 
 For this chapter, I want to enable the built-in tag helpers that come with MVC and disable the custom 
helpers that I created in Chapter   23    . Listing  24-1  shows the changes that I made to the view imports file, in 
which I replaced the  @addTagHelper  expression for the helper classes in the  Cities  assembly with one that 
sets up the MVC tag helpers instead. 

     Listing 24-1.    Changing the Tag Helpers in the _ViewImports.cshtml File   

 @using Cities.Models 
  @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers  

   The built-in tag helpers are defined in an assembly called  Microsoft.AspNetCore.Mvc.TagHelpers , 
which is added to the project as a dependency of the  Microsoft.AspNetCore.Mvc  package listed in the 
 project.json  file.  

http://dx.doi.org/10.1007/978-1-4842-0397-2_23
http://dx.doi.org/10.1007/978-1-4842-0397-2_23


CHAPTER 24 ■ USING THE FORM TAG HELPERS

755

     Resetting the Views and Layout 
 Listing  24-2  shows the contents of the  Index.cshtml  view, in which I have removed the attributes that are 
used by the custom tag helper classes. 

     Listing 24-2.    The Contents of the Index.cshtml File   

  @model IEnumerable<City> 

   @{  Layout = "_Layout"; } 

   <table class="table table-condensed table-bordered"> 
     <thead class="bg-primary"> 
         <tr> 
             <th>Name</th> 
             <th>Country</th> 
             <th class="text-right">Population</th> 
         </tr> 
     </thead> 
     <tbody> 
         @foreach (var city in Model) { 
             <tr> 
                 <td>@city.Name</td> 
                 <td>@city.Country</td> 
                 <td class="text-right">@city.Population?.ToString("#,###")</td> 
             </tr> 
         } 
     </tbody> 
 </table> 
 <a href="/Home/Create" class="btn btn-primary">Create</a> 

    Listing  24-3  shows the corresponding changes to the  Create.cshtml  file, which I have returned to using 
standard HTML elements without the attributes used in Chapter   23    . 

     Listing 24-3.    The Contents of the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

   <form method="post" action="/Home/Create"> 
     <div class="form-group"> 
         <label for="Name">Name:</label> 
         <input class="form-control" name="Name" /> 
     </div> 
     <div class="form-group"> 
         <label for="Country">Country:</label> 
         <input class="form-control" name="Country" /> 
     </div> 

http://dx.doi.org/10.1007/978-1-4842-0397-2_23


CHAPTER 24 ■ USING THE FORM TAG HELPERS

756

     <div class="form-group"> 
         <label for="Population">Population:</label> 
         <input class="form-control" name="Population" /> 
     </div> 
     <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

    The final change is to the shared layout, as shown in Listing  24-4 . 

     Listing 24-4.    The Contents of the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   If you run the application, you will see the list of cities, and you can click the Create button and fill in the 
form to submit new data to the server, as shown in Figure  24-1 .    

  Figure 24-1.    Running the example application       

 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

757

     Working with Form Elements 
 The  FormTagHelper  class is the built-in tag helper for  form  elements and is used to manage the configuration 
of HTML forms so that they target the right action method based on the application’s routing configuration. 
This tag helper supports the attributes described in Table  24-3 .                 

   Table 24-3.    The Built-In Tag Helper Attributes for Form Elements   

 Name  Description 

  asp-controller   This attribute is used to specify the  controller  value to the routing system for 
the  action  attribute URL. If omitted, then the controller rendering the view 
will be used. 

  asp-action   This attribute is used to specify the action method for the  action  value to 
the routing system for the  action  attribute URL. If omitted, then the action 
rendering the view will be used. 

  asp-route-*   Attributes whose name begins with  asp-route-  are used to specify additional 
values for the action attribute URL so that the  asp-route-id  attribute 
is used to provide a value for the  id  segment to the routing system. 

  asp-route   This attribute is used to specify the name of the route that will be used to 
generate the URL for the  action  attribute. 

  asp-area   This attribute is used to specify the name of the area that will be used to 
generate the URL for the  action  attribute. 

  asp-antiforgery   This attribute controls whether anti-forgery information is added to the view, 
as described in the “Using the Anti-forgery Feature” section. 

     Setting the Form Target 
 The main purpose of the  FormTagHelper  class is to set the  action  attribute of the  form  element using the 
application’s routing configuration, ensuring that the form data is always sent to the correct URL, even when 
the routing scheme changes. In Listing  24-5 , I have used the  asp-action  and  asp-controller  attributes to 
target the  Create  action method on the  Home  controller. 

 ■   Note   The tag helper doesn’t set the  method  attribute, and if you omit it from the  form  element, then 
the browser will use a  GET  request to send the form data to the client. As I explained in Chapter   17    , this can 
cause problems if the form data is used to modify the data in the application. It is good practice to set the 
 method  attribute, even if you do want  GET  requests so that it is obvious that you have not forgotten to select 
a method type.  

http://dx.doi.org/10.1007/978-1-4842-0397-2_17


CHAPTER 24 ■ USING THE FORM TAG HELPERS

758

     Listing 24-5.    Setting the Form Target in the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

    <form method="post" asp-controller="Home" asp-action="Create">  
     <div class="form-group"> 
         <label for="Name">Name:</label> 
         <input class="form-control" name="Name" /> 
     </div> 
     <div class="form-group"> 
         <label for="Country">Country:</label> 
         <input class="form-control" name="Country" /> 
     </div> 
     <div class="form-group"> 
         <label for="Population">Population:</label> 
         <input class="form-control" name="Population" /> 
     </div> 
     <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

    If you run the application, request the  /Home/Create  URL, and examine the HTML that is sent to the 
client, you will see that the tag helper adds an  action  attribute to the  form  element and sets its value using 
the routing system, as follows: 

   <form method="post"  action="/Home/Create" > 

        Using the Anti-forgery Feature 
    Cross-site request forgery (CSRF) is a way to exploit a web application to take advantage of the way 
that user requests are authenticated. Most web applications—including those created using ASP.NET 
Core—use cookies to identify which requests are related to a specific session, with which a user identify 
is usually associated. 

 CSRF—also known as  session riding —is described in detail at    http://en.wikipedia.org/wiki/Cross-
site_request_forgery      but relies on the user visiting a malicious website after using your web application 
and without explicitly ending their sessions by clicking a Logout button. The application still regards the 
user’s session as being active, and the cookie that the browser has stored has not yet expired. The malicious 
site contains some JavaScript code that sends a form request to your application that performs an operation 
without the user’s consent, where the nature of the operation will depend on the application being attacked. 
Since the JavaScript code is executed by the user’s browser, the request to the application includes the 
session cookie, and the application performs the operation without the user’s knowledge or consent. 

 If a  form  element doesn’t contain an  action  attribute—because it is being generated from the routing 
system with the  asp-controller  and  asp-acton  attributes—then the  FormTagHelper  class automatically 
enables the anti-CSRF feature, whereby a security token is added to the form in a hidden  input  element to 
the HTML sent to the client along with a cookie. The application will only process the request if it contains 
both the cookie and the hidden value from the form, which the malicious site cannot access. Each request 
for the form generates a new and unique set of security tokens. 

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery


CHAPTER 24 ■ USING THE FORM TAG HELPERS

759

 If you run the application, request the  /Home/Create  URL, and look at the HTML sent to the browser, 
you will see a hidden  input  element like this one: 

   <input name="__RequestVerificationToken" type="hidden" value="CfDJ8KuVkH8hFlRApe 
     FBxTrhCFTKZe0B9BKwnWDJqLRUDk__PrEwaeCJmiBbGkwW1ZI816c_TrM5XQkJBeqNI5IL8FhuO 
     RvjZuYIL-GZvnWZ62OThsZYT02HNX_Lu5LWDNWDdVoS5O5hZtzaoHLeY5lNto" /> 

   If you use the browser’s F12 tools, you can also see the corresponding cookie that is added to the 
response. Adding the security tokens to HTML responses is only part of the process; they must also be 
validated by the controller, as shown in Listing  24-6 . 

     Listing 24-6.    Validating Anti-forgery Tokens in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Cities.Models; 

   namespace Cities.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           public ViewResult Index() => View(repository.Cities); 

           public ViewResult Create() => View(); 

           [HttpPost] 
          [ValidateAntiForgeryToken]  
         public IActionResult Create(City city) { 
             repository.AddCity(city); 
             return RedirectToAction("Index"); 
         } 
     } 
 } 

    The  ValidateAntoForgeryToken  attribute ensures that a request contains valid anti-CSRF tokens and 
will throw an exception if they are absent or do not contain the expected values. 

 The  FormTagHelper  class provides the  asp-antiforgery  attribute to override the default anti-CSRF 
behavior. If the value of the attribute is  true , then the security tokens will be included in responses, even if 
the  form  element has an  action  attribute. If the value of the attribute is  false , then the security tokens will 
be disabled. In Listing  24-7 , I have explicitly enabled the feature, even though the security tokens would have 
been added anyway because there is no  action  attribute defined on the  form  element. 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

760

     Listing 24-7.    Enabling the Anti-CSRF Feature in the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

    <form method="post" asp-controller="Home" asp-action="Create"  
                      asp-antiforgery="true">  
     <div class="form-group"> 
         <label for="Name">Name:</label> 
         <input class="form-control" name="Name" /> 
     </div> 
     <div class="form-group"> 
         <label for="Country">Country:</label> 
         <input class="form-control" name="Country" /> 
     </div> 
     <div class="form-group"> 
         <label for="Population">Population:</label> 
         <input class="form-control" name="Population" /> 
     </div> 
     <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

 ■      Tip   Testing the anti-CSRF feature is a little tricky. I do it by requesting the URL that contains the form 
( /Home/Create  for the example) and then using the browser’s F12 developer tools to locate and remove the 
hidden  input  element from the form (or change the element’s value). When I populate the form and send it to 
the application, the browser doesn’t have one part of the required data, and the request should fail and show an 
error page.    

     Working with Input Elements 
          The  input  element is the backbone of HTML forms and provides the main means by which a user can 
provide an application with unstructured data. The  InputTagHelper  class is used to transform  input  
elements so they reflect the data type and format of the view model property they are used to gather, using 
the attributes described in Table  24-4 .  

   Table 24-4.    The Built-in Tag Helper Attributes for Input Elements   

 Name  Description 

  asp-for   This attribute is used to specify the view model property that the  input  
element represents. 

  asp-format   This attribute is used to specify a format used for the value of the view model 
property that the input element represents. 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

761

     Configuring Input Elements 
 The  asp-for  attribute is set to the name of a view model property, which is then used to set the  name ,  id , 
 type , and  value  attributes of the  input  element. In Listing  24-8 , I have applied the  asp-for  attribute to the 
 input  elements in the  Create.cshtml  view. 

     Listing 24-8.    Configuring Input Elements in the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

   <form method="post" asp-controller="Home" asp-action="Create" 
                     asp-antiforgery="true"> 
     <div class="form-group"> 
         <label for="Name">Name:</label> 
          <input class="form-control" asp-for="Name" />  
     </div> 
     <div class="form-group"> 
         <label for="Country">Country:</label> 
          <input class="form-control" asp-for="Country" />  
     </div> 
     <div class="form-group"> 
         <label for="Population">Population:</label> 
          <input class="form-control" asp-for="Population" />  
     </div> 
     <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

    If you run the application and request the  /Home/Create  URL, you will see that the tag helper has used 
the property specified by the  asp-for  attribute to tailor each  input  element, like this fragment (which omits 
the anti-CSRF security token): 

   <form method="post" action="/Home/Create"> 
     <div class="form-group"> 
         <label for="Name">Name:</label> 
          <input class="form-control" type="text" id="Name" name="Name" value="" />  
     </div> 
     <div class="form-group"> 
         <label for="Country">Country:</label> 
          <input class="form-control" type="text" id="Country"  
                 name="Country" value="" />  
     </div> 
     <div class="form-group"> 
         <label for="Population">Population:</label> 
          <input class="form-control" type="number" id="Population"  
                 name="Population" value="" />  
     </div> 
     <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

762

   The  type  attribute of the  input  element tells the browser how to display the element in a form. You can 
see a simple outcome of this process in the  input  element for the  Population  property, for which the  type  
attribute has been set to  number . This has been done because the C# type of the  Population  property is  int?  
and so the tag helper used the  type  attribute to indicate to the browser that only numeric values will be 
accepted. 

 ■   Note    The way that the  type  attribute is interpreted is left to the browser. Not all browsers respond to all 
the  type  values that are defined in the HTML5 specification, and even when they do, there are differences in 
how they are implemented. The  type  attribute can be a useful hint for the kind of data that you are expecting in 
a form, but you should use the model validation feature to ensure that users provide usable data, as described 
in Chapter   27    .  

 Table  24-5  describes the way that different C# property types are used to set the type attribute of  input  
elements.  

      Table 24-5.    C# Property Types and the Input Type Elements They Generate   

 C# Type  Input Element Type Attribute 

  byte, sbyte, int, uint, short, ushort, 
long, ulong  

 number 

  float ,  double ,  decimal    text , with additional attributes for model validation, as 
described in the following text 

  bool   checkbox 

  string   text 

  DateTime   datetime 

 The  float ,  double , and  decimal  types produce  input  elements whose  type  is  text  because not all 
browsers allow the full range of characters that can be used to express legal values of this type. To provide 
assistance to the user, the tag helper adds attributes to the  input  element that are used with the model 
validation feature, which I describe in Chapter   27    . 

 You can override the default mappings shown in Table  24-5  by defining the  type  attribute on the  input  
element. The tag helper won’t override the value you define, which allows you to take advantage of the 
different  input  element types available, such as  password  or  hidden , or the new types added in HTML5 such 
as  number . 

 One drawback of this approach is that you have to remember to set the  type  attribute in all of the views 
where  input  elements are generated for a given model property. If you need to override the default mapping 
in multiple views, then you can apply the  UIHint  attribute to the property in the C# model class, specifying 
one of the values shown in Table  24-6  as the attribute argument.  

 ■   Tip    The tag helper will set the  type  attribute of  input  elements to  text  if the model property isn’t one of 
the types in Table  24-5  and has not been decorated with the  UIHint  attribute.   

http://dx.doi.org/10.1007/978-1-4842-0397-2_27
http://dx.doi.org/10.1007/978-1-4842-0397-2_27


CHAPTER 24 ■ USING THE FORM TAG HELPERS

763

     Formatting Data Values 
 When the action method provides the view with a view model object, the tag helper uses the value of the 
property given to the  asp-for  attribute to set the  input  element’s  value  attribute. The  asp-format  attribute 
is used to specify how that data value is formatted. 

 To demonstrate, I added a new action method to the  Home  controller, as shown in Listing  24-9 . The action 
method selects the first  City  object from the repository and uses it as the view model for the  Create  view. 

     Listing 24-9.    Adding an Action Method in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Cities.Models; 
  using System.Linq;  

   namespace Cities.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           public ViewResult Index() => View(repository.Cities); 

            public ViewResult Edit() => View("Create", repository.Cities.First());  

           public ViewResult Create() => View(); 

   Table 24-6.    The UIHint Arguments and the Input Type Elements They Generate   

 Value  Input Element Type Attribute 

  HiddenInput    hidden  

  Password    password  

  Text    text  

  PhoneNumber    tel  

  Url    url  

  EmailAddress    email  

  Time    time  (this value is used to display the time component of a  DateTime  object) 

  Date    date  (this value is used to display the date component of a  DateTime  object) 

  DateTime-local    datetime-local  (this value is used to display a  DateTime  object without 
providing time zone information) 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

764

           [HttpPost] 
         [ValidateAntiForgeryToken] 
         public IActionResult Create(City city) { 
             repository.AddCity(city); 
             return RedirectToAction("Index"); 
         } 
     } 
 } 

    If you run the application, request the  /Home/Edit  URL, and examine the HTML that has been sent to the 
browser, you will see that the  value  attributes have been populated using the view model object, like this: 

   <input class="form-control" type="number" id="Population" 
        name="Population"  value="8539000"  /> 

   The  asp-format  attribute accepts a value that will be passed to the standard C# string formatting 
system, as shown in Listing  24-10 . 

     Listing 24-10.    Formatting a Data Value in the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

   <form method="post" asp-controller="Home" asp-action="Create" 
                     asp-antiforgery="true"> 
     <div class="form-group"> 
         <label for="Name">Name:</label> 
         <input class="form-control" asp-for="Name" /> 
     </div> 
     <div class="form-group"> 
         <label for="Country">Country:</label> 
         <input class="form-control" asp-for="Country" /> 
     </div> 
     <div class="form-group"> 
         <label for="Population">Population:</label> 
          <input class="form-control" asp-for="Population" asp-format="{0:#,###}" />  
     </div> 
     <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

    The attribute value is used verbatim, which means that you have to include the curly brace characters 
and the  0:  reference, as well as the format you require. If you run the application and request the  /Home/
Edit  URL, you will see that the  Population  value has been formatted like this: 

   <input class="form-control" type="number" id="Population" 
        name="Population"  value="8,539,000"  /> 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

765

   This feature should be used with caution because you must ensure that the rest of the application 
is configured to support the format you use. In this case, I have created a problem by formatting the 
 Population  value. The tag helper has set the type attribute of the  input  element to  number , using the default 
mappings described in Table  24-5  for the  Population  property, but the format string I have specified has 
generated a  value  attribute that contains non-numeric characters. The result is that browsers that respect 
the  number  element type (not all do, remember) may not display any value in the element. 

 You must also ensure that the application is able to parse values in the format you use. The example 
application expects to receive a  Population  value that can be parsed into an  int , and values that contain 
non-numeric characters will cause validation errors, as described in Chapter   27    . 

   Applying Formatting via the Model Class 
 If you always want to use the same formatting for a model property, then you can decorate the C# class with 
the  DisplayFormat  attribute, which is defined in the  System.ComponentModel.DataAnnotations  namespace. 
The  DisplayFormat  attribute requires two arguments to format a data value: the  DataFormatString  
argument specifies the formatting string, and the  ApplyFormatInEditMode  specifies that formatting should 
be used when values are being edited. In Listing  24-11 , I have decorated the  Population  attribute with the 
 DisplayFormat  attribute, using a format that can be processed by both the application and the browser as a 
number. 

     Listing 24-11.    Applying a Formatting Attribute to the Model Class in the City.cs File   

   using System.ComponentModel.DataAnnotations;  

   namespace Cities.Models { 

       public class City { 

           public string Name { get; set; } 
         public string Country { get; set; } 

            [DisplayFormat(DataFormatString = "{0:F2}", ApplyFormatInEditMode = true)]  
         public int? Population { get; set; } 
     } 
 } 

    The  asp-format  attribute takes precedence over the  DisplayFormat  attribute, so I have removed the 
attribute from the view, as shown in Listing  24-12 . 

     Listing 24-12.    Removing the Formatting Attribute in the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

   <form method="post" asp-controller="Home" asp-action="Create" 
       asp-antiforgery="true"> 
     <div class="form-group"> 
         <label for="Name">Name:</label> 
         <input class="form-control" asp-for="Name" /> 
     </div> 

http://dx.doi.org/10.1007/978-1-4842-0397-2_27


CHAPTER 24 ■ USING THE FORM TAG HELPERS

766

     <div class="form-group"> 
         <label for="Country">Country:</label> 
         <input class="form-control" asp-for="Country" /> 
     </div> 
     <div class="form-group"> 
         <label for="Population">Population:</label> 
          <input class="form-control" asp-for="Population" />  
         </div> 
     <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

    If you run the application and request the  /Home/Edit  URL, you will see that the  Population  value has 
been formatted with two decimal fractions, like this: 

   <input class="form-control" type="number" id="Population" 
     name="Population" value="8539000.00" /> 

          Working with Label Elements 
       The  label  element is transformed by the  LabelTagHelper  class, which uses the view model class to ensure that 
labels are typo-free and consistent. There is only one supported attribute, which is described in Table  24-7 .  

   Table 24-7.    The Built-in Tag Helper Attribute for Label Elements   

 Name  Description 

  asp-for   This attribute is used to specify the view model 
property that the  label  element represents. 

 The tag helper will use the name of the view model property to set the value of the  for  attribute and the 
contents of the  label  element. In Listing  24-13 , I have applied the  asp-for  attribute to the  label  elements in 
the form they will be transformed by the tag helper. 

     Listing 24-13.    Applying the Label Tag Helper in the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

   <form method="post" asp-controller="Home" asp-action="Create" 
       asp-antiforgery="true"> 
     <div class="form-group"> 
          <label asp-for="Name"></label>  
         <input class="form-control" asp-for="Name" /> 
     </div> 
     <div class="form-group"> 
          <label asp-for="Country"></label>  
         <input class="form-control" asp-for="Country" /> 
     </div> 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

767

     <div class="form-group"> 
          <label asp-for="Population"></label>  
         <input class="form-control" asp-for="Population" /> 
     </div> 
     <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

    Since the  label  elements are empty, the tag helper will use the model property names as the elements’ 
content and set the  for  attribute, which tells the browser which  input  element each  label  is associated 
with. If you run the example, request the  /Home/Create  or  /Home/Edit  URL, and inspect the HTML sent to 
the browser, you will see the following output elements: 

   <form method="post" action="/Home/Create"> 
     <div class="form-group"> 
          <label for="Name">Name</label>  
         <input class="form-control" type="text" id="Name" 
                name="Name" value="London" /> 
     </div> 
     <div class="form-group"> 
          <label for="Country">Country</label>  
         <input class="form-control" type="text" id="Country" 
                name="Country" value="UK" /> 
     </div> 
     <div class="form-group"> 
          <label for="Population">Population</label>  
         <input class="form-control" type="number" id="Population" 
                name="Population" value="8539000.00" /> 
     </div> 
     <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

   You can override the value used as the  label  element’s content by applying the  Display  attribute to the 
model class property, as shown in Listing  24-14 . 

     Listing 24-14.    Changing the Description for a Model Property in the City.cs File   

  using System.ComponentModel.DataAnnotations; 

   namespace Cities.Models { 

       public class City { 

            [Display(Name = "City")]  
         public string Name { get; set; } 

           public string Country { get; set; } 

           [DisplayFormat(DataFormatString = "{0:F2}", ApplyFormatInEditMode = true)] 
         public int? Population { get; set; } 
     } 
 } 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

768

    The  Name  argument specifies the value to use instead of the property name. If you run the example, 
request the  /Home/Create  URL, and examine the HTML sent to the browser, you will see that the content of 
the  label  element has changed, like this: 

   <div class="form-group"> 
      <label for="Name">City</label>  
     <input class="form-control" type="text" id="Name" name="Name" value="London" /> 
 </div> 

   Notice that the value of the  for  attribute has not changed, so the browser knows that the  label  element 
is associated with a specific  input  element, which is not affected by the  Display  attribute. 

 ■   Tip   You can prevent the tag helper from setting the content of a  label  element by defining it yourself. This 
is useful if you want your  label  elements to contain more than just the name of a property, which is all that the 
built-in tag helper can provide.   

     Working with Select and Option Elements 
          The  select  and  option  elements are used to provide the user with a fixed set of choices, rather than the 
open data entry that is possible with an  input  element. The  SelectTagHelper  is responsible for transforming 
 select  elements and supports the attributes described in Table  24-8 .  

   Table 24-8.    The Built-in Tag Helper Attributes for select Elements   

 Name  Description 

  asp-for   This attribute is used to specify the view model property that the  select  element 
represents. 

  asp-items   This attribute is used to specify a source of values for the option elements 
contained within the  select  element. 

 The  asp-for  attribute sets the value of the  for  and  id  attributes to reflect the model property that it 
receives. In Listing  24-15 , I have replaced the  input  element for the  Country  property with a  select  element 
that defines the  asp-for  attribute. 

     Listing 24-15.    Using a select Element in the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

   <form method="post" asp-controller="Home" asp-action="Create" 
       asp-antiforgery="true"> 
     <div class="form-group"> 
         <label asp-for="Name"></label> 
         <input class="form-control" asp-for="Name" /> 
     </div> 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

769

     <div class="form-group"> 
         <label asp-for="Country"></label> 
          <select class="form-control" asp-for="Country">  
              <option disabled selected value="">Select a Country</option>  
              <option>UK</option>  
              <option>USA</option>  
              <option>France</option>  
              <option>China</option>  
          </select>  
     </div> 
     <div class="form-group"> 
         <label asp-for="Population"></label> 
         <input class="form-control" asp-for="Population" /> 
     </div> 
     <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

    I have manually populated the  select  element with  option  elements that provide a range of countries 
for the user to choose from. If you run the application and request the  /Home/Create  URL, you will see that 
the HTML sent to the browser contains the following  select  element: 

    <select class="form-control" id="Country" name="Country">  
     <option disabled selected value="">Select a Country</option> 
     <option>UK</option> 
     <option>USA</option> 
     <option>France</option> 
     <option>China</option> 
 </select> 

   If you request the  /Home/Edit  URL and examine the HTML sent to the browser, you will see that 
the value of the  Country  property of the view model object has been used to change the selected  option  
element, like this: 

   <select class="form-control" id="Country" name="Country"> 
     <option disabled selected value="">Select a Country</option> 
      <option selected="selected">UK</option>  
     <option>USA</option> 
     <option>France</option> 
     <option>China</option> 
 </select> 

   The task of selecting an  option  element is performed by the  OptionTagHelper  class, which receives 
instructions from the  SelectTagHelper  through the  TagHelperContext.Items  collection. As I explained in 
Chapter   23    , this collection is used by tag helpers that need to work together, and I take advantage of the data 
that the  SelectTagHelper  adds to the  Items  collection in the next section, when I create a custom tag helper 
to work around a limitation of the built-in one. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_23


CHAPTER 24 ■ USING THE FORM TAG HELPERS

770

     Using a Data Source to Populate a select Element 
 Explicitly defining the  option  elements for a  select  element is a useful approach for choices that always 
have the same possible values but doesn’t help when you need to provide options that are taken from 
the data model or where you need the same set of options in multiple views and don’t want to manually 
maintain duplicated content.  

     Generating Option Elements from an enum 
 If you have a fixed set of options to present to the user and don’t want to duplicate them in views throughout 
the application, then you can use an  enum . I added a class file called  CountryNames.cs  to the  Models  folder 
and used it to define the  enum  shown in Listing  24-16 . 

     Listing 24-16.    The Contents of the CountryNames.cs File in the Models Folder   

  namespace Cities.Models { 

       public enum CountryNames { 
         UK, 
         USA, 
         France, 
         China   
     } 
 } 

    You can’t use an  enum  directly in the  asp-items  attribute because the tag helper expects to work with a 
sequence of  SelectListItem  objects. However, there is a convenient helper method available that performs 
the conversion that is required, as shown in Listing  24-17 . 

     Listing 24-17.    Using an enum to Generate option Elements in the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

   <form method="post" asp-controller="Home" asp-action="Create" 
       asp-antiforgery="true"> 
     <div class="form-group"> 
         <label asp-for="Name"></label> 
         <input class="form-control" asp-for="Name" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Country"></label> 
          <select class="form-control" asp-for="Country"  
                  asp-items="@new SelectList(Enum.GetNames(typeof(CountryNames)))">  
              <option disabled selected value="">Select a Country</option>  
          </select>  
     </div> 
     <div class="form-group"> 
         <label asp-for="Population"></label> 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

771

         <input class="form-control" asp-for="Population" /> 
     </div> 
     <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

    When using an enumeration, the best way to generate the  option  elements is to provide the  asp-items  
attribute with a  SelectList  object that is populated with the  enum  value names. Behind the scenes, the 
 SelectTagHelper  class generates  option  elements from an  IEnumerable<SelectListItem> , and the 
 SelectList  class implements this interface. 

 If you run the application and request the  /Home/Create  or  /Home/Edit  URL, you will see that the 
HTML sent to the browser includes a set of  option  elements that correspond to the values in the  enum , as 
follows: 

   <select class="form-control" id="Country" name="Country"> 
     <option disabled selected value="">Select a Country</option> 
      <option>UK</option>  
      <option>USA</option>  
      <option>France</option>  
      <option>China</option>  
 </select> 

   Notice that the tag helper has left the placeholder  option  element alone. Any  option  elements you 
define explicitly remain in place, which means that you don’t have to mix placeholders with your data 
values. 

   Generating Option Elements from the Model 
 If you need to generate  option  elements to reflect the data in the model, then the simplest approach is to 
provide the data required to generate the elements through the view bag, as shown in Listing  24-18 . 

      Listing 24-18.    Providing Select Data via the View Bag in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Cities.Models; 
 using System.Linq; 
  using Microsoft.AspNetCore.Mvc.Rendering;  

   namespace Cities.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           public ViewResult Index() => View(repository.Cities); 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

772

           public ViewResult Edit() { 
              ViewBag.Countries = new SelectList(repository.Cities  
                  .Select(c => c.Country).Distinct());  
             return View("Create", repository.Cities.First()); 
         } 

           public ViewResult Create() { 
              ViewBag.Countries = new SelectList(repository.Cities  
                  .Select(c => c.Country).Distinct());  
             return View(); 
         } 

           [HttpPost] 
         [ValidateAntiForgeryToken] 
         public IActionResult Create(City city) { 
             repository.AddCity(city); 
             return RedirectToAction("Index"); 
         } 
     } 
 } 

    The  Edit  and  Create  action methods set the  ViewBag.Countries  property to a  SelectList  object that 
is populated with the unique values for the  City.Country  property in the repository. In Listing  24-19 , I have 
used the  asp-items  attribute to tell the tag helper to obtain the data for the  option  elements from this view 
bag property. 

     Listing 24-19.    Using the View Bag for option Elements in the Create.cshtml File   

  @model City 

   @{  Layout = "_Layout"; } 

   <form method="post" asp-controller="Home" asp-action="Create" 
       asp-antiforgery="true"> 
     <div class="form-group"> 
         <label asp-for="Name"></label> 
         <input class="form-control" asp-for="Name" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Country"></label> 
          <select class="form-control" asp-for="Country" asp-items="ViewBag.Countries">  
             <option disabled selected value="">Select a Country</option> 
         </select> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Population"></label> 
         <input class="form-control" asp-for="Population" /> 
     </div> 
     <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

773

    If you run the application and request the  /Home/Create  or  /Home/Edit  URL, you will see that  option  
elements are created as follows: 

   <select class="form-control" id="Country" name="Country"> 
     <option disabled selected value="">Select a Country</option> 
      <option selected>UK</option>  
      <option>USA</option>  
      <option>France</option>  
 </select> 

      Using a Custom Tag Helper to Generate Option Elements from the Model 
 The problem with passing the data required for  option  elements through the view bag is that you must 
remember to generate the data in every action method that renders the view that uses the tag helper. This 
leads to code duplication, which you can get a sense of in Listing  24-18 , and makes it harder to test and 
maintain a controller properly. 

 A better approach is to create a custom tag helper that supplements the built-in  SelectTagHelper  class. 
I added a class file called  SelectOptionTagHelper.cs  to the  Infrastructure/TagHelper  folder and defined 
the class shown in Listing  24-20 . 

     Listing 24-20.    The SelectOptionTagHelper.cs File in the Infrastructure/TagHelper Folder   

  using System; 
 using System.Collections.Generic; 
 using System.Linq; 
 using System.Reflection; 
 using System.Threading.Tasks; 
 using Cities.Models; 
 using Microsoft.AspNetCore.Mvc.Rendering; 
 using Microsoft.AspNetCore.Mvc.TagHelpers; 
 using Microsoft.AspNetCore.Mvc.ViewFeatures; 
 using Microsoft.AspNetCore.Razor.TagHelpers; 

   namespace Cities.Infrastructure.TagHelpers { 

       [HtmlTargetElement("select", Attributes = "model-for")] 
     public class SelectOptionTagHelper : TagHelper { 
         private IRepository repository; 

           public SelectOptionTagHelper(IRepository repo) { 
             repository = repo; 
         } 

           public ModelExpression ModelFor { get; set; } 

           public override async Task ProcessAsync(TagHelperContext context, 
                                                 TagHelperOutput output) { 

               output.Content.Append( 
                 (await output.GetChildContentAsync(false)).GetContent()); 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

774

               object selected; 
             context.Items.TryGetValue(typeof(SelectTagHelper), out selected); 
             IEnumerable<string> selectedValues = (selected as IEnumerable<string>) 
                 ?? Enumerable.Empty<string>(); 

               PropertyInfo property = typeof(City) 
                 .GetTypeInfo().GetDeclaredProperty(ModelFor.Name); 

               foreach (string country in repository.Cities 
                     .Select(c => property.GetValue(c)).Distinct()) { 
                 if (selectedValues.Any(s => s.Equals(country, 
                         StringComparison.OrdinalIgnoreCase))) { 
                     output.Content 
                         .AppendHtml($"<option selected>{country}</option>"); 
                 } else { 
                     output.Content.AppendHtml($"<option>{country}</option>"); 
                 } 
             } 
         } 
     } 
 } 

    This tag helper operates on  select  elements with a  model-for  attribute and uses the dependency 
injection to receive a repository object that it can use to access model data independently from the controller 
that is rendering the view. This tag helper defines the asynchronous  ProcessAsync  method because it 
simplifies the process of obtaining and preserving any existing content of the  select  element, which is done 
through the  GetChildContentAsync  method. 

 The  SelectTagHelper  indicates the names of the  option  elements that should be selected through an 
entry in the  Items  collection using its own type as the key. The tag helper gets a list of the selected items and 
uses it in combination with the results of a LINQ query to generate  option  elements for each unique value 
in the repository. In Listing  24-21 , I have updated the  select  element so that the  asp-items  attribute is 
replaced with the  model-for  attribute, and I’ve added an  @addTagHelper  expression that enables the custom 
tag helper just for this view. 

     Listing 24-21.    Enabling the Custom Tag Helper in the Create.cshtml File   

  @model City 
  @addTagHelper Cities.Infrastructure.TagHelpers.SelectOptionTagHelper, Cities  

   @{  Layout = "_Layout"; } 

   <form method="post" asp-controller="Home" asp-action="Create" 
       asp-antiforgery="true"> 
     <div class="form-group"> 
         <label asp-for="Name"></label> 
         <input class="form-control" asp-for="Name" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Country"></label> 
          <select class="form-control" asp-for="Country" asp-items="ViewBag.Countries">  
             <option disabled selected value="">Select a Country</option> 
         </select> 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

775

     </div> 
     <div class="form-group"> 
         <label asp-for="Population"></label> 
         <input class="form-control" asp-for="Population" /> 
     </div> 
     <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

    The new tag helper generates the same output but does so without needing the view bag data that the 
built-in helper requires. I like this approach because it keeps the action methods focused on their specific 
tasks and preserves the overall shape of the application.    

     Working with Text Areas 
       The  textarea  element is used to solicit a larger amount of text from the user and is typically used for 
unstructured data, such as notes or observations. The  TextAreaTagHelper  is responsible for transforming 
 textarea  elements and supports the single attribute described in Table  24-9 .  

   Table 24-9.    The Built-in Tag Helper Attributes for TextArea Elements   

 Name  Description 

  asp-for   This attribute is used to specify the view model 
property that the  textarea  element represents. 

 The  TextAreaTagHelper  is relatively simple, and the value provided for the  asp-for  attribute is used 
to set the  id  and  name  attributes on the  textarea  element. To demonstrate this tag helper, I added a new 
property to the  City  model class, as shown in Listing  24-22 . 

     Listing 24-22.    Adding a Property in the City.cs File   

  using System.ComponentModel.DataAnnotations; 

   namespace Cities.Models { 

       public class City { 

           [Display(Name = "City")] 
         public string Name { get; set; } 

           public string Country { get; set; } 

           [DisplayFormat(DataFormatString = "{0:F2}", ApplyFormatInEditMode = true)] 
         public int? Population { get; set; } 

            public string Notes { get; set; }  
     } 
 } 



CHAPTER 24 ■ USING THE FORM TAG HELPERS

776

    In Listing  24-23 , I added a  textarea  element to the  Create.cshtml  view, using the  asp-for  attribute to 
associate the element with the  Notes  property of the  City  class. 

     Listing 24-23.    Adding a Text Area in the Create.cshtml File   

  @model City 
 @addTagHelper Cities.Infrastructure.TagHelpers.SelectOptionTagHelper, Cities 

   @{  Layout = "_Layout"; } 

   <form method="post" asp-controller="Home" asp-action="Create" 
       asp-antiforgery="true"> 
     <div class="form-group"> 
         <label asp-for="Name"></label> 
         <input class="form-control" asp-for="Name" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Country"></label> 
         <select class="form-control" asp-for="Country" asp-items="ViewBag.Countries"> 
             <option disabled selected value="">Select a Country</option> 
         </select> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Population"></label> 
         <input class="form-control" asp-for="Population" /> 
     </div> 
      <div class="form-group">  
          <label asp-for="Notes"></label>  
          <textarea class="form-control" asp-for="Notes"></textarea>  
      </div>  
     <button type="submit" class="btn btn-primary">Add</button> 
     <a class="btn btn-primary" href="/Home/Index">Cancel</a> 
 </form> 

    If you run the application and request the  /Home/Create  or  /Home/Edit  URL, you will see that the 
HTML sent to the browser includes a  textarea  element like this: 

   <div class="form-group"> 
     <label for="Notes">Notes</label> 
      <textarea id="Notes" name="Notes"></textarea>  
 </div> 

   The  TextAreaTagHelper  is relatively simple, but it provides consistency with the rest of the form 
element tag helpers that I have described in this chapter.  



CHAPTER 24 ■ USING THE FORM TAG HELPERS

777

     Understanding the Validation Form Tag Helpers 
 There are two other tag helpers that relate to HTML forms, which I have described in Table  24-10  for 
completeness but which I describe in Chapter   27    . These helpers are used to provide the user with feedback 
when the data the user provides doesn’t meet the expectations of the application.   

   Table 24-10.    The Validation Tag Helper Classes   

 Name  Description 

  ValidationMessage   This tag helper is used to provide validation 
feedback about a single form element. 

  ValidationSummary   This tag helper is used to provide validation 
feedback about all the elements in a form. 

     Summary 
 In this chapter, I described the built-in tag helpers that are used to transform the HTML form elements. 
These tag helpers ensure that forms are generated directly from the model class, which reduces the potential 
for errors and provides a consistent approach for writing Razor views. In the next chapter, I describe the 
remaining built-in tag helpers, which operate on a range of different HTML elements.     

http://dx.doi.org/10.1007/978-1-4842-0397-2_27


779© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_25

    CHAPTER 25   

 Using the Other Built-in Tag Helpers                          

 The tag helpers that I described in Chapter   24     are focused on producing HTML forms, but they are not the 
only built-in tag helpers that are provided by ASP.NET Core MVC. In this chapter, I describe tag helpers that 
manage JavaScript and CSS stylesheets, create URLs for anchor elements, provide cache busting for image 
elements, and support data caching. I also describe the tag helper that provides support for application-
relative URLs, which help ensure that browsers can access static content when an application is deployed 
into an environment shared with other applications. Table  25-1  summarizes the chapter.  

   Table 25-1.    Chapter Summary   

 Problem  Solution  Listing 

 Include content based on the 
hosting environment 

 Use the  environment  element  1, 2, 6 

 Select JavaScript files  Apply the  asp-src-include  and  asp-src-exclude  
attributes to a  script  element 

 3–5 

 Use a CDN for JavaScript files  Apply the  asp-fallback  attributes to a  script  
element 

 7, 8 

 Select CSS files  Apply the  asp-href-include  and  asp-href-exclude  
attributes to a  link  element 

 9 

 Use a CDN for CSS files  Apply the  asp-fallback  attributes to a  link  element  10 

 Generate a URL for an  anchor  element  Use the  AnchorTagHelper  helper  11 

 Ensure that changes to images are 
detected 

 Apply the  asp-append-version  attribute to an  img  
element 

 12 

 Cache data  Use the  cache  element  13–21 

 Create application relative URLs  Prefix URLs with a ~ character  22–24 

http://dx.doi.org/10.1007/978-1-4842-0397-2_24


CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

780

     Preparing the Example Project 
 I am going to continue using the Cities project from Chapter   24    . To prepare for this chapter, I created the 
 wwwroot/images  folder and added an image file called  city.png . This is a public domain panorama of the 
New York City skyline, as shown in Figure  25-1 .  

  Figure 25-1.    Adding an image to the project       

 This image file is included in the source code download for this chapter, which is available without 
charge from Apress.com. You can substitute your own image if you don’t want to download the example 
project. 

 The other change required for this chapter is to add jQuery to the project, as shown in Listing  25-1 . 
Click the Show All Files button at the top of the Solution Explorer to reveal the  bower.json  file. 

     Listing 25-1.    Add jQuery to the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
     "bootstrap": "3.3.6", 
      "jquery": "2.2.4"  
   } 
 } 

   If you run the application, you will be able to list the objects in the repository and create new ones, as 
illustrated in Figure  25-2 .   

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_24


CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

781

     Using the Hosting Environment Tag Helper 
    The  EnvironmentTagHelper  class is applied to the custom  environment  element and determines whether 
a region of content is included in the HTML sent to the browser based on the hosting environment, which I 
described in Chapter   14    . This may not seem like the most exciting place to start, but this tag helper is needed 
to make the best use of some related features that I describe later. The  environment  element relies on the 
 names  attribute, which I have described in Table  25-2  for future quick reference.  

  Figure 25-2.    Running the example application       

   Table 25-2.    The Built-in Tag Helper Attribute for environment Elements   

 Name  Description 

  names   This attribute is used to specify a comma-separated list of hosting environment names 
for which the content contained within the  environment  element will be included in the 
HTML sent to the client. 

 In Listing  25-2 , I have added  environment  elements to the shared layout including different content in 
the view for the development and production hosting environments. 

     Listing 25-2.    Using the environment Element in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_14


CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

782

 <body class="panel-body">     
      <environment names="development">  
          <div class="panel-body bg-info"><h2>This is Development</h2></div>  
      </environment>  
      <environment names="production">  
          <div class="panel-body bg-danger"><h2>This is Production</h2></div>  
      </environment>  
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   Figure  25-3  shows the effect of running the application in both the development and production 
hosting environments. The  environment  element checks the current hosting environment name and either 
includes the content it contains or omits it (the  environment  element itself is always omitted from the 
HTML sent to the client).   

  Figure 25-3.    Managing content using the hosting environment       

     Using the JavaScript and CSS Tag Helpers 
 The next category of built-in tag helpers is used to manage JavaScript files and CSS stylesheets through the 
 script  and  link  elements, which are usually included in a shared layout. As you will see in the sections 
that follow, these tag helpers are powerful and flexible but require close attention to avoid creating 
unexpected results. 

     Managing JavaScript Files 
 The  ScriptTagHelper  class is the built-in tag helper for  script  elements and is used to manage the 
inclusion of JavaScript files in views using the attributes described in Table  25-3 , which I describe in the 
sections that follow.                  

 



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

783

   Selecting JavaScript Files 
 The  asp-src-include  attribute is used to include JavaScript files in a view using globbing patterns. As 
I explained in Chapter   7    , globbing patterns support a set of wildcards that are used to match files. As 
reminder, Table  25-4  describes the most common globbing patterns.  

   Table 25-3.    The Built-in Tag Helper Attributes for script Elements   

 Name  Description 

  asp-src-include   This attribute is used to specify JavaScript files that will be included in 
the view. 

  asp-src-exclude   This attribute is used to specify JavaScript files that will be excluded 
from the view. 

  asp-append-version   This attribute is used for cache busting, as described in the 
“Understanding Cache Busting” sidebar. 

  asp-fallback-src   This attribute is used to specify a fallback JavaScript file to use if there 
is a problem with a content delivery network. 

  asp-fallback-src-include   This attribute is used to select JavaScript files that will be used if there 
is a content delivery network problem. 

  asp-fallback-src-exclude   This attribute is used to exclude JavaScript files to present their use 
when there is a content delivery network problem. 

  asp-fallback-test   This attribute is used to specify a fragment of JavaScript that will be 
used to determine whether JavaScript code has been correctly loaded 
from a content delivery network. 

   Table 25-4.    Common Globbing Patterns   

 Pattern  Example  Description 

  ?    js/src?.js   This pattern matches any single character except  / . The example matches 
any file contained in the  js  directory whose name is  src , followed by any 
character, followed by  .js , such as  js/src1.js  and  js/srcX.js  but not 
 js/src123.js  or  js/mydir/src1.js . 

  *    js/*.js   This pattern matches any number of characters except  / . The example 
matches any file contained in the  js  directory with the  .js  file extension, 
such as  js/src1.js  and  js/src123.js  but not  js/mydir/src1.js . 

  **    js/**/*.js   This pattern matches any number of characters including  / . The example 
matches any file with the  .js  extension that is contained within the  js  
directory or any subdirectory, such as  /js/src1.js  and  /js/mydir/src1.js . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_7


CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

784

 Using a  globbing  pattern with the  asp-src-include  attribute means that a view will always include the 
JavaScript files in the application, even if the name or path of the files changes or files are added or removed. 
In Listing  25-3 , I have selected the JavaScript files for the jQuery package, which Bower installs into the 
 wwwroot/lib/jquery/dist  folder. 

      Listing 25-3.    Selecting JavaScript Files in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
      <script asp-src-include="/lib/jquery/dist/**/*.js"></script>  
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body">     
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   The pattern that I used in this example is a common one. Patterns are evaluated within the  wwwroot  
folder, and the jQuery library is delivered as a single JavaScript file called  jquery.js . 

 The globbing pattern tries to select the jQuery file while accommodate any future changes in the way 
that jQuery is distributed, such as changing the JavaScript file name. If you run the example and examine the 
HTML sent to the client, you will see that it contains a problem, as follows: 

   <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
      <script src="/lib/jquery/dist/jquery.js"></script>  
      <script src="/lib/jquery/dist/jquery.min.js"></script>  
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 

   The  ScriptTagHelper  class generates a  script  element for every file that matches the pattern passed to 
the  asp-src-include  attribute. Rather than just selecting the  jquery.js  file, there is also an element for the 
 jquery.min.js  file, which is the minified version of the  jquery.js  file and which most applications will use, 
since it contains the same code expressed in a more compact but less readable manner. You might not have 
realized that the jQuery distribution contains a minified file because Visual Studio hides it by default. To 
reveal the full contents of the  wwwroot/lib/jquery/dist  folder, you have to expand the  jquery.js  item in 
the Solution Explorer and then do the same again to the  jquery.min.js  item, as shown in Figure  25-4 .  



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

785

 The pattern that I used in Listing  25-3  has sent the jQuery code to the browser twice, in its original form 
and also minified, which wastes bandwidth and slows the application down. For some libraries, it can also 
result in errors or unexpected behavior. There are three ways to solve this problem, which I describe in the 
following sections. 

 USING SOURCE MAPS

 JavaScript files are minified to make them smaller, which means they can be delivered to the client 
faster and using less bandwidth. The minification process removes all the whitespace from the file and 
renames functions and variables so that meaningful names such as  myHelpfullyNamedFunction  will 
be represented by a smaller number of characters, such as  x1 . When using the browser’s JavaScript 
debugger to track down problems in your minified code, names like  x1  make it almost impossible to 
follow progress through the code. 

 The  jquery.min.map  file is a  source map , which some browsers can use to help debug minified code 
by providing a map between the minified code and the developer-readable, unminified source fie. 

 As I write this, source maps are not a universally supported feature, but you can use them on the 
most recent versions of Chrome and Edge. In the case of Chrome, for example, the browser will 
automatically request the source map file if the developer tools window is open, which means that 
you don’t can always send the minified version of your JavaScript files to the browser and still be 
able to debug them easily.  

  Figure 25-4.    Revealing the fill contents of a directory in the Solution Explorer       

 



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

786

   Narrowing the Globbing Pattern 

 Many packages provide regular and minified versions of their JavaScript files, and if you are only ever going 
to use the minified version, then you can restrict the set of files that the globbing pattern matches, as shown 
in Listing  25-4 . This is a good approach if you don’t expect to have to debug the jQuery library, which is well-
written and causes few problems, or if you know that your target browsers support source maps. 

     Listing 25-4.    Selecting Only Minified JavaScript Files in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
      <script asp-src-include="/lib/jquery/dist/**/*.min.js"></script>  
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body">     
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   If you run the example and examine the HTML sent to the browser, you will see that only the minified 
jQuery file has been included. 

   <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
      <script src="/lib/jquery/dist/jquery.min.js"></script>  
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 

      Excluding Files 

 Using the regular versions of the JavaScript files and not the minified ones is harder because globbing 
patterns make it difficult to exclude files. Fortunately, you can use the  asp-src-exclude  attribute to remove 
files from the list matched by the  asp-src-include  attribute, as shown in Listing  25-5 . 

     Listing 25-5.    Excluding Files in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
      <script asp-src-include="/lib/jquery/dist/**/*.js"  
              asp-src-exclude="**.min.js">  
      </script>  
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

787

 <body class="panel-body">     
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   If you run the application and examine the HTML sent to the browser, you will see that only the regular 
version of the JavaScript file has been included. 

   <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
      <script src="/lib/jquery/dist/jquery.js"></script>  
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 

      Using the Hosting Environment to Select Files 

 A common approach is to work with the regular JavaScript files during development, which makes 
debugging easy, and use the minified files in production, which reduces bandwidth. This can be achieved by 
using the  environment  element to selectively include  script  elements based on the hosting environment, as 
shown in Listing  25-6 . 

     Listing 25-6.    Using the Hosting Environment to Select Files in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
      <environment names="development">  
          <script asp-src-include="/lib/jquery/dist/**/*.js"  
                  asp-src-exclude="**.min.js">  
          </script>  
      </environment>  
      <environment names="staging, production">  
          <script asp-src-include="/lib/jquery/dist/**/*.min.js"></script>  
      </environment>  
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body">     
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   This approach has the advantage of adapting the application to the hosting environment but does mean 
that you have to write and maintain multiple sets of  script  elements. 



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

788

 UNDERSTANDING CACHE BUSTING

    Static content, such as images, CSS stylesheets, and JavaScript files, is often cached to stop requests 
for content that rarely changes from reaching the application servers. Caching can be done in different 
ways: the browser can be told to cache content by the server, the application can use cache servers to 
supplement the application servers, or the content can be distributed using a content delivery network. 
Not all caching will be under your control. Large corporations, for example, often install caches to 
reduce their bandwidth demands since a substantial percentage of requests tend to go to the same 
sites or applications. 

 One problem with caching is that clients don’t immediately receive new versions of static files when you 
deploy them because their requests are still being serviced by previously cached content. Eventually, 
the cached content will expire and the new content will be used, but that leaves a period where the 
dynamic content generated by the application’s controllers is out of step with the static content being 
delivered by the caches. This can lead to layout problems or unexpected application behavior, depending 
on the content that has been updated. 

 Addressing this problem is called  cache busting . The idea is to allow caches to handle static content 
but immediately reflect any changes that are made at the server. The tag helper classes support cache 
busting by adding a query string to the URLs for static content that includes a checksum that acts as a 
version number. For JavaScript files, for example, the  ScriptTagHelper  class supports cache busting 
through the  asp-append-version  attribute, like this: 

   ... 
 <script asp-src-include="/lib/jquery/dist/**/*.min.js" 
          asp-append-version="true" > 
 </script> 
 ... 

   Enabling the cache busting feature produces an element like this in the HTML sent to the browser: 

   ... 
 <script src="/lib/jquery/dist/jquery.min.js ?v=3zRSQ1HF-ocUiVcdv9yKTXqM "> 
 </script> 
 ... 

   The same version number will be used by the tag helper until you change the contents of the file, such 
as by updating a JavaScript library, at which point a different checksum will be calculated. The addition 
of the version number means that each time you change the file, the client will request a different URL, 
which caches treat as a request for new content that cannot be satisfied with the previously cached 
content and pass on to application server. The content is then cached as normal until the next update, 
which produces another URL with a different version.    



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

789

   Working with Content Delivery Networks 
    Content delivery networks (CDNs) are used to offload requests for application content to servers that are 
closer to the user. Rather than requesting a JavaScript file from your servers, the browser requests it from a 
host name that resolves to a geographically local server, which reduces the amount of time required to load 
files and reduces the amount of bandwidth you have to provision for your application. If you have a large, 
geographically disbursed set of users, then it can make commercial sense to sign up to a CDN, but even 
the smallest and simplest application can benefit from using the free CDNs operated by major technology 
companies to deliver common JavaScript packages, such as jQuery. 

 For this chapter, I am going to use the Microsoft CDN, which provides free access to popular packages, 
a list of which can be found at    www.asp.net/ajax/cdn     . I am using jQuery 2.2.4, and there are three URLs for 
this release of Microsoft CDN:

•       http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.2.4.js       

•      http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.2.4.min.js       

•      http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.2.4.min.map         

 These URLs provide the regular JavaScript file, the minified JavaScript file, and the source map for the 
minified file. In Listing  25-7 , I have replaced the local files with the minified file, obtained from the CDN. 

     Listing 25-7.    Using a CDN in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
      <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.2.4.min.js"></script>  
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body">     
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   Specifying the CDN means that no request for jQuery will reach the application’s servers. The problem 
with CDNs is that they are not under your organization’s control, and that means they can fail, leaving your 
application running but unable to work as expected because the CDN content isn’t available. To help work 
around this, the  ScriptTagHelper  class provides the ability to fall back to local files when the CDN content 
cannot be loaded by the client, as shown in Listing  25-8 . 

      Listing 25-8.    Using CDN Fallback in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
      <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.2.4.min.js"  
              asp-fallback-src-include="/lib/jquery/dist/**/*.min.js"  
              asp-fallback-test="window.jQuery">  
      </script>  

http://www.asp.net/ajax/cdn
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.2.4.js
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.2.4.min.js
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.2.4.min.map


CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

790

     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body">     
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   The  asp-fallback-src-include  and  asp-fallback-src-exclude  attributes are used to select and 
exclude local files that will be used if the CDN is unable to deliver the file specified by the regular  src  
attribute. To figure out whether the CDN is working, the  asp-fallback-test  attribute is used to define a 
fragment of JavaScript that will be evaluated at the browser. If the fragment evaluates as  false , then the 
fallback files will be requested. 

 To see how this works, run the application and examine the HTML that is sent to the client. You will see 
that the  ScriptTagHelper  class has taken the fragment from the  asp-fallback-test  attribute and used it to 
create another  script  element like this: 

   <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
     <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.2.4.min.js"> 
     </script> 
     <script> 
         (window.jQuery||document.write("\u003Cscript 
            src=\u0022\/lib\/jquery\/dist\/jquery.min.js 
            \u0022\u003E\u003C\/script\u003E")); 
     </script> 
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 

   The fragment of JavaScript that you specify in the  asp-fallback-test  attribute must return  true  if 
the file from the CDN has loaded and  false  otherwise. The simplest approach is usually to check for the 
entry point into the functionality provided by the JavaScript code. The jQuery library creates a function 
called  jQuery  on the global  window  object, and that is what I test for in Listing  25-8 . You will need to find an 
equivalent test for each file that you load from a CDN. 

 It is important to test your fallback settings because you won’t find out if they fail until the CDN has 
stopped working and your users cannot access your application. The simplest way to check the fallback is to 
change the name of the file specified by the  src  attribute to something that you know doesn’t exist (I append 
the word  FAIL  to the file name) and then look at the network requests that the browser makes using the F12 
developer tools. You should see an error for the CDN file followed by a request for the fallback file. 

 ■   Caution   The CDN fallback feature relies on browsers loading and executing the contents of  script  
elements synchronously and in the order in which they are defined. There are a number of techniques in use 
to speed up JavaScript loading and execution by making the process asynchronous, but these can lead to the 
fallback test being performed before the browser has retrieved a file from the CDN and executed its contents, 
resulting in requests for the fallback files even when the CDN is working perfectly and defeating the use of a 
CDN in the first place. Do not mix asynchronous script loading with the CDN fallback feature.    



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

791

     Managing CSS Stylesheets 
    The  LinkTagHelper  class is the built-in tag helper for  link  elements and is used to manage the inclusion 
of CSS stylesheets in a view. This tag helper supports the attributes described in Table  25-5 , which I 
demonstrate in the following sections.            

   Table 25-5.    The Built-in Tag Helper Attributes for link Elements   

 Name  Description 

  asp-href-include   This attribute is used to select files for the  href  attribute of the 
output element. 

  asp-href-exclude   This attribute is used to exclude files from the  href  attribute of 
the output element. 

  asp-append-version   This attribute is used to enable cache busting, as described in 
the “Understanding Cache Busting” sidebar. 

  asp-fallback-href   This attribute is used to specify a fallback file if there is a 
problem with a CDN. 

  asp-fallback-href-include   This attribute is used to select files that will be used if there is 
a CDN problem. 

  asp-fallback-href-exclude   This attribute is used to exclude files from the set that will be 
used when there is a CDN problem. 

  asp-fallback-href-test-class   This attribute is used to specify the CSS class that will be used 
to test the CDN. 

  asp-fallback-href-test-property   This attribute is used to specify the CSS property that will be 
used to test the CDN. 

  asp-fallback-href-test-value   This attribute is used to specify the CSS value that will be used 
to test the CDN. 

   Selecting Stylesheets 
 The  LinkTagHelper  shares many features with the  ScriptTagHelper , including support for globbing 
patterns to select or exclude CSS files so they do not have to be specified individually. Being able to 
accurately select CSS files is as important as it is for JavaScript files because stylesheets come in regular 
and minified versions, too, and also support source maps. The popular Bootstrap package, which I have 
been using to style HTML elements throughout this book, includes its CSS stylesheets in the  wwwroot/lib/
bootstrap/dist/css folder , and if you expand all the items in the Solution Explorer, you will see that there 
are four files available, as shown in Figure  25-5 .  



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

792

 The  boostrap.css  file is the regular stylesheet, the  boostrap.min.css  file is the minified version, and 
the bootstrap.css.map file is a source map. The other files are the default Bootstrap theme and there are 
regular, minified and source map files as well. In Listing  25-9 , I have used the  asp-href-include  attribute to 
select the minified stylesheet. (I have also removed the  script  element that loads jQuery, which is no longer 
required.) 

     Listing 25-9.    Selecting a Stylesheet in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
      <link asp-href-include="/lib/bootstrap/dist/**/.min.css" rel="stylesheet" />  
 </head> 
 <body class="panel-body">     
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   The same attention to detail is required as when selecting JavaScript files because it is easy to generate 
 link  elements for multiple versions of the same file or files that you don’t want. You can follow the same 
three approaches to control the files that are selected that I described for JavaScript files in the previous 
section: narrowing the globbing pattern, excluding files using the  asp-href-exclude  attribute, and using the 
 environment  element to select between duplicate sets of elements.  

  Figure 25-5.    The Bootstrap distribution files       

 



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

793

   Working with Content Delivery Networks 
 The  LinkTag  helper class provides a set of attributes for falling back to local content when a CDN isn’t 
available, although the process for testing to see whether a stylesheet has loaded is a little more complex than 
testing for a JavaScript file. In Listing  25-10 , I have used the MaxCDN URL for the Bootstrap library just to 
show an alternative to the Microsoft platform (MaxCDN is the CDN recommended by the Bootstrap project). 

      Listing 25-10.    Using a CDN to Load CSS in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
      <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css"  
            asp-fallback-href-include="/lib/bootstrap/dist/**/*.min.css"  
            asp-fallback-test-class="btn"  
            asp-fallback-test-property="display"  
            asp-fallback-test-value="inline-block"  
           rel="stylesheet" /> 
 </head> 
 <body class="panel-body">     
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   The  href  attribute is used to specify the CDN URL, and I have used the  asp-fallback-href-include  
attribute to select the file that will be used if the CDN is unavailable. Testing whether the CDN works, 
however, requires the use of three different attributes and an understanding of the CSS classes defined by 
the CSS stylesheet that is being used. 

 The CSS fallback feature works by adding a  meta  element to the document that has been added to the 
class defined by the  asp-fallback-test-class  attribute. I specified the  btn  class in the listing, which means 
that an element like this will be added to the HTML sent to the browser: 

   <meta name="x-stylesheet-fallback-test"  class="btn"  /> 

   The CSS class that you specify must be defined in the stylesheet that is to be loaded from the CDN. The 
 btn  class that I specified provides the basic formatting for Bootstrap button elements. 

 The  asp-fallback-test-property  attribute is used to specify a CSS property that is set by the CSS class, 
and the  asp-fallback-test-value  attribute is used to specify the value that it will be set to. The tag helper 
adds JavaScript to the view that tests the value of the CSS property on the  meta  element to figure out whether 
the stylesheet has been loaded and, if not, adds  link  elements for the fallback files. The Bootstrap  btn  class 
sets the  display  property to  inline-block , and this provides the test to see whether the browser has been 
able to load the Bootstrap stylesheet from the CDN. 

 ■   Tip   The easiest way to figure out how to test for third-party packages like Bootstrap is to use the browser’s 
F12 developer tools. To determine the test in Listing  25-10 , I assigned an element to the  btn  class and then 
inspected it in the browser, looking at the individual CSS properties that the class changes. I find this easier 
than trying to read through long and complex stylesheets.     



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

794

     Working with Anchor Elements 
    The  a  element is the basic tool for navigating around an application and sending  GET  requests to the application 
to request different content. The  AnchorTagHelper  class is used to transform the  href  attribute of  a  elements 
so they target URLs generated using the routing system, using the attributes described in Table  25-6 .                     

 The  AnchorTagHelper  is simple and predictable and makes it easy to generate URLs in  a  elements that 
use the application’s routing configuration. In Listing  25-11 , I have updated the  a  element in the  Index.
cshtml  view so that its  href  attribute is produced by the tag helper. 

     Listing 25-11.    Transforming an Anchor Element in the Index.cshtml File   

  @model IEnumerable<City> 

   @{  Layout = "_Layout"; } 

   <table class="table table-condensed table-bordered"> 
     <thead class="bg-primary"> 
         <tr> 
             <th>Name</th> 
             <th>Country</th> 
             <th class="text-right">Population</th> 
         </tr> 
     </thead> 
     <tbody> 
         @foreach (var city in Model) { 
             <tr> 
                 <td>@city.Name</td> 
                 <td>@city.Country</td> 
                 <td class="text-right">@city.Population?.ToString("#,###")</td> 
             </tr> 
         } 
     </tbody> 
 </table> 
  <a asp-action="Create" class="btn btn-primary">Create</a>  

   Table 25-6.    The Built-in Tag Helper Attributes for Anchor Elements   

 Name  Description 

  asp-action   This attribute specifies the action method that the URL will target. 

  asp-controller   This attribute specifies the controller that the URL will target. 

  asp-area   This attribute specifies the area that the UTR will target. 

  asp-fragment   This attribute is used to specify the URL fragment (which appears after the  #  character). 

  asp-host   This attribute specifies the name of the host that the URL will target. 

  asp-protocol   This attribute specifies the protocol that the URL will use. 

  asp-route   This attribute specifies the name of the route that will be used to generate the URL. 

  asp-route-*   Attributes whose name begins with  asp-route-  are used to specify additional values 
for the URL so that the  asp-route-id  attribute is used to provide a value for the  id  
segment to the routing system. 



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

795

    If you run the application and request the  /Home/Index  URL, you will see that the tag helper has 
transformed the  a  element like this: 

   <a class="btn btn-primary"  href="/Home/Create" >Create</a> 

        Working with Image Elements 
    The  ImageTagHelper  class is used to provide cache busting for images through the  src  attribute of  img  
elements, allowing an application to take advantage of caching while ensuring that modifications to images 
are reflected immediately. The  ImageTagHelper  class operates in  img  elements that define the  asp-append-
version  attribute, which is described in Table  25-7  for quick reference.  

   Table 25-7.    The Built-in Tag Helper Attribute for Image Elements   

 Name  Description 

  asp-append-version   This attribute is used to enable cache busting, as 
described in the “Understanding Cache Busting” sidebar. 

 In Listing  25-12 , I have added an  img  element to the shared layout for the city skyline image that 
I added to the project at the start of the chapter. (I have also reset the  style  element for brevity so that it 
uses local files.) 

     Listing 25-12.    Adding an Image in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
     <link asp-href-include="/lib/bootstrap/dist/**/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
      <img src="/images/city.png" asp-append-version="true" />  
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   If you run the application, you will see that the image is displayed at the top of every page. If you 
examine the HTML that has been sent to the browser, you will see that the URL used to request the image file 
includes a version checksum, like this: 

   <img src="/images/city.png ?v=KaMNDSZFbzNpE8Pkb30EXcAJufRcRDpKh0K_IIPNc7E " /> 

   As with the cache busting features for JavaScript files and CSS stylesheets, the checksum included in the 
URL will remain constant until the file is modified.  



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

796

     Using the Data Cache 
    MVC includes an in-memory cache that can be used to cache fragments of content in order to speed up 
view rendering. The content that is to be cached is denoted using the  cache  element in the view file, which is 
processed by the  CacheTagHelper  class using the attributes described in Table  25-8 .  

 ■   Note   Caching is a useful tool for reusing section of content so they don’t have to be generated for every 
request. But using caching effectively requires careful thought and planning. While caching can improve the 
performance of an application, it can also create odd effects, such as users receiving stale content, multiple 
caches containing different versions of content, and update deployments that are broken because content 
cached from the previous version of the application is mixed with content from the new version. Don’t enable 
caching unless you have a clearly defined performance problem to resolve, and make sure you understand the 
impact that caching will have.  

   Table 25-8.    The Built-in Tag Helper Attributes for cache Elements   

 Name  Description 

  enabled   This  bool  attribute is used to control whether the contents of the  cache  element 
are cached. Omitting this attribute enables caching. 

  expires-on   This attribute is used to specify an absolute time at which the cached content 
will expire, expressed as a  DateTime  value. 

  expires-after   This attribute used to specify a relative time at which the cached content will 
expire, expressed as a  TimeSpan  value. 

  expires-sliding   This attribute is used to specify the period since it was last used when the 
cached content will expire, expressed as a  TimeSpan  value. 

  vary-by-header   This attribute is used to specify the name of a request header that will be used 
to manage different versions of the cached content. 

  vary-by-query   This attribute is used to specify the name of a query string key that will be used 
to manage different versions of the cached content. 

  vary-by-route   This attribute is used to specify the name of a routing variable that will be used 
to manage different versions of the cached content. 

  vary-by-cookie   This attribute is used to specify the name of a cookie that will be used to 
manage different versions of the cached content. 

  vary-by-user   This  bool  attribute is used to specify whether the name of the authenticated 
user will be used to manage different versions of the cached content. 

  vary-by   This attribute is evaluated to provide a key used to manage different versions of 
the content. 

  priority   This attribute is used to specify a relative priority that will be taken into account 
when the memory cache runs out of space and purges unexpired cached 
content. 



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

797

 To demonstrate the way that the cache attribute operates, I created the  Components  folder, added a class 
file called  TimeViewComponent.cs , and used it to define the view component shown in Listing  25-13 . 

     Listing 25-13.    The Contents of the TimeViewComponent.cs File in the Components Folder   

  using System; 
 using Microsoft.AspNetCore.Mvc; 

   namespace Cities.Components { 

       public class TimeViewComponent : ViewComponent { 

           public IViewComponentResult Invoke() { 
             return View(DateTime.Now); 
         } 
     } 
 } 

    The  Invoke  method selects the default view and provides a  DateTime  object as the view model. To 
provide a view for the view component, I created the  Views/Home/Components/Time  folder and added a view 
file called  Default.cshtml  with the markup shown in Listing  25-14 . 

     Listing 25-14.    The Default.cshtml File in the Views/Home/Components/Time Folder   

  @model DateTime 

   <div class="panel-body bg-info"> 
     Rendered at @Model.ToString("HH:mm:ss") 
 </div> 

    The  DateTime  model object is used to display the current time, accurate to the second. In Listing  25-15 , 
I have replaced the  img  element from the previous section with an  @await Component.InvokeAsync  
expression that calls the view component. 

     Listing 25-15.    Using a View Components in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
     <link asp-href-include="/lib/bootstrap/dist/**/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
      @await Component.InvokeAsync("Time")  
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   If you run the application, you will see the banner displaying the time that the content was rendered. 
Wait a few seconds and reload the page and you will see that the time displayed has changed, as shown in 
Figure  25-6 .  



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

798

 The  cache  element is used to surround content that should be added to the cache. In Listing  25-16 , I 
have used the  cache  attribute to add the output from the view component to the cache. 

     Listing 25-16.    Caching Content in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
     <link asp-href-include="/lib/bootstrap/dist/**/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
      <cache>  
         @await Component.InvokeAsync("Time") 
      </cache>  
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   Applying the  cache  element without any attributes tells MVC to reuse the content to satisfy all future 
requests. If you start the application, the content generated by the view component is cached so that the 
same time is shown even when the page is reloaded. 

 ■   Tip   The cache used by the  CacheTagHelper  class is memory-based, which means that its capacity is 
limited by the available RAM. Content will be ejected from the cache when there is a shortage of capacity 
available, and the entire contents are lost when the application is stopped or restarted.  

  Figure 25-6.    Displaying the time in the example application       

 



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

799

     Setting Cache Expiry 
 The  expires-*  attributes allow you to specify when cached content will expire, expressed as an absolute 
time, relative to the current time, or a period of time that the cached content isn’t requested. In Listing  25-17 , 
I have used the  expires-after  attribute to specify that the content should be cached for 15 seconds. 

     Listing 25-17.    Setting Cache Expiry in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
     <link asp-href-include="/lib/bootstrap/dist/**/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
      <cache expires-after="@TimeSpan.FromSeconds(15)">  
         @await Component.InvokeAsync("Time") 
     </cache> 
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   If you run the application, you will see that the cached data expires after 15 seconds, after which reloading 
the page will invoke the view component and create a new cached entry that will last another 15 seconds. 

   Setting a Fixed Expiry Point 
 You can specify a fixed time at which cached content will expire using the  expires-on  attribute, which 
accepts a  DateTime  value, as shown in Listing  25-18 . 

     Listing 25-18.    Specifying a Fixed Cache Expiry Point in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
     <link asp-href-include="/lib/bootstrap/dist/**/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
      <cache expires-on="@DateTime.Parse("2100-01-01")">  
         @await Component.InvokeAsync("Time") 
     </cache> 
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   I have specified that that data should be cached until the year 2100. This isn’t a useful caching strategy 
since the application is likely to be restarted before the next century starts, but it does illustrate how you can 
specify a fixed point in the future rather than expressing the expiry point relative to the moment when the 
content is cached.  



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

800

   Setting a Last-Used Expiry Period 
 The  expires-sliding  attribute is used to specify a period after which content is expired if it hasn’t been 
retrieved from the cache. In Listing  25-19 , I have specified a sliding expiry of 10 seconds. 

     Listing 25-19.    Specifying a Last-Used Cache Expiry Period in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
     <link asp-href-include="/lib/bootstrap/dist/**/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
      <cache expires-sliding="@TimeSpan.FromSeconds(10)">  
         @await Component.InvokeAsync("Time") 
     </cache> 
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   You can see the effect of the  express-sliding  attribute by running the application and periodically 
reloading the page. As long as you reload the page within 10 seconds, the cached content will be used. If 
you wait longer than 10 seconds to reload the page, then the cached content will be discarded, the view 
component will be used to generate new content, and the process will begin anew.   

     Using Cache Variations 
 By default, all requests receive the same cached content. The  CacheTagHelper  class can maintain different 
versions of cached content and use them to satisfy different types of HTTP requests, specified using one of 
the attributes whose name begins with  vary-by . Listing  25-20  shows the use of the  vary-by-route  attribute 
to create cache variations based on the  action  value matched by the routing system. 

     Listing 25-20.    Creating a Cache Variation in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
     <link asp-href-include="/lib/bootstrap/dist/**/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
      <cache expires-sliding="@TimeSpan.FromSeconds(10)" vary-by-route="action">  
         @await Component.InvokeAsync("Time") 
     </cache> 
     <div>@RenderBody()</div> 
 </body> 
 </html> 



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

801

   If you run the application and use two browser tabs or windows to request the  /Home/Index  and  /
Home/Create  URLs, you will see that each window receives its own cached content with its own expiration, 
since each request produces a different  action  routing value. The  CacheTagHelper  class supports a range of 
attributes that define different variations, including caching content for individual users. 

 There is also a  vary-by  header that allows you to define arbitrary cache variations using any data value. 
In Listing  25-21 , I have re-created the effect of the  vary-by-route  attribute by specifying a value obtained 
directly from the route data. 

     Listing 25-21.    Specifying a Custom Cache Variation in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
     <link asp-href-include="/lib/bootstrap/dist/**/*.min.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
      <cache expires-sliding="@TimeSpan.FromSeconds(10)"  
              vary-by="@ViewContext.RouteData.Values["action"]">  
         @await Component.InvokeAsync("Time") 
     </cache> 
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   The  vary-by  attribute can be used to create more complex caching variations, although care should 
be taken because it is easy to get carried away and end up creating variations that are so specific that the 
content in the cache is never reused before it expires.   

     Using Application-Relative URLs 
    The final built-in tag helper is the  UrlResolutionTagHelper  class, and it is used to provide support for 
application-relative URLs, which are URLs that are prefixed with a tilde (the ~ character). In Listing  25-22 , 
I have changed the  link  element in the shared layout so that it uses an explicitly defined URL, rather than 
using tag helpers to generate the URL from the routing system. 

     Listing 25-22.    Using an Explicit URL in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
      <link href="/lib/bootstrap/dist/css/bootstrap.min.css" rel="stylesheet" />  
 </head> 
 <body class="panel-body"> 
     <cache expires-sliding="@TimeSpan.FromSeconds(10)" 
            vary-by="@ViewContext.RouteData.Values["action"]"> 



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

802

         @await Component.InvokeAsync("Time") 
     </cache> 
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   Explicit URLs are perfectly acceptable as long as you understand that you will have to update them if 
you change the application’s URL schema. And for many applications, that’s the only consideration you 
have to make. 

 However, some applications will be defined into a shared environment, where a single server supports 
multiple applications that are differentiated by adding a prefix to the URL. In Listing  25-23 , I have changed 
the configuration of the application so that the request pipeline is set up to handle requests with a prefix of 
 mvcpp , simulating a shared environment. 

     Listing 25-23.    Adding a URL Prefix in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Cities.Models; 

   namespace Cities { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
             services.AddSingleton<IRepository, MemoryRepository>(); 
             services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
              app.Map("/mvcapp", appBuilder => {  
                  appBuilder.UseStatusCodePages();  
                  appBuilder.UseDeveloperExceptionPage();  
                  appBuilder.UseStaticFiles();  
                  appBuilder.UseMvcWithDefaultRoute();  
              });  
         } 
     } 
 } 

    The  Map  method allows multiple request pipelines to be set up with different prefixes. This isn’t an 
especially useful feature in day-to-day MVC development because you can create URLs prefixes within the 
MVC application using the routing system. But for this chapter, it is a useful feature because it means that 
every URL is requested by clients, including requests for static content. 

 You can see the problem that has arisen by starting the application and requesting the  /mvcapp  URL, 
which is now the default URL for the application and targets the  Index  action on the  Home  controller. Now 
that all URLs have to start with  /mvcapp , the explicit URL for the stylesheet in the  link  element doesn’t work, 
which means that the content in the application can’t be styled, as shown in Figure  25-7 .  



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

803

 I could fix this problem by updating the explicit URL to include the prefix, but that isn’t always possible 
because the prefix may change in deployment or may not been known at development time. A better 
solution is to use an application-relative URL, in which the path to the static content is expressed relative to 
any prefix that may have been configured, as shown in Listing  25-24 . 

     Listing 25-24.    Using an Application-Relative URL in the _Layout.cshtml File   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Cities</title> 
      <link href="~/lib/bootstrap/dist/css/bootstrap.min.css" rel="stylesheet" />  
 </head> 
 <body class="panel-body"> 
     <cache expires-sliding="@TimeSpan.FromSeconds(10)" 
            vary-by="@ViewContext.RouteData.Values["action"]"> 
         @await Component.InvokeAsync("Time") 
     </cache> 
     <div>@RenderBody()</div> 
 </body> 
 </html> 

   The tilde is detected by the  UrlResolutionTagHelper  class, which replaces the tilde with the path 
required to reach the contents of the  wwwroot  folder. If you run the application, you will see that the content 
is styled, and examining the HTML sent to the browser will show that the  link  element contains a URL that 
includes the  mvcapp  prefix. 

   <link href=" /mvcapp /lib/bootstrap/dist/css/bootstrap.min.css" rel="stylesheet" /> 

  Figure 25-7.    The effect of an explicitly defined URL       

 



CHAPTER 25 ■ USING THE OTHER BUILT-IN TAG HELPERS

804

   The  UrlResolutionTag  helper looks for URLs in a wide range of elements, as described in Table  25-9 .  

 ■   Tip   If you use another of the built-in tag helpers to generate URLs from the routing system, the HTML they 
generate will automatically include any required prefix, which is obtained from the  HttpRequest.PathBase  
context property and whose value is provided by the server that hosts the application.   

   Table 25-9.    The Elements and Attributes Transformed by the UrlResolutionTagHelper   

 Element  Attributes 

  a    href  

  applet    archive  

  area    href  

  audio    src  

  base    href  

  blockquote    cite  

  button    formaction  

  del    cite  

  embed    src  

  form    action  

  html    manifest  

  iframe    src  

  img    src, srcset  

  input    src, formaction  

  ins    cite  

  link    href  

  menuitem    icon  

  object    archive, data  

  q    cite  

  script    src  

  source    src, srcset  

  track    src  

  video    src, poster  

     Summary 
 In this chapter, I described those built-in tag helpers that are not related to HTML forms. These tag helpers 
help manage access to JavaScript files and CSS stylesheets, creating URLs for anchor elements, performing 
cache busting for images, caching data, and transforming application-relative URLs. In the next chapter, 
I introduce the model binding system, which is used to process the data in HTTP requests so that it can be 
easily consumed within an MVC application.     



805© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_26

    CHAPTER 26   

 Model Binding                          

     Model binding  is the process of creating .NET objects using the data from the HTTP request in order to 
provide action methods with the arguments they need. In this chapter, I describe the way the model binding 
system works; show how it binds simple types, complex types, and collections; and demonstrate how you 
can take control of the process to specify which part of the request provides the data values your action 
methods require. Table  26-1  puts model binding in context.  

   Table 26-1.    Putting Model Binding in Context   

 Question  Answer 

 What is it?  Model binding is the process of creating the objects that action 
methods require as arguments using data values obtained from 
the HTTP request. 

 Why is it useful?  Model binding lets action methods declare parameters using C# 
types and automatically receive data from the request without 
having to inspect, parse, and process the data directly. 

 How is it used?  In its simplest form, action methods declare parameters whose 
names are used to retrieve data values from the HTTP request. The 
part of the request used to obtain the data can be configured by 
applying attributes to the action method parameters. 

 Are there any pitfalls or limitations?  The main pitfall is getting data from the wrong part of the request. 
I explain the way that requests are searched for data in the 
“Understanding Model Binding” section, and the search locations 
can be specified explicitly using the attributes that I describe in the 
“Specifying a Model Binding Source” section. 

 Are there any alternatives?  Action methods don’t have to declare parameters at all and can 
use the context objects that I described in Chapter   17     to get data 
directly from the HTTP request. However, the result is more 
complicated code that is hard to read and maintain. 

 Has it changed since MVC 5?  The model binding feature has been rewritten for ASP.NET Core 
MVC but works in the same way as in previous versions. The most 
noticeable change is that the  Bind  attribute can no longer be used 
to exclude model properties from the binding process, which 
is now done with the  BindNever  attribute. See the “Selectively 
Binding Properties” section for details. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_17


CHAPTER 26 ■ MODEL BINDING

806

 Table  26-2  summarizes the chapter.  

   Table 26-2.    Chapter Summary   

 Problem  Solution  Listing 

 Bind to a simple type or collection  Add a parameter to an action method  1–11, 24–30 

 Bind to a complex type  Ensure that the HTML generated by a view is 
well-structured 

 12-20 

 Selectively bind properties  Specify the names of data values using the  Bind  
attribute or use the  BindNever  attribute to exclude 
model properties from the binding process 

 21-23 

 Specify the source of a data 
binding value 

 Apply an attribute to the action method argument 
or model property that identifies where the binding 
value should come from 

 31-39 

     Preparing the Example Project 
 For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty 
project called MvcModels. I added the NuGet packages I required to the  dependencies  section of the 
 project.json  file and set up the Razor tooling in the  tools  section, as shown in Listing  26-1 . I removed the 
sections that are not required for this chapter. 

     Listing 26-1.    Adding Packages in the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 
     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
      "Microsoft.AspNetCore.Mvc": "1.0.0",  
      "Microsoft.AspNetCore.StaticFiles": "1.0.0",  
      "Microsoft.AspNetCore.Razor.Tools": {  
        "version": "1.0.0-preview2-final",  
        "type": "build"  
      }  
   }, 

     "tools": { 
      "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final",  
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final" 
   }, 



CHAPTER 26 ■ MODEL BINDING

807

     "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6","portable-net45+win8"] 
     } 
   }, 

     "buildOptions": { 
     "emitEntryPoint": true, "preserveCompilationContext": true 
   }, 

     "runtimeOptions": { 
     "configProperties": { "System.GC.Server": true } 
   } 
 } 

        Creating the Model and Repository 
 I created the  Models  folder and added a class file called  Person.cs , which I used to define the classes and 
enum shown in Listing  26-2 . 

     Listing 26-2.    The Contents of the Person.cs File in the Models Folder   

  using System; 

   namespace MvcModels.Models { 

       public class Person { 
         public int PersonId { get; set; } 
         public string FirstName { get; set; } 
         public string LastName { get; set; } 
         public DateTime BirthDate { get; set; } 
         public Address HomeAddress { get; set; } 
         public bool IsApproved { get; set; } 
         public Role Role { get; set; } 
     } 

       public class Address { 
         public string Line1 { get; set; } 
         public string Line2 { get; set; } 
         public string City { get; set; } 
         public string PostalCode { get; set; } 
         public string Country { get; set; } 
     } 

       public enum Role { 
         Admin, 
         User, 
         Guest 
     } 
 } 



CHAPTER 26 ■ MODEL BINDING

808

    Next, I added a class file called  Repository.cs  to the  Models  folder and defined the interface and 
implementation class shown in Listing  26-3 . 

     Listing 26-3.    The Contents of the Repository.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace MvcModels.Models { 

       public interface IRepository { 
         IEnumerable<Person> People { get; } 

           Person this[int id] { get; set; } 
     } 

       public class MemoryRepository : IRepository { 
         private Dictionary<int, Person> people 
                     = new Dictionary<int, Person> { 
             [1] = new Person {PersonId = 1, FirstName = "Bob", 
                 LastName = "Smith", Role = Role.Admin}, 
             [2] = new Person {PersonId = 2, FirstName = "Anne", 
                 LastName = "Douglas", Role = Role.User}, 
             [3] = new Person {PersonId = 3, FirstName = "Joe", 
                 LastName = "Able", Role = Role.User}, 
             [4] = new Person {PersonId = 4, FirstName = "Mary", 
                 LastName = "Peters", Role = Role.Guest} 
         }; 

           public IEnumerable<Person> People => people.Values; 

           public Person this[int id] { 
             get { 
                 return people.ContainsKey(id) ? people[id] : null; 
             } 
             set { 
                 people[id] = value; 
             } 
         } 
     } 
 } 

    The  IRepository  interface defines a  People  property to retrieve all the objects in the model and 
an indexer that allows individual  Person  objects to be retrieved or stored. The  MemoryRepository  class 
implements the interface using a dictionary with some default content. The repository implementation is 
not persistent, so the state of the application will revert to the default content when it is stopped or restarted.  

     Creating the Controller and View 
 I created the  Controllers  folder, added a class file called  HomeController.cs , and used it to define the 
controller shown in Listing  26-4 . The controller relies on dependency injection to receive a repository, 
which it uses in the  Index  method to select a single  Person  object from the repository using the value of its 
 PersonId  property. 



CHAPTER 26 ■ MODEL BINDING

809

     Listing 26-4.    The Contents of the HomeController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           public ViewResult Index(int id) => View(repository[id]); 
     } 
 } 

    To provide the action method with a view, I created the  Views/Home  folder and added a Razor file called 
 Index.cshtml  with the markup shown in Listing  26-5 , which presents some of the properties from the model 
object in a table. 

     Listing 26-5.    The Contents of the Index.cshtml File in the Views/Home Folder   

  @model Person 
 @{ Layout = "_Layout"; } 

   <div class="bg-primary panel-body"><h2>Person</h2></div> 

   <table class="table table-condensed table-bordered table-striped"> 
     <tr><th>PersonId:</th><td>@Model.PersonId</td></tr> 
     <tr><th>First Name:</th><td>@Model.FirstName</td></tr> 
     <tr><th>Last Name:</th><td>@Model.LastName</td></tr> 
     <tr><th>Role:</th><td>@Model.Role</td></tr> 
 </table> 

    The  Index.cshtml  view relies on a shared layout. I created the  Views/Shared  folder and added a layout 
called  _Layout.cshtml  to it, the contents of which can be seen in Listing  26-6 . 

     Listing 26-6.    The Contents of the _Layout.cshtml File in the Views/Shared Folder   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <title>@ViewBag.Title</title> 
     <link asp-href-include="/lib/bootstrap/dist/**/*.min.css" rel="stylesheet" /> 
     @RenderSection("scripts", false) 
 </head> 
 <body class="panel-body"> 
     @RenderBody() 
 </body> 
 </html> 



CHAPTER 26 ■ MODEL BINDING

810

   The layout includes a  link  element for the Bootstrap stylesheet and renders the contents of the view. 
There is also an optional  scripts  section, which I will use later in the chapter. To simplify the views used in 
this chapter, I added the namespace that contains the model classes to the  _ViewImports.cshtml  file in the 
 Views  folder, as shown in Listing  26-7 . 

     Listing 26-7.    Importing Namespaces in the _ViewImports.cshtml File   

 @using MvcModels.Models 
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

   The views rely on the Bootstrap CSS framework, which I added to the project by using the Bower 
Configuration File item template to create the  bower.json  file in the root folder of the project and by adding 
the package shown in Listing  26-8 . 

     Listing 26-8.    Adding a Package in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6"  
   } 
 } 

        Configuring the Application 
 Listing  26-9  shows the  Startup  class, which configures the features provided by the NuGet packages and 
configures the repository service. 

      Listing 26-9.    The Contents of the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
  using MvcModels.Models;  

   namespace MvcModels { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddSingleton<IRepository, MemoryRepository>();  
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app) { 
              app.UseStatusCodePages();  
              app.UseDeveloperExceptionPage();  
              app.UseStaticFiles();  
              app.UseMvc(routes => {  
                  routes.MapRoute(  
                      name: "default",  



CHAPTER 26 ■ MODEL BINDING

811

                      template: "{controller=Home}/{action=Index}/{id?}");  
              });  
         } 
     } 
 } 

    Start the application and request the  /Home/Index/1  URL to produce the result shown in Figure  26-1 . 
(The default URL will produce an error at the moment.)    

  Figure 26-1.    Running the example application       

     Understanding Model Binding 
 Model binding is an elegant bridge between the HTTP request and C# action methods. Most MVC 
applications rely on model binding to some extent, including the simple example application that I created 
in the previous section. 

 Model binding was used when I tested the example application in the previous section. The URL I 
requested contained the value of the  PersonId  property of the  Person  object I wanted to view, like this: 

   /Home/Index/ 1  

   MVC translated that part of the URL and used it as the argument when it called the  Index  method in the 
 Home  controller class to service the request. 

   ... 
 public ViewResult Index( int id ) => View(repository[id]); 
 ... 

 



CHAPTER 26 ■ MODEL BINDING

812

   To be able to invoke the  Index  method, MVC needs a value for the  id  argument, and providing that 
value is the responsibility of the model binding system, which is responsible for providing data values that 
can be used to invoke action methods. 

 The model binding system relies on  model binders , which are components responsible for providing 
data values from one part of the request or application. The default model binders look for data values in 
these three places:

•    Form data values  

•   Routing variables  

•   Query strings    

 Each source of data is inspected in order until a value for the argument is found. There is no form data 
in the example application, so no value will be found there. But there is a routing segment called  id  in the 
application configuration I used in Listing  26-9 , and that allows the model binding system to provide MVC 
with a value that can be used to invoke the  Index  method. The search stops after a suitable data value has 
been found, which means that the query string isn’t searched for a data value. 

 ■   Tip   In the “Specifying a Model Binding Source” section, I explain how you can specify the source of model 
binding data using attributes. This allows you to specify that a data value is obtained from, for example, the 
query string, even if there is also suitable data in the form or routing data.  

 Knowing the order in which data values are sought is important because a request can contain multiple 
values, like this URL: 

   /Home/Index/ 3 ?id= 1  

   The routing system will process the request and match the  id  segment in the URL template to the value  3 , 
and the query string contains an  id  value of  1 . Since the routing data is searched for data before the query 
string, the  Index  action method will receive the value  3 , and the query string value will be ignored. 

 On the other hand, if you request a URL that doesn’t have an  id  segment, then the query string will be 
examined, which means that a URL like this one will also allow the model binding system to provide MVC 
with a value for the  id  argument so that it can invoke the  Index  method: 

   /Home/Index?id= 1  

   You can see the effect of both of these URLs in Figure  26-2 .  



CHAPTER 26 ■ MODEL BINDING

813

  Figure 26-2.    The effect of model binding data source ordering       

  Figure 26-3.    An error processing a model property       

     Understanding Default Binding Values 
    Model binding is a best-effort feature, which means that MVC will use model binding to try to get the values 
it needs to invoke an action method but will still invoke the method even if data values cannot be provided. 
This can cause some unexpected behavior. As an example, requesting the URL  /Home/Index  produces the 
exception shown in Figure  26-3 .  

 

 



CHAPTER 26 ■ MODEL BINDING

814

 This exception isn’t reported by the model binding system. Instead, it occurred when the  Index  view 
selected by the  Index  action method was processed. To invoke the  Index  method, MVC had to provide a 
value for the  id  argument, so it asked each of the model binders to inspect their part of the request and 
provide a value. 

 There is no form data in the example, no value for the  id  routing segment, and no query string in the 
URL, which means that the model binding system is unable to provide a data value. MVC has to provide 
 some  value for the  id  argument in order to invoke the  Index  method, so it uses a default value and hopes for 
the best. For  int  arguments, the default value is  0 , and this is what leads to the exception. The definition of 
the  Index  method uses the value of the  id  argument to retrieve a model object from the repository. 

   ... 
 public ViewResult Index(int id) => View( repository[id] ); 
 ... 

   When MVC uses the default value, the action method tries to retrieve a data model object with the  id  of 
 0 . There is no such object, and the repository returns  null , which is then passed on to the controller’s  View  
method to provide view model data to the  Index.cshtml  view. When the Razor expressions in the  Index.
cshtml  file try to access the properties of the view model object, they cause the  NullReferenceException  
shown in Figure  26-3 . 

 This means that action methods have to be written to cope with default values provided by the model 
binding system, which can be done in several ways. You can add default values to the routing URL patterns 
(as described in Chapter   15    ), assign default values to the action method parameters, or ensure that the 
action method doesn’t pass on bad data values as part of its response. The best approach will depend on 
what the action method is doing; in Listing  26-10 , I have taken the last approach, which is to modify the 
action method so that it ensures that a  Person  object is always passed to the  View  method, even when the  id  
argument doesn’t correspond to an object in the data model. 

     Listing 26-10.    Guarding Against Default Model Binding Values in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 
  using System.Linq;  

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

            public ViewResult Index(int id) =>  
              View(repository[id] ?? repository.People.First());  
     } 
 } 

    The action method uses the LINQ and the null coalescing operator to return the first object in the 
repository when the value of the  id  parameter doesn’t retrieve an object.  

http://dx.doi.org/10.1007/978-1-4842-0397-2_15


CHAPTER 26 ■ MODEL BINDING

815

     Binding Simple Types 
    When there is a suitable value available, it has to be converted into a C# value so that it can be used to invoke 
an action method. Simple types are values that originate from one item of data in the request that can be 
parsed from a string. This includes numeric values, bool values, dates, and, of course,  string  values. 

 The  id  argument of the  Index  action method is an  int , so the model binding process provides MVC 
with a value by parsing the  id  segment variable into an  int  value. 

 If the request value cannot be converted (for example, if I supplied a value of  apple  for a parameter that 
requires an  int  value), then model binding process won’t be able to provide a value for the application, and 
the default value will be used. 

 This present a problem because it means that there are two situations in which the action method will 
receive the default value, zero. The first is when the request contains a value that cannot be parsed into the 
argument type, such as when for the URL  /Home/Index/Apple . The second is when the request does contain 
a value that can be parsed and it happens to be 0, such as for the URL  /Home/Index/0 . 

 Most applications need to be able to tell the difference between these situations, and the easiest way to 
do this is to use a nullable type for the action method argument, as shown in Listing  26-11 . 

     Listing 26-11.    Using a Nullable Type in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

            public IActionResult Index(int? id) {  
              Person person;  
              if (id.HasValue  &&  (person = repository[id.Value]) != null) {  
                  return View(person);  
              } else {  
                  return NotFound();  
              }  
          }  
     } 
 } 

    The default value for nullable types is null, which allows me to differentiate between requests where 
the request doesn’t contain a value that can be parsed into an  int  and requests that do, and the  int  value 
happens to be zero. The implementation of the  Index  method in this example uses the  NotFound  method 
to return a 404 error if the nullable argument doesn’t have a value or if the value doesn’t correspond to an 
object in the model, which is a more robust approach than simply hoping that the first object in the model is 
suitable, which is the approach I took in the previous section.  



CHAPTER 26 ■ MODEL BINDING

816

     Binding Complex Types 
    When the action method parameter is a complex type (in other words, any type that cannot be parsed from 
a single string value), then the model binding process uses reflection to get a set of the target type’s public 
properties and performs the binding process on each of them in turn. To demonstrate how this works, 
I added two action methods to the Home controller, as shown in Listing  26-12 . 

     Listing 26-12.    Adding Action Methods in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           public IActionResult Index(int? id) { 
             Person person; 
             if (id.HasValue && (person = repository[id.Value]) != null) { 
                 return View(person); 
             } else { 
                 return NotFound(); 
             } 
         } 

            public ViewResult Create() => View(new Person());  

            [HttpPost]  
          public ViewResult Create(Person model) => View("Index", model);  
     } 
 } 

    The version of the  Create  method without parameters creates a new  Person  object and passes it to the 
 View  method, which has the effect of selecting the default view associated with the action. I added a view file 
called  Create.cshtml  to the  Views/Home  folder and added the markup shown in Listing  26-13 . 

     Listing 26-13.    The Contents of the Create.cshtml File in the Views/Home Folder   

  @model Person 
 @{ 
     ViewBag.Title = "Create Person"; 
     Layout = "_Layout"; 
 } 

   <form asp-action="Create" method="post"> 
     <div class="form-group"> 
         <label asp-for="PersonId"></label> 
         <input asp-for="PersonId" class="form-control" /> 
     </div> 



CHAPTER 26 ■ MODEL BINDING

817

     <div class="form-group"> 
         <label asp-for="FirstName"></label> 
         <input asp-for="FirstName" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="LastName"></label> 
         <input asp-for="LastName" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Role"></label> 
         <select asp-for="Role" class="form-control" 
                 asp-items="@new SelectList(Enum.GetNames(typeof(Role)))"></select> 
     </div> 
     <button type="submit" class="btn btn-primary">Submit</button> 
 </form> 

    This view contains a form that allow values for some of the properties of a  Person  object to be provided 
and contains a  form  element that posts the data back to the version of the  Create  method in the  Home  
controller that has been decorated with the  HttpPost  attribute. 

 The action method that receives the form data uses the  /Views/Home/Index.cshtml  view to display it. 
You can see how this works work by starting the application, navigating to  /Home/Create , filling out the form, 
and clicking the Submit button, as shown in Figure  26-4 .  

  Figure 26-4.    Using the CreatePerson action methods       

 



CHAPTER 26 ■ MODEL BINDING

818

 When the form data is sent to the server, the model binding process discovers that the action method 
requires a complex type: a  Person  object. The  Person  class is examined to discover its public properties. 
For each simple property type, the model binder tries to locate a request value, just as it did in the 
previous example. 

 So, for example, the model binder finds the  PersonId  property and looks for a  PersonId  value in the 
same locations that were searched for an  id  value in the previous section. Since the form data contains a 
suitable value, set up using the  asp-for  tag helper on an  input  element, this is the value that will be used. 

 If a property requires another complex type, then the process is repeated for the new type. The set of 
public properties is obtained, and the binder tries to find values for all of the properties. The difference is 
that the property names are nested. For example, the  HomeAddress  property of the  Person  class is of the 
 Address  type, as highlighted here: 

    using System; 

   namespace MvcModels.Models { 

       public class Person { 
         public int PersonId { get; set; } 
         public string FirstName { get; set; } 
         public string LastName { get; set; } 
         public DateTime BirthDate { get; set; } 
          public Address HomeAddress { get; set; }  
         public bool IsApproved { get; set; } 
         public Role Role { get; set; } 
     } 

        public class Address {  
          public string Line1 { get; set; }  
          public string Line2 { get; set; }  
          public string City { get; set; }  
          public string PostalCode { get; set; }  
          public string Country { get; set; }  
      }  

       public enum Role { 
         Admin, 
         User, 
         Guest 
     } 
 } 

    When looking for a value for the  Line1  property, the model binder looks for a value for  HomeAddress.
Line1 , as in the name of the property in the model object combined with the name of the property in the 
nested model type. 

   Creating Easily Bound HTML 
 The use of prefixes means that views have to include the information that the model binder looks for. This is 
easily done using tag helpers, which automatically add the required prefixes to the elements they transform. 
In Listing  26-14 , I have extended the form so that it takes address data. 



CHAPTER 26 ■ MODEL BINDING

819

     Listing 26-14.    Updating the Form in the Create.cshtml File   

  @model Person 
 @{ 
     ViewBag.Title = "Create Person"; 
     Layout = "_Layout"; 
 } 

   <form asp-action="Create" method="post"> 
     <div class="form-group"> 
         <label asp-for="PersonId"></label> 
         <input asp-for="PersonId" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="FirstName"></label> 
         <input asp-for="FirstName" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="LastName"></label> 
         <input asp-for="LastName" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Role"></label> 
         <select asp-for="Role" class="form-control" 
                 asp-items="@new SelectList(Enum.GetNames(typeof(Role)))"></select> 
     </div> 
      <div class="form-group">  
          <label asp-for="HomeAddress.City"></label>  
          <input asp-for="HomeAddress.City" class="form-control" />  
      </div>  
      <div class="form-group">  
          <label asp-for="HomeAddress.Country"></label>  
          <input asp-for="HomeAddress.Country" class="form-control" />  
      </div>  
     <button type="submit" class="btn btn-primary">Submit</button> 
 </form> 

    When using a tag helper, the nested property name is specified using C# conventions so that the outer 
and nested property names are separated by a period:  HomeAddress.Country . If you run the application, 
request the  /Home/Create  URL, and examine the HTML sent to the browser, you will see that a different 
convention is used for some attributes. 

   <div class="form-group"> 
      <label for="HomeAddress_City">City</label>  
      <input class="form-control" type="text" id="HomeAddress_City"  
          name="HomeAddress.City" value="" />  
 </div> 
 <div class="form-group"> 
      <label for="HomeAddress_Country">Country</label>  
      <input class="form-control" type="text" id="HomeAddress_Country"  
          name="HomeAddress.Country" value="" />  
 </div> 



CHAPTER 26 ■ MODEL BINDING

820

   The  name  attributes on the  input  elements follow the C# style, but the  for  attributes on the  label  
elements and the  id  attributes on the  input  elements separate the property names with underscores. If 
you prefer to define the HTML elements without tag helpers, then you should ensure that you use the same 
naming scheme. 

 As a consequence of this feature, I don’t have to take any special action to ensure that the model binder 
can create the  Address  object for the  HomeAddress  property. I can demonstrate this by editing the  Index.
cshtml  view to display the  HomeAddress  properties when they are submitted from the form, as shown in 
Listing  26-15 . 

     Listing 26-15.    Displaying the HomeAddress Properties in the Index.cshtml File   

  @model Person 
 @{ Layout = "_Layout"; } 

   <div class="bg-primary panel-body"><h2>Person</h2></div> 

   <table class="table table-condensed table-bordered table-striped"> 
     <tr><th>PersonId:</th><td>@Model.PersonId</td></tr> 
     <tr><th>First Name:</th><td>@Model.FirstName</td></tr> 
     <tr><th>Last Name:</th><td>@Model.LastName</td></tr> 
     <tr><th>Role:</th><td>@Model.Role</td></tr> 
      <tr><th>City:</th><td>@Model.HomeAddress?.City</td></tr>  
      <tr><th>Country:</th><td>@Model.HomeAddress?.Country</td></tr>  
 </table> 

    If you start the application and navigate to the  /Home/Create  URL, you can enter values for the  City  
and  Country  properties and check that they are being bound to the model object by submitting the form, as 
shown in Figure  26-5 .   



CHAPTER 26 ■ MODEL BINDING

821

   Specifying Custom Prefixes 
 There are occasions when the HTML you generate relates to one type of object but you want to bind it to 
another. This means that the prefixes containing the view won’t correspond to the structure that the model 
binder is expecting, and your data won’t be properly processed. To demonstrate this problem, I added a file 
called  AddressSummary.cs  to the  Models  folder and used it to define the class shown in Listing  26-16 . 

     Listing 26-16.    The Contents of the AddressSummary.cs File in the Models Folder   

  namespace MvcModels.Models { 

       public class AddressSummary { 
         public string City { get; set; } 
         public string Country { get; set; } 
     } 
 } 

  Figure 26-5.    Binding to properties in complex objects       

 



CHAPTER 26 ■ MODEL BINDING

822

    I added a new action method in the  Home  controller that uses the  AddressSummary  class, as shown in 
Listing  26-17 . 

     Listing 26-17.    Adding an Action Method in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           public IActionResult Index(int? id) { 
             Person person; 
             if (id.HasValue && (person = repository[id.Value]) != null) { 
                 return View(person); 
             } else { 
                 return NotFound(); 
             } 
         } 

           public ViewResult Create() => View(new Person()); 

           [HttpPost] 
         public ViewResult Create(Person model) => View("Index", model); 

            public ViewResult DisplaySummary(AddressSummary summary) => View(summary);  
     } 
 } 

    The new action method is called  DisplaySummary . It has an  AddressSummary  parameter, which it passes 
to the  View  method so that it can be displayed by the default view. I created the  DisplaySummary.cshtml  file 
in the  /Views/Home  folder and added the markup shown in Listing  26-18 . 

     Listing 26-18.    The Contents of the DisplaySummary.cshtml File in the Views/Home Folder   

  @model AddressSummary 
 @{ 
     ViewBag.Title = "DisplaySummary"; 
     Layout = "_Layout"; 
 } 

   <div class="bg-primary panel-body"><h2>Address</h2></div> 

   <table class="table table-condensed table-bordered table-striped"> 
     <tr><th>City:</th><td>@Model.City</td></tr> 
     <tr><th>Country:</th><td>@Model.Country</td></tr> 
 </table> 



CHAPTER 26 ■ MODEL BINDING

823

    This view displays the values of the two properties defined by the  AddressSummary  class. To demonstrate 
the problem with prefixes when binding to different model types, I changed the  form  element in the  Create.
cshtml  view so that it sends its data to the  DisplaySummary  action, as shown in Listing  26-19 . 

     Listing 26-19.    Changing the Form Target Action in the Create.cshtml File   

  @model Person 
 @{ 
     ViewBag.Title = "Create Person"; 
     Layout = "_Layout"; 
 } 

    <form asp-action="DisplaySummary" method="post">  

       <!-- HTML elements omitted for brevity --> 

   </form> 

    You can see what happens by starting the application and navigating to the  /Home/Create  URL. When 
you submit the form, the values that you entered for the  City  and  Country  properties are not displayed in 
the HTML generated by the  DisplaySummary  view. 

 The problem is that the  name  attributes in the form have the  HomeAddress  prefix, which is not what the 
model binder is looking for when it tries to bind the  AddressSummary  type. 

 To fix the problem, the  Bind  attribute can be applied to the action method parameter, which specifies 
the prefix that should be used during model binding, as shown in Listing  26-20 . 

     Listing 26-20.    Changing the Model Binding Prefix in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           public IActionResult Index(int? id) { 
             Person person; 
             if (id.HasValue && (person = repository[id.Value]) != null) { 
                 return View(person); 
             } else { 
                 return NotFound(); 
             } 
         } 



CHAPTER 26 ■ MODEL BINDING

824

           public ViewResult Create() => View(new Person()); 

           [HttpPost] 
         public ViewResult Create(Person model) => View("Index", model); 

           public ViewResult DisplaySummary( 
              [Bind(Prefix = nameof(Person.HomeAddress))] AddressSummary summary)  
                 => View(summary); 
     } 
 } 

    The syntax is awkward, but the effect is useful. When populating the properties of the  AddressSummary  
object, the model binder will look for  HomeAddress.City  and  HomeAddress.Country  data values in the 
request. If you run the application and submit the form again, you will see that the values you enter into 
the  City  and  Country  fields are now correctly displayed, as shown in Figure  26-6 . This may seem like a long 
setup for a simple problem, but the need to bind to a different kind of object is surprisingly common, and 
this is a technique worth knowing.   

  Figure 26-6.    Binding to the properties of a different object type       

 



CHAPTER 26 ■ MODEL BINDING

825

   Selectively Binding Properties 
 Imagine that the  Country  property of the  AddressSummary  class is especially sensitive and that the user 
should not be able to specify values for it. The first thing I can do is prevent the user from seeing or editing 
the property by making sure that I don’t include any HTML elements in the application’s views that refer to 
the property. 

 However, a nefarious user could simply edit the form data sent to the server when submitting the form 
data and pick the value for the  Country  property that suits them. What I really want to do is tell the model 
binder not to bind a value for the  Country  property from the request, which I can do by configuring the  Bind  
attribute on the action method parameter, specifying the names of only the properties that I want to bind, as 
shown in Listing  26-21 . 

     Listing 26-21.    Specifying the Properties for Model Binding in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           public IActionResult Index(int? id) { 
             Person person; 
             if (id.HasValue && (person = repository[id.Value]) != null) { 
                 return View(person); 
             } else { 
                 return NotFound(); 
             } 
         } 

           public ViewResult Create() => View(new Person()); 

           [HttpPost] 
         public ViewResult Create(Person model) => View("Index", model); 

           public ViewResult DisplaySummary( 
              [Bind(nameof(AddressSummary.City), Prefix = nameof(Person.HomeAddress))]  
                 AddressSummary summary) => View(summary); 
     } 
 } 

    The first argument to the  Bind  attribute is a comma-separated list of the names of the properties that 
should be included in the model binding process. In the listing, I have specified that the  City  property 
should be included in the process, and since it is not listed, this means that the  Country  property will be 
excluded. 



CHAPTER 26 ■ MODEL BINDING

826

 If you run the application, request the  /Home/Create  URL, and fill in and send the form, you will see 
that there is no value displayed for the  Country  property, even though one was sent by the browser as part of 
the HTTP  POST  request, as illustrated by Figure  26-7 .  

  Figure 26-7.    Excluding a property from the model binding process       

 When the  Bind  attribute is applied to an action method parameter, it only affects instances of that class 
that are bound for that action method; all other action methods will continue to try to bind all the properties 
defined by the parameter type. If you want to create a more widespread effect, then you can apply the  Bind  
attribute to the model class itself, as shown in Listing  26-22 . 

     Listing 26-22.    Applying the Bind Attribute in the AddressSummary.cs File   

   using Microsoft.AspNetCore.Mvc;  

   namespace MvcModels.Models { 

        [Bind(nameof(City))]  
     public class AddressSummary { 
         public string City { get; set; } 

           public string Country { get; set; } 
     } 
 } 

    You can also exclude properties explicitly by decorating them with the  BindNever  attribute, as shown in 
Listing  26-23 , although this does mean that new properties added to the model class will be included in the 
model binding process unless you remember to apply the attribute to them. 

 



CHAPTER 26 ■ MODEL BINDING

827

     Listing 26-23.    Applying the NeverBind Attribute in the AddressSummary.cs File   

  using Microsoft.AspNetCore.Mvc; 
  using Microsoft.AspNetCore.Mvc.ModelBinding;  

   namespace MvcModels.Models { 

       public class AddressSummary { 

           public string City { get; set; } 

            [BindNever]  
         public string Country { get; set; } 
     } 
 } 

 ■      Tip   There is also a  BindRequired  attribute that tells the model binding process that a request must include 
a value for a property. If the request doesn’t have a required value, then a model validation error is produced, as 
described in Chapter   27    .    

     Binding to Arrays and Collections 
    The model binding process has some nice features for binding request data to arrays and collections, which I 
demonstrate in the following sections. 

   Binding to Arrays 
 One elegant feature of the default model binder is how it supports action method parameters that are arrays. 
To demonstrate this, I have added a new method to the  Home  controller called  Names , which you can see in 
Listing  26-24 . 

     Listing 26-24.    Adding an Action Method in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           //  ...other action methods omitted for brevity...  

            public ViewResult Names(string[] names) => View(names ?? new string[0]);  
     } 
 } 

http://dx.doi.org/10.1007/978-1-4842-0397-2_27


CHAPTER 26 ■ MODEL BINDING

828

    The  Names  action method has a  string  array parameter called  names . The model binder will look for any 
data item that is called  names  and create an array that contains those values. To provide the action method 
with a view, I created a Razor file called  Names.cshtml  in the  Views/Home  folder and added the markup 
shown in Listing  26-25 . 

     Listing 26-25.    The Contents of the Names.cshtml File in the Views/Home Folder   

  @model string[] 
 @{ 
     ViewBag.Title = "Names"; 
     Layout = "_Layout"; 
 } 

   @if (Model.Length == 0) { 
     <form asp-action="Names" method="post"> 
         @for (int i = 0; i < 3; i++) { 
             <div class="form-group"> 
                 <label>Name @(i + 1):</label> 
                 <input id="names" name="names" class="form-control" /> 
             </div> 
         } 
         <button type="submit" class="btn btn-primary">Submit</button> 
     </form> 
 } else { 
     <table class="table table-condensed table-bordered table-striped"> 
         @foreach (string name in Model) { 
             <tr><th>Name:</th><td>@name</td></tr> 
         } 
     </table> 
     <a asp-action="Names" class="btn btn-primary">Back</a> 
 } 

    This view displays different content based on the number of items there are in the view model. If there 
are no items, then the view displays a form that contains three identical  input  elements, like this: 

   ... 
 <form method="post" action="/Home/Names"> 
     <div class="form-group"> 
         <label>Name 1:</label> 
         <input id="names"  name="names"  class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label>Name 2:</label> 
         <input id="names"  name="names"  class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label>Name 3:</label> 
         <input id="names"  name="names"  class="form-control" /> 
     </div> 
     <button type="submit" class="btn btn-primary">Submit</button> 
 </form> 
 ... 



CHAPTER 26 ■ MODEL BINDING

829

   When the form is submitted, the model binding process sees that the target action method takes an 
array and looks for data items that have the same name as the action method parameter. For this example, 
this means that all the values from the input elements whose  name  attribute is  names  will be gathered 
together to create an array and used as the argument to invoke the action method. To see the effect, start the 
application, navigate to the  /Home/Names  URL, and fill out the form. When you submit the form, you will see 
that all the values you entered are displayed, as shown in Figure  26-8 .   

  Figure 26-8.    Model binding for arrays       

   Binding to Collections 
 It isn’t just arrays that the model binding process can create. It also supports collection classes. In Listing  26-26  
I changed the type of the  Names  action method parameter to be a strongly typed list. 

     Listing 26-26.    Using a Strongly Typed Collection in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 
  using System.Collections.Generic;  

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

 



CHAPTER 26 ■ MODEL BINDING

830

           //  ...other action methods omitted for brevity...  

            public ViewResult Names(IList<string> names) =>  
              View(names ?? new List<string>());  
     } 
 } 

    I used the  IList<T  > interface. I don’t need to specify a concrete implementation class, although I could 
have if I preferred. In Listing  26-27 , I modified the  Names.cshtml  view file to use the new model type. 

     Listing 26-27.    Using a Collection As the Model Type in the Names.cshtml File   

   @model IList<string>  
 @{ 
     ViewBag.Title = "Names"; 
     Layout = "_Layout"; 
 } 

    @if (Model.Count == 0) {  
     <form asp-action="Names" method="post"> 
         @for (int i = 0; i < 3; i++) { 
             <div class="form-group"> 
                 <label>Name @(i + 1):</label> 
                 <input id="names" name="names" class="form-control" /> 
             </div> 
         } 
         <button type="submit" class="btn btn-primary">Submit</button> 
     </form> 
 } else { 
     <table class="table table-condensed table-bordered table-striped"> 
         @foreach (string name in Model) { 
             <tr><th>Name:</th><td>@name</td></tr> 
         } 
     </table> 
     <a asp-action="Names" class="btn btn-primary">Back</a> 
 } 

    The functionality of the  Names  action is unchanged, but I am now able to work with a collection class 
rather than an array.  

   Binding to Collections of Complex Types 
 You can also bind individual data values to an array of complex types, which allows multiple objects (such as 
the  AddressSummary  model class in the example) to be collected from a single request. In Listing  26-28 , 
I added an action method to the  Home  controller called  Address , whose parameter is a list of  AddressSummary  
objects. 



CHAPTER 26 ■ MODEL BINDING

831

     Listing 26-28.    Defining an Action Method in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 
 using System.Collections.Generic; 

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           //  ...other action methods omitted for brevity...  

            public ViewResult Address(IList<AddressSummary> addresses) =>  
              View(addresses ?? new List<AddressSummary>());  
     } 
 } 

    To provide the new action method with a view, I added a file called  Address.cshtml  to the  Views/Home  
folder and added the markup shown in Listing  26-29 . 

     Listing 26-29.    The Contents of the Address.cshtml File in the Views/Home Folder   

  @model IList<AddressSummary> 
 @{ 
     ViewBag.Title = "Address"; 
     Layout = "_Layout"; 
 } 

   @if (Model.Count() == 0) { 
     <form asp-action="Address" method="post"> 
         @for (int i = 0; i < 3; i++) { 
             <fieldset class="form-group"> 
                 <legend>Address @(i + 1)</legend> 
                 <div class="form-group"> 
                     <label>City:</label> 
                     <input name="[@i].City" class="form-control" /> 
                 </div> 
                 <div class="form-group"> 
                     <label>Country:</label> 
                     <input name="[@i].Country" class="form-control" /> 
                 </div> 
             </fieldset> 
         } 
         <button type="submit" class="btn btn-primary">Submit</button> 
     </form> 
 } else { 
     <table class="table table-condensed table-bordered table-striped"> 



CHAPTER 26 ■ MODEL BINDING

832

         <tr><th>City</th><th>Country</th></tr> 
         @foreach (var address in Model) { 
             <tr><td>@address.City</td><td>@address.Country</td></tr> 
         } 
     </table> 
     <a asp-action="Address" class="btn btn-primary">Back</a> 
 } 

    This view renders a  form  element if there are no items in the model collection. The  form  consists of 
pairs of  input  elements whose  name  attributes are prefixed with an array index, like this: 

   ... 
 <form method="post" action="/Home/Address"> 
     <fieldset class="form-group"> 
         <legend>Address 1</legend> 
         <div class="form-group"> 
             <label>City:</label> 
              <input name="[0].City" class="form-control" />  
         </div> 
         <div class="form-group"> 
             <label>Country:</label> 
              <input name="[0].Country" class="form-control" />  
         </div>                 
     </fieldset> 
     <fieldset class="form-group"> 
         <legend>Address 2</legend> 
         <div class="form-group"> 
             <label>City:</label> 
              <input name="[1].City" class="form-control" />  
         </div> 
         <div class="form-group"> 
             <label>Country:</label> 
              <input name="[1].Country" class="form-control" />  
         </div>                 
     </fieldset> 
     <fieldset class="form-group"> 
         <legend>Address 3</legend> 
         <div class="form-group"> 
             <label>City:</label> 
              <input name="[2].City" class="form-control" />  
         </div> 
         <div class="form-group"> 
             <label>Country:</label> 
              <input name="[2].Country" class="form-control" />  
         </div>                 
     </fieldset> 
     <button type="submit" class="btn btn-primary">Submit</button> 
 </form> 
 ... 



CHAPTER 26 ■ MODEL BINDING

833

   When the  form  is submitted, the model binder realizes that it needs to create a collection of 
 AddressSummary  objects and uses the array index prefixes in the  name  attributes to obtain values for the 
object properties. The properties prefixed with  [0]  are used for the first  AddressSummary  object, those 
prefixed with  [1]  are used for the second object, and so on. 

 The  Address.cshtml  view defines  input  elements for three such indexed objects and displays them 
when the model collection contains items. Before I can demonstrate this, I need to remove the  BindNever  
attribute from the  AddressSummary  model class, as shown in Listing  26-30 ; otherwise, the model binder will 
ignore the  Country  property. 

     Listing 26-30.    Removing the BindNever Attribute from the AddressSummary.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Mvc.ModelBinding; 

   namespace MvcModels.Models { 

       public class AddressSummary { 

           public string City { get; set; } 

            //[BindNever]  
         public string Country { get; set; } 
     } 
 } 

    You can see how the binding process for custom object collections works by starting the application and 
navigating to the  /Home/Address  URL. Enter some cities and countries, and then click the Submit button to 
post the form to the server. 

 The model binding process will find and process the indexed data values and use them to create the 
collection of  AddressSummary  objects that are provided to the action method, which then uses the  View  
convenience method to pass them back to the view so they can be displayed, as illustrated in Figure  26-9 .     



CHAPTER 26 ■ MODEL BINDING

834

     Specifying a Model Binding Source 
    As I explained at the start of the chapter, the default model binding process looks for data in three places: the 
forms data values, the routing data, and the request query string. 

 The default search sequence isn’t always helpful, either because you always want data to come from 
a specific part of the request or because you want to use a data source that isn’t searched by default. The 
model binding feature includes a set of attributes that are used to override the default search behavior, as 
described in Table  26-3 .  

  Figure 26-9.    Binding collections of custom objects       

 



CHAPTER 26 ■ MODEL BINDING

835

     Selecting a Standard Binding Source 
 The  FromForm ,  FromRoute , and  FromQuery  attributes allow you to specify that the model binding data will be 
obtained from one of the standard locations but without the normal search sequence. Earlier in the chapter, 
I used this URL: 

   /Home/Index/3?id=1 

   This URL contains two possible values that can be used for the  id  parameter of the  Index  action method 
on the  Home  controller. The routing system will assign the final segment of the URL to a variable called  id , 
which is defined in the URL pattern in the  Startup  class, and the query string contains also contains an  id  
value. The default search pattern means that the model binding data will be taken from the route data and 
the query string will be ignored. 

 To change this behavior, in Listing  26-31 , I have applied the  FromQuery  attribute to the action method. 
To keep the example simple, I have also removed all the other action method that I defined in previous 
examples. 

     Listing 26-31.    Selecting the Query String for Model Binding in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

    Table 26-3.    The Model Binding Source Attributes   

 Name  Description 

  FromForm   This attribute is used to select form data as the source of binding data. The name of the 
parameter is used to locate a form value by default, but this can be changed using the 
 Name  property, which allows a different name to be specified. 

  FromRoute   This attribute is used to select the routing system as the source of binding data. The 
name of the parameter is used to locate a route data value by default, but this can be 
changed using the  Name  property, which allows a different name to be specified. 

  FromQuery   This attribute is used to select the query string as the source of binding data. The 
name of the parameter is used to locate a query string value by default, but this can 
be changed using the  Name  property, which allows a different query string key to be 
specified. 

  FromHeader   This attribute is used to select a request header as the source of binding data. The name 
of the parameter is used to as the header name by default, but this can be changed 
using the  Name  property, which allows a different header name to be specified. 

  FromBody   This attribute is used to specify that the request body should be used as the source of 
binding data, which is required when you want to receive data from requests that are 
not form-encoded, such as in API controllers. 



CHAPTER 26 ■ MODEL BINDING

836

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

            public IActionResult Index([FromQuery] int? id) {  
             Person person; 
             if (id.HasValue && (person = repository[id.Value]) != null) { 
                 return View(person); 
             } else { 
                 return NotFound(); 
             } 
         } 
     } 
 } 

    I have applied the  FromQuery  attribute to the  id  parameter, which means that only the query string will 
be used when the model binding process is looking for an  id  data value. 

 ■   Tip   You can still bind complex types when specifying a model binding source such as the query string. 
For each simple property in the parameter type, the model binding process will look for a query string key with 
the same name.   

     Using Headers As Binding Sources 
    The  FromHeader  attribute allows HTTP request headers to be used as the source for binding data. In 
Listing  26-32 , I have added a simple action method to the  Home  controller that receives a parameter bound 
using data from a standard HTTP request header. 

     Listing 26-32.    Model Binding from an HTTP Request Header in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           public IActionResult Index([FromQuery] int? id) { 
             Person person; 
             if (id.HasValue && (person = repository[id.Value]) != null) { 
                 return View(person); 
             } else { 
                 return NotFound(); 
             } 
         } 



CHAPTER 26 ■ MODEL BINDING

837

            public string Header([FromHeader]string accept) => $"Header: {accept}";  
     } 
 } 

    The  Header  action method defines an  accept  parameter, the value for which will be taken from the 
 Accept  header in the current request and returned as the method result. If you run the application and 
request the  /Home/Header  URL, you will see a result like this (although the exact result may differ based on 
the browser you use): 

   Header: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8 

   Not all HTTP header names can be easily selected by relying on the name of the action method 
parameter because the model binding system doesn’t convert from C# naming conventions to those used by 
HTTP headers. In these situations, you must configure the  FromHeader  attribute using the  Name  property to 
specify the name of the header, as shown in Listing  26-33 . 

     Listing 26-33.    Specifying the Name of the Header in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           public IActionResult Index([FromQuery] int? id) { 
             Person person; 
             if (id.HasValue && (person = repository[id.Value]) != null) { 
                 return View(person); 
             } else { 
                 return NotFound(); 
             } 
         } 

            public string Header([FromHeader(Name = "Accept-Language")] string accept)  
              => $"Header: {accept}";  
     } 
 } 

    I can’t use  Accept-Language  as the name of a C# parameter, and the model binder won’t automatically 
convert a name like  AcceptLanguage  into  Accept-Language  so that it matches the header. Instead, I used the  Name  
property to configure the attribute so that it matches the right header. If you start the application and request the 
 /Home/Header  URL, you will see a response like this one, which will vary based on your locale settings: 

   Header: en-US,en;q=0.8 



CHAPTER 26 ■ MODEL BINDING

838

     Binding Complex Types from Headers 
 Although it is a rare requirement, you can bind complex types using header values by applying the 
 FromHeader  attribute to the properties of a model class. As an example, I added a file called  HeaderModel.cs  
to the  Models  folder and defined the class shown in Listing  26-34 . 

     Listing 26-34.    The Contents of the HeaderModel.cs File in the Models Folder   

  using Microsoft.AspNetCore.Mvc; 

   namespace MvcModels.Models { 

       public class HeaderModel { 

           [FromHeader] 
         public string Accept { get; set; } 

           [FromHeader(Name = "Accept-Language")] 
         public string AcceptLanguage { get; set; } 

           [FromHeader(Name = "Accept-Encoding")] 
         public string AcceptEncoding { get; set; } 
     } 
 } 

    This class defines three properties, each of which has been decorated with the  FromHeader  attribute. I 
have used the  Name  property on two of the attributes to specify header names that cannot be expressed as 
C# parameter names. In Listing  26-35 , I have updated the  Header  action method in the  Home  controller to 
receive a  HeaderModel  object. 

     Listing 26-35.    Using the Header Model Class in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           public IActionResult Index([FromQuery] int? id) { 
             Person person; 
             if (id.HasValue && (person = repository[id.Value]) != null) { 
                 return View(person); 
             } else { 
                 return NotFound(); 
             } 
         } 



CHAPTER 26 ■ MODEL BINDING

839

            public ViewResult Header(HeaderModel model) => View(model);  
     } 
 } 

    To complete the example, I added a view file called  Header.cshtml  to the  Views/Home  folder and added 
the markup shown in Listing  26-36 . 

     Listing 26-36.    The Contents of the Header.cshtml File in the Views/Home Folder   

  @model HeaderModel 
 @{ 
     ViewBag.Title = "Headers"; 
     Layout = "_Layout"; 
 } 

   <table class="table table-condensed table-bordered table-striped"> 
     <tr><th>Accept:</th><td>@Model.Accept</td></tr> 
     <tr><th>Accept-Encoding:</th><td>@Model.AcceptEncoding</td></tr> 
     <tr><th>Accept-Language:</th><td>@Model.AcceptLanguage</td></tr> 
 </table> 

    The model binding process will examine the properties of complex types looking for the attributes 
described in Table  26-3 . This allows me to use the  FromHeader  attribute to define a complex type whose 
properties are model bound from headers, which you can see if you run the application and request the 
 /Home/Header  URL, which produces the result shown in Figure  26-10 .    

     Using Request Bodies as Binding Sources 
    Not all data sent by clients is sent as form data, such as when a JavaScript client sends JSON data to an 
API controller. The  FromBody  attribute specifies that the request body should be decoded and used as a 
source of model binding data. In Listing  26-37 , I have added new  Body  action methods that demonstrate 
how this works. 

  Figure 26-10.    Model binding a complex type from request headers       

 



CHAPTER 26 ■ MODEL BINDING

840

     Listing 26-37.    Adding Action Methods in the HomeController.cs File   

  using Microsoft.AspNetCore.Mvc; 
 using MvcModels.Models; 

   namespace MvcModels.Controllers { 

       public class HomeController : Controller { 
         private IRepository repository; 

           public HomeController(IRepository repo) { 
             repository = repo; 
         } 

           public IActionResult Index([FromQuery] int? id) { 
             Person person; 
             if (id.HasValue && (person = repository[id.Value]) != null) { 
                 return View(person); 
             } else { 
                 return NotFound(); 
             } 
         } 

           public ViewResult Header(HeaderModel model) => View(model); 

            public ViewResult Body() => View();  

            [HttpPost]  
          public Person Body([FromBody]Person model) => model;  
     } 
 } 

    I have decorated the parameter for the  Body  method that accepts  POST  requests with the  FromBody  
attribute, which means that request body content will be decoded and used for model binding. As I 
explained in Chapter   20    , MVC has an extensible system for working with data formats but is set up to deal 
only with JSON data by default. 

 Next, I edited the bower.json file to add jQuery to the application, as shown in Listing  26-38 . 

     Listing 26-38.    Adding jQuery to the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
     "bootstrap": "3.3.6", 
      "jquery": "2.2.4"  
   } 
 } 

   To provide the action method with the data it requires, I added a file called  Body.cshtml  to the  Views/
Home  folder and added the content shown in Listing  26-39 . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_20


CHAPTER 26 ■ MODEL BINDING

841

     Listing 26-39.    The Contents of the Body.cshtml File in the Views/Home Folder   

  @{ 
     ViewBag.Title = "Address"; 
     Layout = "_Layout"; 
 } 

   @section scripts { 
     <script src="/lib/jquery/dist/jquery.min.js"></script> 
     <script type="text/javascript"> 
         $(document).ready(function () { 
             $("button").click(function (e) { 
                 $.ajax("/Home/Body", { 
                     method: "post", 
                     contentType: "application/json", 
                     data: JSON.stringify({ 
                         firstName: "Bob", 
                         lastName: "Smith" 
                     }), 
                     success: function (data) { 
                         $("#firstName").text(data.firstName); 
                         $("#lastName").text(data.lastName); 
                     } 
                 }); 
             }); 
         }); 
     </script> 
 } 

   <table class="table table-condensed table-bordered table-striped"> 
     <tr><th>First Name:</th><td id="firstName"></td></tr> 
     <tr><th>Last Name:</th><td id="lastName"></td></tr> 
 </table> 
 <button class="btn btn-primary">Submit</button> 

    For simplicity, this view contains some inline JavaScript code that uses jQuery to send an HTTP  POST  
request containing JSON data to the  /Home/Body  URL when a  button  element is clicked. The server encodes 
the object created using model binding and sends it back to the client, encoded as JSON. You can see the 
effect by running the application, requesting the  /Home/Body  URL, and clicking the Submit button, as 
illustrated in Figure  26-11 .  

 ■   Tip   Not all JavaScript client code requires the use of the  FromBody  attribute. I had to avoid using the jQuery 
convenience method for sending Ajax  POST  requests in this example because it encodes data as form data. 
Instead, I had to use a different method that allows me to send JSON data.  



CHAPTER 26 ■ MODEL BINDING

842

 The  FromBody  attribute can be used to model bind only one action method parameter, and an 
exception will be thrown if the attribute is used more than once for a single method. If you need to create 
multiple model objects from a request body, then you will have to create a simple data transfer class that 
has all the properties you need and use the data it contains to create the objects you require inside the 
action method.   

     Summary 
 In this chapter, I described the model binding process, which is used to provide action methods with the 
arguments they require using data values from the HTTP request that is being processed. I explained how 
simple and complex types are model bound, how arrays and collections are dealt with, and the ways in 
which the model binding process can be controlled by applying attributes to action method parameters or 
model class properties. In the next chapter, I describe the model validation feature.     

  Figure 26-11.    Using the request body for model binding       

 



843© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_27

    CHAPTER 27   

 Model Validation                          

          In the previous chapter, I showed you how MVC creates model objects from HTTP requests through the 
model binding process. Throughout that chapter, I worked on the basis that the data the user supplied was 
valid. The reality is that users will often enter data that isn’t valid and cannot be used, which leads me to the 
topic of this chapter:  model validation . 

 Model validation is the process of ensuring the data received by the application is suitable for binding to 
the model and, when this is not the case, providing useful information to the user that will help explain the 
problem. 

 The first part of the process, checking the data received, is one of the key ways to preserve the integrity 
of the domain model. Rejecting data that doesn’t make sense in the context of the domain can prevent odd 
and unwanted states from arising in the application. The second part, helping the user correct the problem, 
is equally important. Without the information and feedback they need to interact with the application, users 
become frustrated and confused. In public-facing applications, this means users will simply stop using the 
application. In corporate applications, this means the user’s workflow will be hindered. Neither outcome 
is desirable, but fortunately MVC provides extensive support for model validation. Table  27-1  puts model 
validation in context.  

   Table 27-1.    Putting Model Validation in Context   

 Question  Answer 

 What is it?  Model validation is the process of ensuring that the data provided in 
a request is valid for use in the application. 

 Why is it useful?  Users do not always enter valid data, and using it in the application 
can produce unexpected and undesirable errors. 

 How is it used?  Controllers check the outcome of the validation process, and tag 
helpers are used to include validation feedback in views displayed 
to the user. Validation is performed automatically during the model 
binding process and is usually supplemented with custom validation 
in a controller class or by using validation attributes. 

 Are there any pitfalls or limitations?  It is important to test the efficacy of your validation code to ensure 
that it prevents against the full range of values that the application 
can receive. 

 Are there any alternatives?  No, model validation is tightly integrated into ASP.NET Core MVC. 

 Has it changed since MVC 5?  The basic approach to performing validation remains the same as 
in earlier versions of MVC, but some of the underlying class and 
interfaces have changed. 



CHAPTER 27 ■ MODEL VALIDATION

844

 Table  27-2  summarizes the chapter.  

   Table 27-2.    Chapter Summary   

 Problem  Solution  Listing 

 Explicitly validate a model  Use the  ModelState  to record validation errors  1–11 

 Generate a summary of 
validation errors 

 Apply the  asp-validation-summary  attribute to a  div  element  12 

 Change the default model 
binding messages 

 Redefine the message functions in the model binding message 
provider 

 13 

 Generate property-level 
validation errors 

 Apply the  asp-validation-for  attribute to a  span  element  14 

 Generate model-level 
validation errors 

 Use the  ModelState  to record validation errors that are not 
associated with a specific property and use the  ModelOnly  value 
for the  asp-validation-summary  attribute in the  div  element 

 15, 16 

 Define a self-validating model  Apply data validation attributes to the model properties  17, 18 

 Create a custom validation 
attribute 

 Implement the  IModelValidator  interface  19–20 

 Perform client-side validation  Use the jQuery validation and jQuery unobtrusive validation 
packages 

 21, 22 

 Perform remove validation  Define an action method to perform the validation and apply 
the  Remote  attribute to the model property 

 23, 24 

     Preparing the Example Project 
 For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty 
project called ModelValidation. I added the NuGet packages I required to the  dependencies  section of the 
 project.json  file and set up the Razor tooling in the  tools  section, as shown in Listing  27-1 . I removed the 
sections that are not required for this chapter. 

     Listing 27-1.    Adding Packages in the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 

       "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
      "Microsoft.AspNetCore.Mvc": "1.0.0",  
      "Microsoft.AspNetCore.StaticFiles": "1.0.0",  



CHAPTER 27 ■ MODEL VALIDATION

845

      "Microsoft.AspNetCore.Razor.Tools": {  
        "version": "1.0.0-preview2-final",  
        "type": "build"  
      }  
   }, 

     "tools": { 
      "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final",  
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final" 
   }, 

     "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6","portable-net45+win8"] 
     } 
   }, 

     "buildOptions": { 
     "emitEntryPoint": true, "preserveCompilationContext": true 
   }, 

     "runtimeOptions": { 
     "configProperties": { "System.GC.Server": true } 
   } 
 } 

    Listing  27-2  shows the  Startup  class, which configures the features provided by the NuGet packages. 

     Listing 27-2.    The Contents of the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace ModelValidation { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddMvc();  
         } 

           public void Configure(IApplicationBuilder app) { 
              app.UseStatusCodePages();  
              app.UseDeveloperExceptionPage();  
              app.UseStaticFiles();  
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 



CHAPTER 27 ■ MODEL VALIDATION

846

        Creating the Model 
 I created the  Models  folder, added a class file called  Appointment.cs , and used it to define the class shown in 
Listing  27-3 . 

     Listing 27-3.    The Contents of the Appointment.cs File in the Models Folder   

  using System; 
 using System.ComponentModel.DataAnnotations; 

   namespace ModelValidation.Models { 
     public class Appointment { 

           public string ClientName { get; set; } 

           [UIHint("Date")] 
         public DateTime Date { get; set; } 

           public bool TermsAccepted { get; set; } 
     } 
 } 

    The  Appointment  model class defines three properties, and I have used the  UIHint  attribute to indicate 
that the  Date  property should be expressed as a date without a time component.  

     Creating the Controller 
 I created the  Controllers  folder, added a class file called  HomeController.cs , and used it to define the 
controller shown in Listing  27-4 , which operates on the  Appointment  model class. 

     Listing 27-4.    The Contents of the HomeController.cs File in the Controllers Folder   

  using System; 
 using Microsoft.AspNetCore.Mvc; 
 using ModelValidation.Models; 

   namespace ModelValidation.Controllers { 

       public class HomeController : Controller { 

           public IActionResult Index() => 
             View("MakeBooking", new Appointment { Date = DateTime.Now }); 

           [HttpPost] 
         public ViewResult MakeBooking(Appointment appt) => 
             View("Completed", appt); 

       } 
 } 



CHAPTER 27 ■ MODEL VALIDATION

847

    The  Index  action renders the  MakeBooking  view with a new  Appointment  object as the view model. The 
 MakeBooking  action method is more interesting in this chapter, since this is the method in which model 
validation will be performed. 

 ■   Note    The example application is so simple that I have not defined a repository and do not need to add 
any code to store the  Appointment  objects that are produced by the model binding process. That said, it is 
important to bear in mind that the main reason to validate a model is to prevent bad or meaningless data from 
being placed in the repository and causing problems (either when trying to store the data or when trying to 
process the data later).   

     Creating the Layout and Views 
 I will need a simple layout for some of the examples in this chapter. I created the  Views/Shared  folder and 
added the  _Layout.cshtml  file to it, the contents of which you can see in Listing  27-5 . 

     Listing 27-5.    The Contents of the _Layout.cshtml File in the Views/Shared Folder   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <meta charset="utf-8" /> 
     <meta name="viewport" content="width=device-width" /> 
     <title>Model Validation</title> 
     <link asp-href-include="/lib/bootstrap/dist/**/*.min.css" rel="stylesheet" /> 
     @RenderSection("scripts", false) 
 </head> 
 <body class="panel-body"> 
     @RenderBody() 
 </body> 
 </html> 

   To provide the action methods with views, I created the  Views/Home  folder and added a file called 
 MakeBooking.cshtml  with the markup shown in Listing  27-6 . 

     Listing 27-6.    The Contents of the MakeBooking.cshtml File  in the Views/Home Folder   

  @model Appointment 

   @{ Layout = "_Layout"; } 

   <div class="bg-primary panel-body"><h2>Book an Appointment</h2></div> 

   <form class="panel-body" asp-action="MakeBooking" method="post"> 
     <div class="form-group"> 
         <label asp-for="ClientName">Your name:</label> 
         <input asp-for="ClientName" class="form-control" /> 
     </div> 



CHAPTER 27 ■ MODEL VALIDATION

848

     <div class="form-group"> 
         <label asp-for="Date">Appointment Date:</label> 
         <input asp-for="Date" type="text" asp-format="{0:d}" class="form-control" /> 
     </div> 
     <div class="radio form-group"> 
         <input asp-for="TermsAccepted" /> 
         <label asp-for="TermsAccepted">I accept the terms & conditions</label> 
     </div> 
     <button type="submit" class="btn btn-primary">Make Booking</button> 
 </form> 

    When the form contained in the  Index.cshtml  file is posted back to the application, the  MakeBooking  
action method displays the details of the appointment that the user has created using the  Completed.cshtml  
view in the  Views/Home  folder, which is shown in Listing  27-7 . 

     Listing 27-7.    The Contents of the Completed.cshtml File in the Views/Home Folder   

  @model Appointment 
 @{ Layout = "_Layout"; } 

   <div class="bg-success panel-body"><h2>Your Appointment</h2></div> 

   <table class="table table-bordered"> 
     <tr> 
         <th>Your name is:</th> 
         <td>@Model.ClientName</td> 
     </tr> 
     <tr> 
         <th>Your appontment date is:</th> 
         <td>@Model.Date.ToString("d")</td> 
     </tr> 
 </table> 
 <a class="btn btn-success" asp-action="Index">Make Another Appointment</a> 

    The views depend on the Bootstrap CSS package for styling the HTML elements. To add Bootstrap to 
the project, I used the Bower Configuration File item template to create the  bower.json  file and added the 
Bootstrap package to the  dependencies  section, as shown in Listing  27-8 . I have also added jQuery to the 
project, which I use later in the chapter. 

     Listing 27-8.    Adding the Bootstrap Package in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6",  
      "jquery": "2.2.4"  
   } 
 } 

   The final preparation is to create the  _ViewImports.cshtml  file in the  Views  folder, which sets up the 
built-in tag helpers for use in Razor views and imports the model namespace, as shown in Listing  27-9 . 



CHAPTER 27 ■ MODEL VALIDATION

849

     Listing 27-9.    The Contents of the _ViewImports.cshtml File in the Views Folder   

 @using ModelValidation.Models 
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

   As you may have gathered, the example for this chapter is based around creating appointments. You can 
see how it works by starting the application and requesting the default URL. Entering details into the form 
and clicking the Make Booking button will send the data to the server, which performs the model-binding 
process to create an  Appointment  object, the details of which are then rendered using the  Completed.cshtml  
view, as shown in Figure  27-1 .    

  Figure 27-1.    Using the example application       

     Understanding the Need for Model Validation 
 Model validation is the process of enforcing the requirements that an application has for the data it receives 
from clients. Without validation, an application will try to operate on any data it receives, which can lead to 
exceptions and unexpected behavior that appear immediately or long-term problems that appear gradually 
as the repository is populated with bad, incomplete, or malicious data. 

 At the moment, the example application will accept any data that the user submits. To preserve the 
integrity of the application and domain model, I need the following three things to be true before I know that 
the user has provided an acceptable  Appointment  object:

•    The user must provide a name.  

•   The user must provide a date that is in the future.  

•   The user must have selected the check box to accept the terms and conditions.    

 



CHAPTER 27 ■ MODEL VALIDATION

850

 In the sections that follow, I demonstrate how model validation can be used to enforce these 
requirements by checking the data that the application receives and providing feedback to the user when the 
application cannot use the data they have submitted.  

     Explicitly Validating a Model 
    The most direct way of validating a model is to do so in the action method. In Listing  27-10 , I have added 
explicit checks for each property defined by the  Appointment  class in the  MakeBooking  action method. 

     Listing 27-10.    Explicitly Validating a Model in the HomeController.cs File   

  using System; 
 using Microsoft.AspNetCore.Mvc; 
 using ModelValidation.Models; 
  using Microsoft.AspNetCore.Mvc.ModelBinding;  

   namespace ModelValidation.Controllers { 

       public class HomeController : Controller { 

           public IActionResult Index() => 
             View("MakeBooking", new Appointment { Date = DateTime.Now }); 

           [HttpPost] 
          public ViewResult MakeBooking(Appointment appt) {  
              if (string.IsNullOrEmpty(appt.ClientName)) {  
                  ModelState.AddModelError(nameof(appt.ClientName),  
                      "Please enter your name");  
              }  

                if (ModelState.GetValidationState("Date")  
                      == ModelValidationState.Valid  &&  DateTime.Now > appt.Date) {  
                  ModelState.AddModelError(nameof(appt.Date),  
                      "Please enter a date in the future");  
              }  

                if (!appt.TermsAccepted) {  
                  ModelState.AddModelError(nameof(appt.TermsAccepted),  
                      "You must accept the terms");  
              }  

                if (ModelState.IsValid) {  
                  return View("Completed", appt);  
              } else {  
                  return View();  
              }  
          }  
     } 
 } 



CHAPTER 27 ■ MODEL VALIDATION

851

    I check the values that the model binder has assigned to the properties of the parameter object and 
register any errors I find using the  ModelStateDictionary  object that is returned by the  ModelState  property 
inherited from the  Controller  base class. 

 As its name suggests, the  ModelStateDictionary  class is a dictionary that is used to track details of the 
state of the model object, with an emphasis on validation errors. Table  27-3  describes the most important 
 ModelStateDictionary  members.     

   Table 27-3.    Selected ModelStateDictionary Members   

 Name  Description 

  AddModelError(property, message)   This method is used to record a model validation error for the 
specified property. 

  GetValidationState(property)   This method is used to determine whether there are model 
validation errors for a specific property, expressed as a value from 
the  ModelValidationState  enumeration. 

  IsValid   This property returns  true  if all the model properties are valid 
and returns  false  otherwise. 

 As an example of using the  ModelStateDictionary , consider how the  ClientName  property was validated. 

   ... 
 if (string.IsNullOrEmpty(appt.ClientName)) { 
     ModelState.AddModelError(nameof(appt.ClientName), "Please enter your name"); 
 } 
 ... 

   One of the example validation goals is to ensure that the user provides a value for this property, so I 
use the static  string.IsNullOrEmpty  method to test the property value that the model binding process 
has extracted from the request. If the  ClientName  property is  null  or an empty string, then I know that my 
validation goal has not been met, and I use the  ModelState.AddModelError  method to register a validation 
error, specifying the name of the property ( ClientName ) and a message that will be displayed to the user to 
explain the nature of the problem ( Please enter your name ). 

 The model binding system also uses the  ModelStateDictionary  to record any problems with finding 
and assigning values to model properties. The  GetValidationState  method is used to see whether 
there have been any errors recorded for a model property, either from the model binding process or 
because the  AddModelError  method has been called during explicit validation in the action method. The 
 GetValidationState  method returned a value from the  ModelValidationState  enumeration, which defines 
the values described in Table  27-4 .  



CHAPTER 27 ■ MODEL VALIDATION

852

 For the  Date  property, I check to see whether the model binding process has reported a problem 
parsing the value sent by the browser into a  DateTime  object, like this: 

   ... 
 if ( ModelState.GetValidationState("Date") == ModelValidationState.Valid  
         && DateTime.Now > appt.Date) { 
     ModelState.AddModelError(nameof(appt.Date), "Please enter a date in the future"); 
 } 
 ... 

   My validation goal for the  Date  property is to ensure that the user provides a valid future date. I use the 
 GetValidationState  method to see whether the model binding process was able to parse the request value 
into a  DateTime  object by checking for the  ModelValidationState.Valid  value. If there is a valid date, 
then I check to make sure it is in the future and use the  AddModelError  method to record a validation 
problem if it is not. 

 After I have validated all the properties in the model object, I check the  ModelState.IsValid  property 
to see whether there were errors. This method returns  true  if the  Model.State.AddModelError  method was 
called during the checks or if the model binder had any problems creating the  Appointment  object. 

   ... 
  if (ModelState.IsValid) {  
     return View("Completed", appt); 
 } else { 
     return View(); 
 } 
 ... 

   The  Appointment  object is valid if the  IsValid  property returns  true , in which case the action method 
renders the  Completed.cshtml  view. There is a validation problem if the  IsValue  property returns  false , 
which is dealt with by calling the  View  method to render the default view. 

     Displaying Validation Errors to the User 
    It may seem odd to deal with a validation error by calling the  View  method, but the context data that MVC 
provides to the view contains details of the model validation errors, which is automatically detected and 
used by the tag helper that is used to transform the  input  elements. 

   Table 27-4.    The ModelValidationState Values   

 Name  Description 

  Unvalidated   This value means that no validation has been performed on the model property, usually 
because there was no value in the request that corresponded to the property name. 

  Valid   This value means that the request value associated with the property is valid. 

  Invalid   This value means that the request value associated with the property is invalid and 
should not be used. 

  Skipped   This value means that the model property has not been processed, which usually means 
that there have been so many validation errors that there is no point continuing to 
perform validation checks. 



CHAPTER 27 ■ MODEL VALIDATION

853

 To see how this works, start the application and click the Make Booking button without filling in any 
of the form details. There won’t be any visible change shown in the browser window, but if you inspect the 
HTML that MVC returns from the  POST  request, you will see that the  class  attribute of the form element 
changes. Here is what the  ClientName  element looks like before the form is submitted: 

   <input class="form-control" type="text" id="ClientName" name="ClientName" value=""> 

   And here is input element sent when the empty form has been submitted: 

   <input class="form-control  input-validation-error " type="text" id="ClientName" 
     name="ClientName" value=""> 

   The tag helper adds elements whose values have failed validation to the  input-validation-error  class, 
which can then be styled to highlight the problem to the user. 

 You can do this by defining custom CSS styles in a stylesheet, but a little extra work is required if you 
want to use the built-in validation styles that CSS libraries like Bootstrap provides. The name of the class 
added to the form elements cannot be changed, which means that some JavaScript code is required to map 
between the name used by MVC and the CSS error classes provided by Bootstrap. 

 ■   Tip    Using JavaScript code like this can be awkward, and it can be tempting to use custom CSS styles, even 
when working with a CSS library like Bootstrap. However, the colors used for validation classes in Bootstrap can be 
overridden by using themes or by customizing the package and defining your own styles, which means you have 
to ensure that any changes to the theme are matched by corresponding changes to any custom styles you define. 
Ideally, Microsoft will make the validation class names configurable in a future release of ASP.NET Core MVC, but 
until then, using JavaScript to apply Bootstrap styles is a more robust approach than creating custom stylesheets.  

 In Listing  27-11 , I have added jQuery code to the  MakeBooking  view to find the elements in the  input-
validation-error  class, locates the closest parent that has been assigned to the  form-group  class, and add 
that element to the  has-error  class (which Bootstrap uses to set the error color for form elements).     

     Listing 27-11.    Assigning Elements to Validation Classes in the MakeBooking.cshtml File   

  @model Appointment 

   @{ Layout = "_Layout"; } 

    @section scripts {  
      <script asp-src-include="/lib/jquery/dist/*.min.js"></script>  
      <script type="text/javascript">  
          $(document).ready(function () {  
              $("input.input-validation-error")  
                  .closest(".form-group").addClass("has-error");  
          });  
      </script>  
  }  

   <div class="bg-primary panel-body"><h2>Book an Appointment</h2></div> 



CHAPTER 27 ■ MODEL VALIDATION

854

   <form class="panel-body" asp-action="MakeBooking" method="post"> 
     <div class="form-group"> 
         <label asp-for="ClientName">Your name:</label> 
         <input asp-for="ClientName" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Date">Appointment Date:</label> 
         <input asp-for="Date" type="text" asp-format="{0:d}" class="form-control" /> 
     </div> 
     <div class="radio form-group"> 
         <input asp-for="TermsAccepted" /> 
         <label asp-for="TermsAccepted">I accept the terms & conditions</label> 
     </div> 
     <button type="submit" class="btn btn-primary">Make Booking</button> 
 </form> 

    The jQuery code runs when the browser has finished parsing all the elements in the HTML document, 
and the effect is to highlight the  input  elements that have been assigned to the  input-validaton-error  
class. You can see the effect by running the application and submitting the form without filling in any of the 
fields, producing the result shown in Figure  27-2 .  

  Figure 27-2.    Highlighting validation errors       

 



CHAPTER 27 ■ MODEL VALIDATION

855

 When you submit the form without entering any data, errors are highlighted for all three properties. The 
user will not be shown the  Completed.cshtml  view until the form is submitted with data that can be parsed 
by the model browser and that passes the explicit validation checks in the  MakeBooking  action method. Until 
that happens, submitting the form will cause the  MakeBooking.cshtml  view to be rendered with the current 
validation errors.  

     Displaying Validation Messages 
 The CSS classes that the tag helpers apply to  input  elements indicate that there are problems with a form 
field, but they do not tell the user what the problem is. Providing the user with more information requires the 
use of a different tag helper, which adds a summary of the problems to the view, as shown in Listing  27-12 .        

     Listing 27-12.    Displaying a Validation Summary in the MakeBooking.cshtml File   

  @model Appointment 

   @{ Layout = "_Layout"; } 

   @section scripts { 
     <script asp-src-include="/lib/jquery/dist/*.min.js"></script> 
     <script type="text/javascript"> 
         $(document).ready(function () { 
             $("input.input-validation-error") 
                 .closest(".form-group").addClass("has-error"); 
         }); 
     </script> 
 } 

   <div class="bg-primary panel-body"><h2>Book an Appointment</h2></div> 

   <form class="panel-body" asp-action="MakeBooking" method="post"> 

        <div asp-validation-summary="All" class="text-danger"></div>  

       <div class="form-group"> 
         <label asp-for="ClientName">Your name:</label> 
         <input asp-for="ClientName" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Date">Appointment Date:</label> 
         <input asp-for="Date" type="text" asp-format="{0:d}" class="form-control" /> 
     </div> 
     <div class="radio form-group"> 
         <input asp-for="TermsAccepted" /> 
         <label asp-for="TermsAccepted">I accept the terms & conditions</label> 
     </div> 
     <button type="submit" class="btn btn-primary">Make Booking</button> 
 </form> 



CHAPTER 27 ■ MODEL VALIDATION

856

    The  ValidationSummaryTagHelper  class detects the  asp-validation-summary  attribute on 
 div  elements and responds by adding messages that describe any validation errors that have been 
detected by the action method. The value of the  asp-validation-summary  attribute is a value from the 
 ValidationSummary  enumeration, which defines the values shown in Table  27-5  and which I demonstrate 
shortly.  

  Figure 27-3.    Showing a validation summary to the user       

   Table 27-5.    The ValidationSummary Values   

 Name  Description 

  All   This value is used to display all the validation errors that have been recorded. 

  ModelOnly   This value is used to display only the validation errors for the entire model, excluding 
those that have been recorded for individual properties, as described in the “Displaying 
Model-Level Messages” section. 

  None   This value is used to disable the tag helper so that it does not transform the HTML element. 

 If you run the application and submit the form without making any changes, you can see the summary 
that the tag helper generates. The text color for this example is defined by the  text-danger  Bootstrap class, 
which ensures that the text matches the color used to highlight the text fields, as shown in Figure  27-3 .  

 



CHAPTER 27 ■ MODEL VALIDATION

857

 If you look HTML that has been received by the browser, you will see that the validation messages have 
been sent as a list, like this: 

   <div class="text-danger validation-summary-errors" data-valmsg-summary="true"> 
   <ul> 
     <li>Please enter your name</li> 
     <li>Please enter a date in the future</li> 
     <li>You must accept the terms</li> 
   </ul> 
 </div> 

     Configuring the Default Validation Error Messages 
    The model binding process that I described in Chapter   26     performs its own validation when it tries to 
provide the data values required to invoke an action method. To see how this works, start the application, 
clear the contents of the Appointment Date field, and submit the form. You will see that one of the validation 
error messages shown has changed and does not match any of the strings passed to the  AddModelError  
method in the action method. 

   The value '' is invalid 

   This message is added to the  ModelStateDictionary  by the model binding process when it can’t 
find a value for a property or does find a value but can’t parse it. In this case, the error has arisen because 
the empty string sent in the form data can’t be parsed into a  DateTime  object for the  Date  property of the 
 Appointment  class. 

 The model binder has a set of predefined messages that it uses for validation errors. These 
can be replaced with custom messages by assigning functions to the properties defined by the 
 IModelBindingMessageProvider  interface, as described in Table  27-6 .  

    Table 27-6.    The IModelBindingMessageProvider Properties   

 Name  Description 

  ValueMustNotBeNullAccessor   The function assigned to this property is used to generate a 
validation error message when a value is  null  for a model 
property that is non-nullable. 

  MissingBindRequiredValueAccessor   The function assigned to this property is used to generate a 
validation error message when the request does not contain a 
value for a required property. 

  MissingKeyOrValueAccessor   The function assigned to this property is used to generate a 
validation error message when the data required for dictionary 
model object contains null keys or values. 

  AttemptedValueIsInvalidAccessor   The function assigned to this property is used to generate a 
validation error message when the model binding system cannot 
convert the data value into the required C# type. 

(continued)

http://dx.doi.org/10.1007/978-1-4842-0397-2_26


CHAPTER 27 ■ MODEL VALIDATION

858

 The functions assigned to the properties described in Table  27-6  all receive a string containing the data 
value from the request and return a string containing the error message. 

 Custom functions can be configured as options in the  Startup  class, as shown in Listing  27-13 , in which 
I have replaced the default  ValueMustNotBeNullAccessor  function. 

     Listing 27-13.    Replacing a Model Binding Message Function in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace ModelValidation { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddMvc().AddMvcOptions(opts => {  
                  opts.ModelBindingMessageProvider.ValueMustNotBeNullAccessor =  
                          value => "Please enter a value";  
              });  
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    The  MvcOptions.ModelBindingMessageProvider  returns a  ModelBindingMessageProvider  object that 
implements the  IModelBindingMessageProvider  interface and can be used to replace the default message-
producing functions. The listing defines a function that returns the message  Please enter a value ; you 
can enter a value if you start the application and submit the form after clearing the Appointment Date field, 
as shown in Figure  27-4 .    

 Name  Description 

  UnknownValueIsInvalidAccessor   The function assigned to this property is used to generate a 
validation error message when the model binding system cannot 
convert the data value into the required C# type. 

  ValueMustBeANumberAccessor   The function assigned to this property is used to generate a 
validation error message when the data value cannot be parsed 
into a C# numeric type. 

  ValueIsInvalidAccessor   The function assigned to this property is used to generate a 
fallback validation error message that is used as a last resort. 

Table 27-6. (continued)



CHAPTER 27 ■ MODEL VALIDATION

859

     Displaying Property-Level Validation Messages 
 Although the custom error message is more meaningful than the default one, it still isn’t that helpful because 
it doesn’t clearly indicate the problem to the user. For this kind of error, it is more useful to display the 
validation error messages alongside the HTML elements that contain the problem data. This can be done 
using the  ValidationMessageTag  tag helper, which looks for  span  elements that have the  asp-validation-
for  attribute, which is used to specify the model property for which error messages should be displayed. 

 In Listing  27-14 , I have added property-level validation message elements for each of the  input  
elements in the form. I also removed the  scripts  section because the individual validation messages will 
provide enough highlighting to indicate which elements have validation errors.     

     Listing 27-14.    Adding Property-Level Validation Messages in the MakeBooking.cshtml File   

  @model Appointment 

   @{ Layout = "_Layout"; } 

   @section scripts { 
     <script asp-src-include="/lib/jquery/dist/*.min.js"></script> 
     <script type="text/javascript"> 
         $(document).ready(function () { 
             $("input.input-validation-error") 
                 .closest(".form-group").addClass("has-error"); 
         }); 
     </script> 
 } 

  Figure 27-4.    Changing the model binding error messages       

 



CHAPTER 27 ■ MODEL VALIDATION

860

   <div class="bg-primary panel-body"><h2>Book an Appointment</h2></div> 

   <form class="panel-body" asp-action="MakeBooking" method="post"> 

       <div asp-validation-summary="All" class="text-danger"></div> 

       <div class="form-group"> 
         <label asp-for="ClientName">Your name:</label> 
          <div><span asp-validation-for="ClientName" class="text-danger"></span></div>          
         <input asp-for="ClientName" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Date">Appointment Date:</label> 
          <div><span asp-validation-for="Date" class="text-danger"></span></div>  
         <input asp-for="Date" type="text" asp-format="{0:d}" class="form-control" /> 
     </div> 
      <span asp-validation-for="TermsAccepted" class="text-danger"></span>  
     <div class="radio form-group"> 
         <input asp-for="TermsAccepted" /> 
         <label asp-for="TermsAccepted">I accept the terms & conditions</label> 
     </div> 
     <button type="submit" class="btn btn-primary">Make Booking</button> 
 </form> 

    Since  span  elements are displayed inline, some care has to be taken to present the validation messages 
so it is obvious to which element the message relates. You can see the effect of the new validation messages 
by running the application and submitting the form without entering any data, as shown in Figure  27-5 .   



CHAPTER 27 ■ MODEL VALIDATION

861

     Displaying Model-Level Messages 
 It may seem that the validation summary message is superfluous because it just duplicates the property-
level messages, which are generally more helpful to the user because they appear next to the form element 
where the problem has to be resolved. But the summary has a useful trick, which is the ability to display 
messages that apply to the entire model and not just individual properties. This means that you can report 
errors that arise from combination of individual properties, such as when a given date is valid only when 
combined with a specific name, for example. 

 In Listing  27-15 , I have added a validation check that prevents clients called Joe from booking 
appointments on Mondays.     

     Listing 27-15.    Performing Model-Level Validation in the HomeController.cs File   

  using System; 
 using Microsoft.AspNetCore.Mvc; 
 using ModelValidation.Models; 
 using Microsoft.AspNetCore.Mvc.ModelBinding; 

  Figure 27-5.    Using property-level validation messages       

 



CHAPTER 27 ■ MODEL VALIDATION

862

   namespace ModelValidation.Controllers { 

       public class HomeController : Controller { 

           public IActionResult Index() => 
             View("MakeBooking", new Appointment() { Date = DateTime.Now }); 

           [HttpPost] 
         public ViewResult MakeBooking(Appointment appt) { 
             if (string.IsNullOrEmpty(appt.ClientName)) { 
                 ModelState.AddModelError(nameof(appt.ClientName), 
                     "Please enter your name"); 
             } 

               if (ModelState.GetValidationState("Date") 
                     == ModelValidationState.Valid && DateTime.Now > appt.Date) { 
                 ModelState.AddModelError(nameof(appt.Date), 
                     "Please enter a date in the future"); 
             } 

               if (!appt.TermsAccepted) { 
                 ModelState.AddModelError(nameof(appt.TermsAccepted), 
                     "You must accept the terms"); 
             } 

                if (ModelState.GetValidationState(nameof(appt.Date))  
                      == ModelValidationState.Valid  
                 &&  ModelState.GetValidationState(nameof(appt.ClientName))  
                      == ModelValidationState.Valid  
                 &&  appt.ClientName.Equals("Joe", StringComparison.OrdinalIgnoreCase)  
                 &&  appt.Date.DayOfWeek == DayOfWeek.Monday) {  
                      ModelState.AddModelError("",  
                          "Joe cannot book appointments on Mondays");  
              }  

               if (ModelState.IsValid) { 
                 return View("Completed", appt); 
             } else { 
                 return View(); 
             } 
         } 
     } 
 } 

    This code looks more convoluted than it really is, which is the nature of data validation. I make sure 
that I have received valid  ClientName  and  Date  values by inspecting the model state before checking to 
see whether the specified date is a  Monday  and whether the  ClientName  property is  Joe . If Joe is trying to 
book a Monday appointment, then I call the  AddModelError  method using the empty string ( "" ) as the first 
argument, which indicates that the error applies to the entire model and not just to an individual property. 



CHAPTER 27 ■ MODEL VALIDATION

863

 In Listing  27-16 , I have changed the value of the  asp-validation-summary  attribute to  ModelOnly , 
which excludes property-level errors, meaning that the summary will display only those errors that apply to 
the entire model.     

     Listing 27-16.    Displaying Model-Level Validation Errors in the MakeBooking.cshtml File   

  @model Appointment 

   @{ Layout = "_Layout"; } 

   @section scripts { 
     <script asp-src-include="/lib/jquery/dist/*.min.js"></script> 
     <script type="text/javascript"> 
         $(document).ready(function () { 
             $("input.input-validation-error") 
                 .closest(".form-group").addClass("has-error"); 
         }); 
     </script> 
 } 

   <div class="bg-primary panel-body"><h2>Book an Appointment</h2></div> 

   <form class="panel-body" asp-action="MakeBooking" method="post"> 

        <div asp-validation-summary="ModelOnly" class="text-danger"></div>  

       <div class="form-group"> 
         <label asp-for="ClientName">Your name:</label> 
         <div><span asp-validation-for="ClientName" class="text-danger"></span></div>         
         <input asp-for="ClientName" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Date">Appointment Date:</label> 
         <div><span asp-validation-for="Date" class="text-danger"></span></div> 
         <input asp-for="Date" type="text" asp-format="{0:d}" class="form-control" /> 
     </div> 
     <span asp-validation-for="TermsAccepted" class="text-danger"></span> 
     <div class="radio form-group"> 
         <input asp-for="TermsAccepted" /> 
         <label asp-for="TermsAccepted">I accept the terms & conditions</label> 
     </div> 
     <button type="submit" class="btn btn-primary">Make Booking</button> 
 </form> 

    You can see the effect by running the application, entering Joe into the  ClientName  field, and selecting 
a date that you know to be a Monday, such as 01/18/2027. When you submit the form, you will see the 
response shown in Figure  27-6 .    



CHAPTER 27 ■ MODEL VALIDATION

864

     Specifying Validation Rules Using Metadata 
    One problem with putting validation logic into an action method is that it ends up being duplicated in every 
action method that receives data from the user. To help reduce duplication, the validation process supports 
the use of attributes to express model validation rules directly in the model class, ensuring that the same set 
of validation rules will be applied regardless of which action method is used to process a request. 

 In Listing  27-17 , I have applied attributes to the  Appointment  class to enforce the same set of 
property-level validation rules I used in the previous section. 

     Listing 27-17.    Applying Validation Attributes in the Appointment.cs File   

  using System; 
 using System.ComponentModel.DataAnnotations; 

   namespace ModelValidation.Models { 

       public class Appointment { 

            [Required]  
          [Display(Name = "name")]  
         public string ClientName { get; set; } 

  Figure 27-6.    Using model- and property-level validation messages       

 



CHAPTER 27 ■ MODEL VALIDATION

865

           [UIHint("Date")] 
          [Required(ErrorMessage = "Please enter a date")]  
         public DateTime Date { get; set; } 

            [Range(typeof(bool), "true", "true",  
              ErrorMessage = "You must accept the terms")]  
         public bool TermsAccepted { get; set; } 
     } 
 } 

    I used two validation attributes in the listing:  Required  and  Range . The  Required  attribute specifies 
that it is a validation error if the user doesn’t submit a value for a property. The  Range  attribute specifies a 
subset of acceptable values. Table  27-7  shows the set of built-in validation attributes available in an MVC 
application.                  

    Table 27-7.    The Built-in Validation Attributes   

 Attribute  Example  Description 

  Compare    [Compare     
("OtherProperty")]  

 This attribute ensures that properties must have the 
same value, which is useful when you ask the user to 
provide the same information twice, such as an e-mail 
address or a password. 

  Range    [Range(10, 20)]   This attribute ensures that a numeric value (or any 
property type that implements  IComparable ) does not lie 
beyond the specified minimum and maximum values. 
To specify a boundary on only one side, use a  MinValue  
or  MaxValue  constant—for example,  [Range(int.
MinValue, 50)] . 

  RegularExpression    [RegularExpression     
("pattern")]  

 This attribute ensures that a string value matches 
the specified regular expression pattern. Note that 
the pattern has to match the  entire  user-supplied 
value, not just a substring within it. By default, it 
matches case sensitively, but you can make it case 
insensitive by applying the  (?i)  modifier—that is, 
 [RegularExpression("(?i)mypattern")].  

  Required    [Required]   This attribute ensures that the value is not empty or 
a string consisting only of spaces. If you want to treat 
whitespace as valid, use  [Required(AllowEmptyStrings 
= true)] . 

  StringLength    [StringLength(10)]   This attribute ensures that a string value is not 
longer than a specified maximum length. You can 
also specify a minimum length:  [StringLength(10, 
MinimumLength=2)] . 



CHAPTER 27 ■ MODEL VALIDATION

866

 All the validation attributes support specifying a custom error message by setting a value for the 
 ErrorMessage  property, like this: 

   ... 
 [UIHint("Date")] 
  [Required(ErrorMessage = "Please enter a date")]  
 public DateTime Date { get; set; } 
 ... 

   If there is no custom error message, then there are default messages will be used, but they tend to reveal 
details of the model class that will make no sense to the user unless you also use the  Display  attribute, 
which is the combination I applied to the  ClientName  property. 

   ... 
  [Required]  
  [Display(Name = "name")]  
 public string ClientName { get; set; } 
 ... 

   The default message generated by the  Required  attribute reflects the name specified with the  Display  
attribute and so doesn’t reveal the name of the property to the user. 

 Some care is required to get this kind of validation to work consistently. As an example, consider the 
attribute applied to the  TermsAccepted  property: 

   ... 
  [Range(typeof(bool), "true", "true", ErrorMessage="You must accept the terms")]  
 public bool TermsAccepted { get; set; } 
 ... 

   I want to make sure that the user selects the box to accept the terms. I cannot use the  Required  attribute 
because the browser will send a  false  value for this property if the user has not selected the radio button. 
To work around this, I use a feature of the  Range  attribute that lets me provide a  Type  and specify the upper 
and lower bounds as string values. By setting both bounds to  true , I create the equivalent of the  Required  
attribute for  bool  properties that are edited using check boxes. Some experimentation can be required to 
ensure that the validation attributes and the data sent by the browser work together. 

 The use of the validation attributes on the model class means that the action method in the controller 
can be simplified, as shown in Listing  27-18 . 

     Listing 27-18.    Removing Property-Level Validation in the HomeController.cs File   

  using System; 
 using Microsoft.AspNetCore.Mvc; 
 using ModelValidation.Models; 
 using Microsoft.AspNetCore.Mvc.ModelBinding; 

   namespace ModelValidation.Controllers { 

       public class HomeController : Controller { 



CHAPTER 27 ■ MODEL VALIDATION

867

           public IActionResult Index() => 
             View("MakeBooking", new Appointment() { Date = DateTime.Now }); 

            [HttpPost]  
          public ViewResult MakeBooking(Appointment appt) {  

                if (ModelState.GetValidationState(nameof(appt.Date))  
                      == ModelValidationState.Valid  
                 &&  ModelState.GetValidationState(nameof(appt.ClientName))  
                      == ModelValidationState.Valid  
                 &&  appt.ClientName.Equals("Joe", StringComparison.OrdinalIgnoreCase)  
                 &&  appt.Date.DayOfWeek == DayOfWeek.Monday) {  
                  ModelState.AddModelError("",  
                      "Joe cannot book appointments on Mondays");  
              }  

                if (ModelState.IsValid) {  
                  return View("Completed", appt);  
              } else {  
                  return View();  
              }  
          }  
     } 
 } 

    The validation attributes are applied before the action method is called, which means that I can still 
rely on the model state to determine whether individual properties are valid when performing model-level 
validation. To see the validation attributes in action, start the application and submit the form without 
entering any data, as shown in Figure  27-7 .  



CHAPTER 27 ■ MODEL VALIDATION

868

     Creating a Custom Property Validation Attribute 
    The validation process can be extended by creating an attribute that implements the  IModelValidator  
interface. To demonstrate, I created an  Infrastructure  folder and added a class file called 
 MustBeTrueAttribute.cs  to it, in which I defined the class shown in Listing  27-19 . 

     Listing 27-19.    The Contents of the MustBeTrueAttribute.cs File in the Infrastructure Folder   

  using System; 
 using System.Collections.Generic; 
 using System.Linq; 
 using Microsoft.AspNetCore.Mvc.ModelBinding.Validation; 

   namespace ModelValidation.Infrastructure { 
     public class MustBeTrueAttribute : Attribute, IModelValidator { 

           public bool IsRequired => true; 

           public string ErrorMessage { get; set; } = "This value must be true"; 

           public IEnumerable<ModelValidationResult> Validate( 
                 ModelValidationContext context) { 
             bool? value = context.Model as bool?; 

  Figure 27-7.    Using validation attributes       

 



CHAPTER 27 ■ MODEL VALIDATION

869

             if (!value.HasValue || value.Value == false) { 
                 return new List<ModelValidationResult> { 
                     new ModelValidationResult("", ErrorMessage) 
                 }; 
             } else { 
                 return Enumerable.Empty<ModelValidationResult>(); 
             } 
         } 
     } 
 } 

    The  IModelValidator  interface defines an  IsRequired  property, which is used to indicate whether 
validation by this class is required (which is a little misleading because the value returned by this property is 
simply used to order validation attributes so that the required ones are executed first). The  Validate  method 
is used to perform validation and receives information through an instance of the  ModelValidationContext  
class, whose most useful properties are described in Table  27-8 .  

   Table 27-8.    Useful ModelValidationContext Class   

 Name  Description 

  Model   This property returns the property value that is to be validated, which would be the 
value of the  TermsAccepted  property in the example. 

  Container   This property returns the object that contains the property, which would be the 
 Appointment  object in the example. 

  ActionContext   This property returns an  ActionContext  object that provides context data and 
describes the action method that will process the request. 

  ModelMetadata   This property returns a  ModelMetadata  object that describes the model class that is 
being validated in detail. 

 The  Validate  method returns a sequence of  ModelValidationResult  objects, each of which describes 
a single validation error. In the example attribute, I create a  ModelValidationResult  if the model value isn’t 
true. The first argument to the  ModelValidationResult  constructor is the name of the property to which the 
error is associated and is specified as the empty string when validating individual properties. The second 
argument is the error message that will be displayed to the user. In Listing  27-20 , I have replaced the  Range  
attribute with the custom attribute. 

     Listing 27-20.    Applying a Custom Validation Attribute in the Appointment.cs File   

  using System; 
 using System.ComponentModel.DataAnnotations; 
  using ModelValidation.Infrastructure;  

   namespace ModelValidation.Models { 

       public class Appointment { 

           [Required] 
         [Display(Name = "name")] 
         public string ClientName { get; set; } 



CHAPTER 27 ■ MODEL VALIDATION

870

           [UIHint("Date")] 
         [Required(ErrorMessage = "Please enter a date")] 
         public DateTime Date { get; set; } 

            [MustBeTrue(ErrorMessage = "You must accept the terms")]  
         public bool TermsAccepted { get; set; } 
     } 
 } 

    The result of using the custom validation attribute is just the same as using the  Range  attribute, but the 
purpose of the custom attribute is more obvious when reading the code.   

     Performing Client-Side Validation 
       The validation techniques I have demonstrated so far have all been examples of  server-side validation . This 
means the user submits their data to the server, and the server validates the data and sends back the results 
of the validation (either success in processing the data or a list of errors that need to be corrected). 

 In web applications, users typically expect immediate validation feedback—without having to submit 
anything to the server. This is known as  client-side validation  and is implemented using JavaScript. The data 
that the user has entered is validated before being sent to the server, providing the user with immediate 
feedback and an opportunity to correct any problems. 

 MVC supports  unobtrusive client-side validation . The term  unobtrusive  means that validation rules are 
expressed using attributes added to the HTML elements that views generate. These attributes are interpreted 
by a JavaScript library that is included as part of MVC that, in turn, configures the jQuery Validation library, 
which does the actual validation work. In the following sections, I will show you how the built-in validation 
support works and demonstrate how I can extend the functionality to provide custom client-side validation. 

 ■   Tip    Client-side validation is focused on validating individual properties. In fact, it is hard to set up model-
level client-side validation using the built-in support that comes with MVC. To that end, most MVC applications 
use client-side validation for property-level issues and rely on server-side validation for the overall model.  

 The first step is to add new JavaScript packages to the application using Bower, as shown in Listing  27-21 . 

     Listing 27-21.    Adding Packages in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
     "bootstrap": "3.3.6", 
     "jquery": "2.2.4", 
      "jquery-validation": "1.15.0",  
      "jquery-validation-unobtrusive": "3.2.5"  
   } 
 } 



CHAPTER 27 ■ MODEL VALIDATION

871

   Using client-side validation means adding three JavaScript files to the view: the jQuery library, the 
jQuery validation library, and the Microsoft unobtrusive validation library, all of which are shown in 
Listing  27-22 . 

     Listing 27-22.    Adding the Validation JavaScript Elements in the MakeBooking.cshtml File   

  @model Appointment 

   @{ Layout = "_Layout"; } 

    @section scripts {  
      <script asp-src-include="lib/jquery/dist/*.min.js"></script>  
      <script asp-src-include="lib/jquery-validation/dist/jquery.*.min.js"></script>  
      <script asp-src-include="lib/jquery-validation-unobtrusive/*.min.js"></script>  
  }  

   <div class="bg-primary panel-body"><h2>Book an Appointment</h2></div> 

   <form class="panel-body" asp-action="MakeBooking" method="post"> 

       <div asp-validation-summary="ModelOnly" class="text-danger"></div> 

       <div class="form-group"> 
         <label asp-for="ClientName">Your name:</label> 
         <div><span asp-validation-for="ClientName" class="text-danger"></span></div>         
         <input asp-for="ClientName" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Date">Appointment Date:</label> 
         <div><span asp-validation-for="Date" class="text-danger"></span></div> 
         <input asp-for="Date" type="text" asp-format="{0:d}" class="form-control" /> 
     </div> 
     <span asp-validation-for="TermsAccepted" class="text-danger"></span> 
     <div class="radio form-group"> 
         <input asp-for="TermsAccepted" /> 
         <label asp-for="TermsAccepted">I accept the terms & conditions</label> 
     </div> 
     <button type="submit" class="btn btn-primary">Make Booking</button> 
 </form> 

    The files must be added in the order in which they are shown. When the tag helpers transform the  input  
elements, they inspect the validation attributes applied to the model class property and add attributes to the 
output element. If you run the application and inspect the HTML sent to the browser, you will see that an 
element like this one: 

   <input class="form-control" type="text"  data-val="true"  
      data-val-required="The name field is required."  id="ClientName" 
     name="ClientName" value="" /> 



CHAPTER 27 ■ MODEL VALIDATION

872

   The JavaScript code looks for elements with the  data-val  attribute and performs local validation in the 
browser when the user submits the form, without sending an HTTP request to the server. You can see the 
effect by running the application and submitting the form while using the F12 tools to note that validation 
error messages are displayed even though no HTTP request is sent to the server. 

 AVOIDING CONFLICTS WITH BROWSER VALIDATION

 Some of the current generation of HTML5 browsers support simple client-side validation based on 
the attributes applied to  input  elements. The general idea is that, say, an  input  element to which the 
 required  attribute has been applied, for example, will cause the browser to display a validation error 
when the user tries to submit the form without providing a value. 

 If you are generating form elements from models, as I have been doing in this chapter, then you won’t 
have any problems with browser validation because MVC generates and uses data attributes to denote 
validation rules (so that, for example, an  input  element that must have a value is denoted with the 
 data-val-required  attribute, which browsers do not recognize). 

 However, you may run into problems if you are unable to completely control the markup in your 
application, something that often happens when you are passing on content generated elsewhere. The 
result is that the jQuery validation and the browser validation can both operate on the form, which is just 
confusing to the user. To avoid this problem, you can add the  novalidate  attribute to the  form  element.  

 One of the nice features about the MVC client-side validation is that the same attributes used to specify 
validation rules are applied at the client  and  at the server. This means that data from browsers that do not 
support JavaScript are subject to the same validation as those that do, without requiring any additional 
effort. It does mean, however, that custom validation attributes are not supported for client-side validation 
because the JavaScript code has no way to implement the custom logic at the client. Or, put another way, if 
you want to use client-side validation, you need to stick to the built-in attributes described in Table  27-7 . 

 MVC CLIENT VALIDATION VERSUS JQUERY VALIDATION

 The MVC client-validation features are built on top of the jQuery Validation library. If you prefer, you 
can use the Validation library directly and ignore the MVC features. The Validation library is flexible and 
feature-rich. It is well worth exploring, if only to understand how to customize the MVC features to take 
best advantage of the available validation options. I cover the jQuery Validation library in depth in my  Pro 
jQuery  2.0 book, also published by Apress.   

     Performing Remote Validation 
    The last validation feature described in this chapter is  remote validation . This is a client-side validation 
technique that invokes an action method on the server to perform validation. 

 A common example of remote validation is to check whether a username is available in applications 
when such names must be unique, the user submits the data, and the client-side validation is performed. As 
part of this process, an Ajax request is made to the server to validate the username that has been requested. 
If the username has been taken, a validation error is displayed so that the user can enter another value. 



CHAPTER 27 ■ MODEL VALIDATION

873

 This may seem like regular server-side validation, but there are some benefits to this approach. First, 
only some properties will be remotely validated; the client-side validation benefits still apply to all the 
other data values that the user has entered. Second, the request is relatively lightweight and is focused on 
validation, rather than processing an entire model object. 

 The third difference is that the remote validation is performed in the background. The user doesn’t have 
to click the submit button and then wait for a new view to be rendered and returned. It makes for a more 
responsive user experience, especially when there is a slow network between the browser and the server. 

 That said, remote validation is a compromise. It strikes a balance between client-side and server-side 
validation, but it does require requests to the application server, and it is not as quick to validate as normal 
client-side validation. 

 The first step toward using remote validation is to create an action method that can validate one of 
the model properties. I am going to validate the  Date  property of the  Appointment  model to ensure that the 
requested appointment is in the future. (This is one of the original validation rules I used at the start of the 
chapter but that isn’t possible to validate using the standard client-side validation features.) Listing  27-23  
shows the addition of a  ValidateDate  action method to the  Home  controller. 

     Listing 27-23.    Adding a Validation Action Method to the HomeController.cs File   

  using System; 
 using Microsoft.AspNetCore.Mvc; 
 using ModelValidation.Models; 
 using Microsoft.AspNetCore.Mvc.ModelBinding; 

   namespace ModelValidation.Controllers { 

       public class HomeController : Controller { 

           public IActionResult Index() => 
             View("MakeBooking", new Appointment() { Date = DateTime.Now }); 

           [HttpPost] 
         public ViewResult MakeBooking(Appointment appt) { 

               if (ModelState.GetValidationState(nameof(appt.Date)) 
                     == ModelValidationState.Valid 
                 && ModelState.GetValidationState(nameof(appt.ClientName)) 
                     == ModelValidationState.Valid 
                 && appt.ClientName.Equals("Joe", StringComparison.OrdinalIgnoreCase) 
                 && appt.Date.DayOfWeek == DayOfWeek.Monday) { 
                 ModelState.AddModelError("", 
                     "Joe cannot book appointments on Mondays"); 
             } 

               if (ModelState.IsValid) { 
                 return View("Completed", appt); 
             } else { 
                 return View(); 
             } 
         } 



CHAPTER 27 ■ MODEL VALIDATION

874

            public JsonResult ValidateDate(string Date) {  
              DateTime parsedDate;  

                if (!DateTime.TryParse(Date, out parsedDate)) {  
                  return Json("Please enter a valid date (mm/dd/yyyy)");  
              } else if (DateTime.Now > parsedDate) {  
                  return Json("Please enter a date in the future");  
              } else {  
                  return Json(true);  
              }  
          }  
     } 
 } 

    Actions methods that support remote validation must return the  JsonResult  type, which tells MVC 
that I am working with JSON data, as explained in Chapter   20    . In addition to the result, validation action 
methods must define a parameter that has the same name as the data field being validated; this is  Date  for 
the example. Within the action method, validation is performed by parsing the value into a  DateTime  object 
and checking to see that it is in the future. 

 ■   Tip    I could have taken advantage of model binding so that the parameter to my action method would be a 
 DateTime  object, but doing so would mean that the validation method wouldn’t be called if the user entered a 
nonsense value like  apple , for example. This is because the model binder wouldn’t have been able to create a 
 DateTime  object from  apple  and throws an exception when it tries. The remote validation feature doesn’t have 
a way to express that exception and so it is quietly discarded. This has the unfortunate effect of  not  highlighting 
the data field and so creating the impression that the value that the user has entered is valid. As a general rule, 
the best approach to remote validation is to accept a  string  parameter in the action method and perform any 
type conversion, parsing, or model binding explicitly.  

 I express validation results using the  Json  method, which creates a JSON-formatted result that the 
client-side remote validation script can parse and process. If the value is valid, then I pass  true  as the 
parameter to the  Json  method, like this: 

   ... 
 return Json( true ); 
 ... 

   If there is a problem, I pass the validation error message that the user should see as the parameter, 
like this: 

   ... 
 return Json( "Please enter a date in the future" ); 
 ... 

   To use the remote validation method, I apply the  Remote  attribute to a property in the model class, as 
shown in Listing  27-24 . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_20


CHAPTER 27 ■ MODEL VALIDATION

875

     Listing 27-24.    Using the Remote Attribute in the Appointment.cs File   

  using System; 
 using System.ComponentModel.DataAnnotations; 
 using ModelValidation.Infrastructure; 
  using Microsoft.AspNetCore.Mvc;  

   namespace ModelValidation.Models { 

       public class Appointment { 

           [Required] 
         [Display(Name = "name")] 
         public string ClientName { get; set; } 

           [UIHint("Date")] 
         [Required(ErrorMessage = "Please enter a date")] 
          [Remote("ValidateDate", "Home")]  
         public DateTime Date { get; set; } 

           [MustBeTrue(ErrorMessage = "You must accept the terms")] 
         public bool TermsAccepted { get; set; } 
     } 
 } 

    The arguments for the attribute are the name of the action and the controller that should be used to 
generate the URL that the JavaScript validation library will call to perform the validation—in this case, the 
 ValidateDate  action on the  Home  controller. 

 You can see how the remote validation works by starting the application, navigating to the  /Home  URL, 
and entering a date that is in the past. When you select a value and the focus moves to another element, the 
validation message will appear, as shown in Figure  27-8 .  



CHAPTER 27 ■ MODEL VALIDATION

876

 ■   Caution    The validation action method will be called when the user first submits the form and then again 
each time the data is edited. For text input elements, every keystroke will lead to a call to the server. For some 
applications, this can be a significant number of requests and must be taken into account when specifying the 
server capacity and bandwidth that an application requires in production. Also, you might choose  not  to use 
remote validation for properties that are expensive to validate (for example, if you have to query a slow server to 
determine whether a username is unique).   

     Summary 
 In this chapter, I examined the wide range of techniques available to perform model validation, ensuring 
that the data that the user has provided is consistent with the constraints imposed on the data model. Model 
validation is an important topic, and getting the right validation in place for an application is essential to 
ensuring that the users have a good and frustration-free experience. In the next chapter, I explain how to 
secure an MVC application using ASP.NET Core Identity.     

  Figure 27-8.    Performing remote validation       

 



877© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_28

    CHAPTER 28   

 Getting Started with Identity                          

       ASP.NET Core Identity is an API from Microsoft to manage users in ASP.NET applications. In this chapter, 
I demonstrate the process of setting up ASP.NET Core Identity and creating a simple user administration tool 
that manages individual user accounts that are stored in a database. 

 ASP.NET Core Identity supports other kinds of user accounts, such as those stored using Active 
Directory, but I don’t describe them since they are not used that often outside corporations (where Active 
Directive implementations tend to be so convoluted that it would be difficult for me to provide useful 
general examples). 

 ■   Note    This chapter requires the SQL Server LocalDB feature to be installed for Visual Studio. You can add 
LocalDB by running the Visual Studio installer and installing the Microsoft SQL Server Data Tools option.  

 In Chapter   29    , I show you how to perform authentication and authorization using those user accounts, 
and in Chapter   30    , I show you how to move beyond the basics and apply some advanced techniques. 
Table  28-1  puts ASP.NET Core Identity in context.  

   Table 28-1.    Putting ASP.NET Core Identity in Context   

 Question  Answer 

 What is it?  ASP.NET Core Identity is an API for managing users and storing user data in 
repositories such as relational databases through Entity Framework Core. 

 Why is it useful?  User management is an important feature for most applications, and ASP.NET 
Core Identity provides a ready-made and well-tested platform that doesn’t 
require you to create custom versions of commonly demanded functions. 

 How is it used?  Identity is used through services and middleware added to the  Startup  
class and through classes that act as bridges between the application and 
the Identity functionality. 

 Are there any pitfalls 
or limitations? 

 Microsoft has compensated for the inflexibility of earlier ASP.NET user 
management APIs by making Identity so flexible and so configurable that it 
can be a challenge figuring out what is possible and what you need. I only 
scratch the surface of a deep and complex system in this book. 

(continued)

http://dx.doi.org/10.1007/978-1-4842-0397-2_29
http://dx.doi.org/10.1007/978-1-4842-0397-2_30


CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

878

 Table  28-2  summarizes the chapter.  

   Table 28-2.    Chapter Summary   

 Problem  Solution  Listing 

 Add Identity to a project  Add the packages and middleware for ASP.
NET Identity Core and Entity Framework Core, 
create a user class and a database context 
class, and create a database migration 

 1–15 

 Read user data  Query the Identity database using the context 
class 

 16–17 

 Create a user account  Call the  UserManager.CreateAsync  method  18–20 

 Change the default 
password policy 

 Set the password options in the  Startup  class  21 

 Implement custom 
password validation 

 Implement the  IPasswordValidator  interface 
or subclass from the  PasswordValidator  class 

 22–24 

 Change the account 
validation policy 

 Set the user options in the  Startup  class  25 

 Implement custom 
account validation 

 Implement the  IUserValidator  interface or 
subclass from the  UserValidator  class. 

 26–28 

 Delete a user account  Call the  UserManager.DeleteAsync  method  29, 30 

 Edit a user account  Call the  UserManager.UpdateAsync  method  31–33 

 Question  Answer 

 Are there any alternatives?  You could implement your own APIs, but that can be a lot of work and 
tends to create security vulnerabilities unless done carefully. 

 Has it changed since MVC 5?  ASP.NET Core Identity works with ASP.NET Core in much the same way as 
in earlier versions, although it has been updated to fit into the services and 
middleware system, with more components available through dependency 
injection. Complex authorization can be performed with policy- and 
resource-based checks, as described in Chapter   30    . 

Table 28-1. (continued)

     Preparing the Example Project 
 For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty 
project called Users. I added the NuGet packages I required to the  dependencies  section of the  project.
json  file and set up the Razor tooling in the  tools  section, as shown in Listing  28-1 . I removed the sections 
that are not required for this chapter. 

 I will add the packages required by Identity separately to emphasize the difference between the 
packages required for general MVC development and those required for authentication and authorization. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_30


CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

879

     Listing 28-1.    Adding Packages in the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 

       "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
      "Microsoft.AspNetCore.Mvc": "1.0.0",  
      "Microsoft.AspNetCore.StaticFiles": "1.0.0",  
      "Microsoft.AspNetCore.Razor.Tools": {  
        "version": "1.0.0-preview2-final",  
        "type": "build"  
      }  
   }, 

     "tools": { 
      "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final",  
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final" 
   }, 

     "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6","portable-net45+win8"] 
     } 
   }, 

     "buildOptions": { 
     "emitEntryPoint": true, "preserveCompilationContext": true 
   }, 

     "runtimeOptions": { 
     "configProperties": { "System.GC.Server": true } 
   } 
 } 

    Listing  28-2  shows the  Startup  class, which configures the features provided by the NuGet packages. 

     Listing 28-2.    The Contents of the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace Users { 

       public class Startup { 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

880

            public void ConfigureServices(IServiceCollection services) {  
              services.AddMvc();  
         } 

            public void Configure(IApplicationBuilder app) {  
              app.UseStatusCodePages();  
              app.UseDeveloperExceptionPage();  
              app.UseStaticFiles();  
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

        Creating the Controller and View 
 I created the  Controllers  folder, added a class file called  HomeController.cs , and defined the controller 
shown in Listing  28-3 . I’ll be using this controller to describe details of user accounts and data, and the  Index  
action method passes a dictionary of values to the default view via the  View  method. 

     Listing 28-3.    The Contents of the HomeController.cs File in the Controllers Folder   

  using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc; 

   namespace Users.Controllers { 

       public class HomeController : Controller { 

           public ViewResult Index() => 
             View(new Dictionary<string, object> 
                 {["Placeholder"] = "Placeholder" }); 
     } 
 } 

    To provide the controller with a view, I created the  Views/Home  folder and added a view file called 
 Index.cshtml  with the markup shown in Listing  28-4 . 

     Listing 28-4.    The Contents of the Index.cshtml File in the Views/Home Folder   

  @model Dictionary<string, object> 

   <div class="bg-primary panel-body"><h4>User Details</h4></div> 

   <table class="table table-condensed table-bordered"> 
     @foreach (var kvp in Model) { 
         <tr><th>@kvp.Key</th><td>@kvp.Value</td></tr> 
     } 
 </table> 

    The view displays the contents of the model dictionary in a table. To support the view, I created the 
 Views/Shared  folder, adding a view file called  _Layout.cshtml  with the markup shown in Listing  28-5 . 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

881

      Listing 28-5.    The Contents of the _Layout.cshtml File in the Views/Shared Folder   

 <!DOCTYPE html> 
 <html> 
 <head> 
     <title>Users</title> 
     <meta name="viewport" content="width=device-width" /> 
     <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" /> 
 </head> 
 <body class="panel-body"> 
     @RenderBody() 
 </body> 
 </html> 

   The view depends on the Bootstrap CSS package to style the HTML elements. To add Bootstrap to 
the project, I used the Bower Configuration File item template to create the  bower.json  file and added the 
Bootstrap package to the  dependencies  section, as shown in Listing  28-6 . 

     Listing 28-6.    Adding the Bootstrap Package in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6"  
   } 
 } 

   The final preparation is to create the  _ViewImports.cshtml  file in the  Views  folder, which sets up the 
built-in tag helpers for use in the views, as shown in Listing  28-7 . 

     Listing 28-7.    The Contents of the _ViewImports.cshtml File in the Views Folder   

 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

   The final addition I made was to create a view start file called  _ViewStart.cshtml  in the  Views  folder 
with the content shown in Listing  28-8 . This ensures that the layout I created in Listing  28-5  will be used by 
all of the views in the application. 

     Listing 28-8.    The Contents of the _ViewStart.cshtml File in the Views Folder   

 @{ 
     Layout = "_Layout"; 
 } 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

882

   Start the application and you will see the output shown in Figure  28-1 .    

     Setting Up ASP.NET Core Identity 
 The process for setting up Identity touches on almost every part of an application, requiring new model classes, 
configuration changes, and controllers and actions to support authentication and authorization operations. 
In the sections that follow, I walk through the process of setting up Identity in a basic configuration to show 
the different steps that are involved. There are lots of different ways of using Identity in an application, and the 
configuration I use in this chapter follows the simplest and most commonly used options. 

     Adding the Identity Package to the Application 
    When using the Empty template, Visual Studio doesn’t add the ASP.NET Core Identity or the Entity 
Framework Core packages to new projects, and they must be added manually. In Listing  28-9 , I have added 
the required NuGet packages to the  project.json  file. 

     Listing 28-9.    Adding the Identity Packages in the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 

       "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
     "Microsoft.AspNetCore.Mvc": "1.0.0", 
     "Microsoft.AspNetCore.StaticFiles": "1.0.0", 
     "Microsoft.AspNetCore.Razor.Tools": { 

  Figure 28-1.    Running the example application       

 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

883

       "version": "1.0.0-preview2-final", 
       "type": "build" 
     }, 
      "Microsoft.Extensions.Configuration": "1.0.0",  
      "Microsoft.Extensions.Configuration.Json": "1.0.0",  
      "Microsoft.AspNetCore.Identity.EntityFrameworkCore": "1.0.0",  
      "Microsoft.EntityFrameworkCore.SqlServer": "1.0.0",  
      "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final"  
   }, 

     "tools": { 
     "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final", 
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final", 
      "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final"  
   }, 

     "frameworks": { 
     "netcoreapp1.0": { 
       "imports": [ "dotnet5.6", "portable-net45+win8" ] 
     } 
   }, 

     "buildOptions": { 
     "emitEntryPoint": true, 
     "preserveCompilationContext": true 
   }, 

     "runtimeOptions": { 
     "configProperties": { "System.GC.Server": true } 
   } 
 } 

    The packages add ASP.NET Core Identity and Entity Framework Core to the project. The addition to the 
tools section installs the command-line tools that are required to set up the database that is used to store the 
Identity data, which I will do shortly.  

     Creating the User Class 
    The next step is to define a class to represent a user in the application, which is known as the  user class . 
The user class is derived from  IdentityUser , which is defined in the  Microsoft.AspNetCore.Identity.
EntityFrameworkCore  namespace.  IdentityUser  provides the basic user representation, which can be 
extended by adding properties to the derived class, which I describe in Chapter   30    . Table  28-3  shows the 
most useful of built-in properties that  IdentityUser  defines, which include the ones I use in this chapter.  

http://dx.doi.org/10.1007/978-1-4842-0397-2_30


CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

884

 The individual properties don’t matter at the moment. What’s important is that the  IdentityUser  
class provides access to basic information about a user: the user’s name, e-mail, phone number, password 
hash, role memberships, and so on. If I want to store any additional information about the user, I have to 
add properties to the class that I derive from  IdentityUser  and that will be used to represent users in my 
application. 

 To create the user class for my application, I created the  Models  folder and added a class file called 
 AppUserModels.cs  that I used to create the  AppUser  class, which is shown in Listing  28-10 . 

     Listing 28-10.    The Contents of the AppUser.cs File in the Models Folder   

  using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 

   namespace Users.Models { 

       public class AppUser : IdentityUser { 
         // no additional members are required 
         // for basic Identity installation 
     } 
 } 

    That’s all I have to do at the moment, although I’ll return to this class in Chapter   30    , when I show you 
how to add application-specific user data properties. 

   Configuring the View Imports 
 Although not directly related to setting up ASP.NET Core Identity, I will be working with  AppUser  objects in 
views in the next section. To make writing the views simpler, I added the  Users.Models  namespace to the 
view imports file, as shown in Listing  28-11 . 

   Table 28-3.    The Properties Defined by the IdentityUser Class   

 Name  Description 

  Id   This property contains the unique ID for the user. 

  UserName   This property returns the user’s username. 

  Claims   This property returns the collection of claims for the user, which I describe in Chapter   30    . 

  Email   This property contains the user’s e-mail address. 

  Logins   This property returns a collection of logins for the user, which is used for third-party 
authentication, as described in Chapter   30    . 

  PasswordHash   This property returns a hashed form of the user password, which I use in the 
“Implementing the Edit Feature” section. 

  Roles   This property returns the collection of roles that the user belongs to, which I describe 
in Chapter   29    . 

  PhoneNumber   This property returns the user’s phone number. 

  SecurityStamp   This property returns a value that is changed when the user identity is altered, such as 
by a password change. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_30
http://dx.doi.org/10.1007/978-1-4842-0397-2_30
http://dx.doi.org/10.1007/978-1-4842-0397-2_30
http://dx.doi.org/10.1007/978-1-4842-0397-2_29


CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

885

     Listing 28-11.    Adding a Namespace in the _ViewImports.cshtml File   

  @using Users.Models  
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

         Creating the Database Context Class 
    The next step is to create an Entity Framework Core database context class that operates on the  AppUser  
class. The context class is derived from  IdentityDbContext<T> , where  T  is the user class ( AppUser  in the 
example project). I added a class file called  AppIdentityDbContext.cs  to the  Models  folder and defined the 
class shown in Listing  28-12 . 

     Listing 28-12.    The Contents of the AppIdentityDbContext.cs File in the Models Folder   

  using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
 using Microsoft.EntityFrameworkCore; 

   namespace Users.Models { 

       public class AppIdentityDbContext : IdentityDbContext<AppUser> { 

           public AppIdentityDbContext(DbContextOptions<AppIdentityDbContext> options) 
             : base(options) { } 
     } 
 } 

    The database context class can be extended to customize the way that the database is set up and used, 
but for a basic ASP.NET Core Identity application, just defining the class is enough to get started and to 
provide a placeholder for any future customization. 

 ■   Note    Don’t worry if the role of these classes doesn’t make sense. If you are unfamiliar with Entity Framework 
Core, then I suggest you treat it as something of a black box. Once the basic building blocks are in place—and you 
can copy the ones into your project to get things working—then you will rarely need to edit them.   

     Configuring the Database Connection String Setting 
 The first configuration step for ASP.NET Core Identity is to define the connection string that will be used for the 
database. The convention is to put the connection string in the  appsettings.json  file, which is then loaded in 
the  Startup  class. I used the ASP.NET Configuration File item template to create the  appsettings.json  file 
in the root folder of the project and added the configuration settings shown in Listing  28-13 .     



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

886

     Listing 28-13.    The Contents of the appsettings.json File   

 { 
   "Data": { 
     "SportStoreIdentity": { 
       "ConnectionString":     
   "Server=(localdb)\\MSSQLLocalDB;Database=IdentityUsers;Trusted_Connection=True; 
MultipleActiveResultSets=true" 
     } 
   } 
 } 

   In the connection string, I have specified the  localdb  option, which provides convenient database 
support for developers. For the database itself, I have specified the name  IdentityUsers . 

 ■   Note    The width of the printed page doesn’t allow for sensible formatting of the connection string, which 
must appear in a single unbroken line. That works well in the Visual Studio editor but means that it has to wrap 
multiple lines in the listing. When you add the connection string to your own project, make sure that it is on a 
single line.  

 With the database connection string in place, I can update the  Startup  class to read the configuration 
file and make the settings available, as shown in Listing  28-14 . 

     Listing 28-14.    Reading the Application Settings in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
  using Microsoft.Extensions.Configuration;  
  using Microsoft.AspNetCore.Hosting;  

   namespace Users { 

       public class Startup { 
          IConfigurationRoot Configuration;  

            public Startup(IHostingEnvironment env) {  
              Configuration = new ConfigurationBuilder()  
                  .SetBasePath(env.ContentRootPath)  
                  .AddJsonFile("appsettings.json").Build();  
          }  

           public void ConfigureServices(IServiceCollection services) { 
             services.AddMvc(); 
         } 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

887

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    The changes in the listing load the  appsettings.json  file and present the contents through the 
 Configuration  property, which I use in the next section when I set up the ASP.NET Core Identity services 
and middleware.  

     Configuring the Identity Services and Middleware 
 The final step for setting up Identity is to add services and middleware to the  Startup  class to hook Identity 
into the request-handling pipeline and to provide the features that are used for user management elsewhere 
in the application. Listing  28-15  shows the required changes.    

     Listing 28-15.    Configuring ASP.NET Core Identity Services and Middleware in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Configuration; 
 using Microsoft.AspNetCore.Hosting; 
  using Microsoft.EntityFrameworkCore;  
  using Microsoft.AspNetCore.Identity.EntityFrameworkCore;  
  using Users.Models;  

   namespace Users { 

       public class Startup { 
         IConfigurationRoot Configuration; 

           public Startup(IHostingEnvironment env) { 
             Configuration = new ConfigurationBuilder() 
                 .SetBasePath(env.ContentRootPath) 
                 .AddJsonFile("appsettings.json").Build(); 
         } 

           public void ConfigureServices(IServiceCollection services) { 

                services.AddDbContext<AppIdentityDbContext>(options =>  
                  options.UseSqlServer(  
                      Configuration["Data:SportStoreIdentity:ConnectionString"]));  

                services.AddIdentity<AppUser, IdentityRole>()  
                  .AddEntityFrameworkStores<AppIdentityDbContext>();  

               services.AddMvc(); 
         } 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

888

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
              app.UseIdentity();  
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    There are three sets of changes required to create a basic ASP.NET Core Identity installation. The first 
step is to set up Entity Framework (EF) Core, which provides data access services to MVC applications. 

   ... 
 services.AddDbContext<AppIdentityDbContext>(options => 
     options.UseSqlServer(Configuration["Data:SportStoreIdentity:ConnectionString"])); 
 ... 

   The  AddDbContext  method adds the services required for EF, and the  UseSqlServer  sets up the 
support required for storing data using Microsoft SQL Server. The  AddDbContext  method allows me to 
apply the database context class that I created earlier and specify that it will be backed up with a SQL Server 
database whose connection string is obtained from the application’s configuration (which, for the example 
application, means the  appsettings.json  file). 

 I also need to set up the services for ASP.NET Core Identity, which is done like this: 

   ... 
 services.AddIdentity<AppUser, IdentityRole>() 
     .AddEntityFrameworkStores<AppIdentityDbContext>(); 
 ... 

   The  AddIdentity  method has type parameters that specify the class used to represent users and the 
class used to represent roles. I have specified the  AppUser  class for users and the built-in  IdentityRole  class 
for roles. The  AddEntityFrameworkStores  method specifies that Identity should use Entity Framework Core 
to store and retrieve its data, using the database context class that I created earlier. The final change to the 
 Startup  class adds ASP.NET Core Identity to the request-handing pipeline, which allows user credentials to 
be associated with requests based on cookies or URL rewriting, meaning that details of user accounts are not 
directly included in the HTTP requests sent to the application or the responses it generates. 

   ... 
 app.UseIdentity(); 
 ... 

        Creating the Identity Database 
 Almost everything is in place, and the only remaining step is to actually create the database that will be used 
to store the Identity data. Open the Package Manager Console from the Visual Studio Tools ➤ NuGet Package 
Manager menu and run the following command: 

   Add-Migration Initial 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

889

   As I explained when I set up the database for the SportsStore application, Entity Framework Core 
manages changes to database schemas through a feature called  migrations . When you modify the model 
classes that are used to generate the schema, you can produce a migration file that contains the SQL 
commands required to update the database. The command creates the migration files that will set up the 
database for Identity. 

 When the command finished, you will see a  Migrations  folder in the Solution Explorer. If you examine 
the contents of the files, you can see the SQL commands that will be used to create the initial database. To 
use the migration files to create the database, run this command: 

   Update-Database 

   It can take a moment for the process to complete, but once the command has finished, the database will 
have been created and prepared for use.   

     Using ASP.NET Core Identity 
 Now that the basic setup is out of the way, I can start to use ASP.NET Core Identity to add support for 
managing users to the example application. In the sections that follow, I demonstrate how the Identity API 
can be used to create administration tools that allow for centralized management of users. 

 Centralized user administration tools are useful in just about all applications, even those that allow 
users to create and manage their own accounts. There will always be some customers who require bulk 
account creation, for example, and support issues that require inspection and adjustment of user data. From 
the perspective of this chapter, administration tools are useful because they consolidate a lot of basic user 
management functions into a small number of classes, making them useful examples to demonstrate the 
fundamental features of ASP.NET Core Identity. 

     Enumerating User Accounts 
 The starting point for this section is to enumerate all of the user accounts in the database, which will 
allow me to see the effect of code that I add to the application later. I started by adding a class file called 
 AdminController.cs  to the  Controllers  folder and using it to define the controller shown in Listing  28-16 , 
which I will use to define my user administration functionality.     

     Listing 28-16.    The Contents of the AdminController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Identity; 
 using Microsoft.AspNetCore.Mvc; 
 using Users.Models; 

   namespace Users.Controllers { 

       public class AdminController : Controller { 
         private UserManager<AppUser> userManager; 

           public AdminController(UserManager<AppUser> usrMgr) { 
             userManager = usrMgr; 
         } 

           public ViewResult Index() => View(userManager.Users); 
     } 
 } 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

890

    The  Index  action method enumerates the users managed by the  Identity  system; there aren’t 
any users at the moment, of course, but there will be soon. Access to the user data is through the 
 UserManager<AppUser  > object that is received by the controller constructor and provided through 
dependency injection. 

 With a  UserManager<AppUser  > object, I can start to query the data store. The  Users  property returns an 
enumeration of user objects—instances of the  AppUser  class in this application—which can be queried and 
manipulated using LINQ. In the action method, I pass the value of the  Users  property, which will enumerate 
all of the users in the database, to the  View  method so I can display the account details. To provide the action 
method with a view, I created the  Views/Admin  folder, added a file called  Index.cshtml  to it, and applied the 
markup shown in Listing  28-17 . 

     Listing 28-17.    The Contents of the Index.cshtml File in the Views/Admin Folder   

  @model IEnumerable<AppUser> 

   <div class="bg-primary panel-body"><h4>User Accounts</h4></div> 

   <table class="table table-condensed table-bordered"> 
     <tr><th>ID</th><th>Name</th><th>Email</th></tr> 
     @if (Model.Count() == 0) { 
         <tr><td colspan="3" class="text-center">No User Accounts</td></tr> 
     } else { 
         foreach (AppUser user in Model) { 
             <tr> 
                 <td>@user.Id</td><td>@user.UserName</td><td>@user.Email</td> 
             </tr> 
         } 
     } 
 </table> 

   <a class="btn btn-primary" asp-action="Create">Create</a> 

    This view contains a table that has rows for each user, with columns for the unique ID, username, and 
e-mail address. If there are no users in the database, then a message is displayed, as shown in Figure  28-2 , 
which you can see if you start the application and request the  /Admin  URL.  



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

891

 I included a  Create  anchor element link in the view (styled as a button) that targets the  Create  action 
on the  Admin  controller. This will be the action that supports adding users. 

 RESETTING THE DATABASE

 When you start the application and navigate to the  /Admin  URL, it will take a few moments before the 
contents rendered from the view are displayed. This is because Entity Framework Core has to create 
and prepare the database for its first use. 

 You can see the database that is created by opening the Visual Studio SQL Server Object Explorer 
window. If this is the first time that you have used SQL Server Object Explorer window, then you will 
need to select Connect to Database from the Tools menu to tell Visual Studio about the database you are 
working with. For the data source, select Microsoft SQL Server, use  (localdb)\mssqllocaldb  as the 
server name, leave Use Windows Authentication selected, and click the drop-down arrow for the Select 
Or Enter a Database Name field. After a few seconds, you will see a list of the LocalDB databases that 
are available, and you should be able to select  IdentityUsers , which is the database for the example 
application. Click OK, and a new entry will appear in the SQL Server Object Explorer window. Visual 
Studio will remember the database, so you should need to perform this process only once. 

 You can explore the database by expanding the  (localdb)\mssqllocaldb  ➤  Databases  ➤  IdentityUsers  
item in the SQL Server Object Explorer window. You will be able to see the tables that were created by the 
migrations file, with names like  AspNetUsers  and  AspNetRoles . You can query the database to see the 
contents of the table once you have added users to the database, which I demonstrate in the next section. 

 To delete the database, right-click the  IdentityUsers  item in the SQL Server Object Explorer window 
and select Delete from the pop-up menu. Check both of the options in the Delete Database dialog and 
click the OK button to delete the database. 

  Figure 28-2.    Displaying the (empty) list of users       

 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

892

 To re-create the database, open the Package Manager Console window and run the following command: 

   Update-Database 

   The database will be re-created and will be ready for use when you next start the application.   

     Creating Users 
    I am going to use MVC model validation for the input the application receives, and the easiest way to do this 
is to create simple view models for each of the operations that the controller supports. I added a class file 
called  UserViewModels.cs  to the  Models  folder and used it to define the class shown in Listing  28-18 . 

     Listing 28-18.    The Contents of the UserViewModels.cs File in the Models Folder   

  using System.ComponentModel.DataAnnotations; 

   namespace Users.Models { 

       public class CreateModel { 
         [Required] 
         public string Name { get; set; } 
         [Required] 
         public string Email { get; set; } 
         [Required] 
         public string Password { get; set; } 
     } 
 } 

    The initial model I have defined is called  CreateModel , and it defines the basic properties that I require 
to create a user account: a username, an e-mail address, and a password. I used the  Required  attribute from 
the  System.ComponentModel.DataAnnotations  namespace to denote that values are required for all three 
properties defined in the model. 

 In Listing  28-19 , I added a pair of  Create  action methods to the  Admin  controller, which are targeted by 
the link in the  Index  view from the previous section and which use the standard controller pattern to present 
a view to the user for a  GET  request and process form data for a  POST  request. 

     Listing 28-19.    Defining the Create Action Methods in the AdminController.cs File   

  using Microsoft.AspNetCore.Identity; 
 using Microsoft.AspNetCore.Mvc; 
 using Users.Models; 
  using System.Threading.Tasks;  

   namespace Users.Controllers { 

       public class AdminController : Controller { 
         private UserManager<AppUser> userManager; 

           public AdminController(UserManager<AppUser> usrMgr) { 
             userManager = usrMgr; 
         } 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

893

           public ViewResult Index() => View(userManager.Users); 

            public ViewResult Create() => View();  

            [HttpPost]  
          public async Task<IActionResult> Create(CreateModel model) {  
              if (ModelState.IsValid) {  
                  AppUser user = new AppUser {  
                      UserName = model.Name,  
                      Email = model.Email  
                  };  
                  IdentityResult result  
                      = await userManager.CreateAsync(user, model.Password);  

                    if (result.Succeeded) {  
                      return RedirectToAction("Index");  
                  } else {  
                      foreach (IdentityError error in result.Errors) {  
                          ModelState.AddModelError("", error.Description);  
                      }  
                  }  
              }  
              return View(model);  
          }  
     } 
 } 

    The important part of this listing is the  Create  action method that accepts a  CreateModel  argument and 
that will be invoked when the administrator submits the form data. The  ModelState.IsValid  property is 
used to check that the data contains the required values, and if it does, a new instance of the  AppUser  class is 
created and passed to the asynchronous  UserManager.CreateAsync  method, like this: 

   ... 
 AppUser user = new AppUser { UserName = model.Name, Email = model.Email }; 
  IdentityResult result = await userManager.CreateAsync(user, model.Password);  
 ... 

   The result from the  CreateAsync  method is an  IdentityResult  object, which describes the outcome of 
the operation through the properties listed in Table  28-4 .  

   Table 28-4.    The Properties Defined by the IdentityResult Class   

 Name  Description 

  Succeeded   Returns  true  if the operation succeeded. 

  Errors   Returns a sequence of  IdentityError  objects that describe the errors encountered while 
attempting the operation. The  IdentityError  class provides a  Description  property that 
summarizes the problem. 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

894

 I inspect the  Succeeded  property in the  Create  action method to determine whether a new user record 
has been created in the database. If the  Succeeded  property is  true , then the client is redirected to the  Index  
action so that list of users is displayed. 

   ... 
  if (result.Succeeded) {  
      return RedirectToAction("Index");  
 } else { 
     foreach (IdentityError error in result.Errors) { 
         ModelState.AddModelError("", error.Description); 
     } 
 } 
 ... 

   If the  Succeeded  property is  false , then the sequence of  IdentityError  objects provided by the  Errors  
property is enumerated, with the  Description  property used to create a model-level validation error using 
the  ModelState.AddModelError  method, as described in Chapter   27    . 

 To provide the new action methods with a view, I created a view file called  Create.cshtml  file to the 
 Views/Admin  folder and added the markup shown in Listing  28-20 . 

     Listing 28-20.    The Contents of the Create.cshtml File in the Views/Admin Folder   

  @model CreateModel 

   <div class="bg-primary panel-body"><h4>Create User</h4></div> 
 <div asp-validation-summary=" All" class="text-danger"></div> 
 <form asp-action="Create" method="post"> 
     <div class="form-group"> 
         <label asp-for="Name"></label> 
         <input asp-for="Name" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Email"></label> 
         <input asp-for="Email" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Password"></label> 
         <input asp-for="Password" class="form-control" /> 
     </div>     
     <button type="submit" class="btn btn-primary">Create</button> 
     <a asp-action="Index" class="btn btn-default">Cancel</a> 
 </form> 

    There is nothing special about this view—it is a simple form that gathers values that MVC will bind to 
the properties of the model class that is passed to the  Create  action method and that contains a summary 
for when there are validation errors. 

http://dx.doi.org/10.1007/978-1-4842-0397-2_27


CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

895

 ■   Tip    There are domains reserved for testing, including  example.com . You can see a complete list at 
   https://tools.ietf.org/html/rfc2606     .  

 Once you have entered the values, click the Create button. ASP.NET Core Identity will create the user 
account, which will be displayed when your browser is redirected to the  Index  action method, as shown in 
Figure  28-3 . (You will see a different ID value because IDs are randomly generated for each user account.)  

    Table 28-5.    The Values for Creating an Example User   

 Name  Value 

  Name    Joe  

  Email    joe@example.com  

  Password    Secret123$  

  Figure 28-3.    Adding a new user account       

   Testing the Create Functionality 
 To test the ability to create a new user account, start the application, navigate to the  /Admin  URL, and click 
the Create button. Fill in the form with the values shown in Table  28-5 .  

 

https://tools.ietf.org/html/rfc2606


CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

896

     Validating Passwords 
    One of the most common requirements, especially for corporate applications, is to enforce a password 
policy. You can see the default policy by running the application, requesting the  /Admin/Create  URL, and 
populating the form with the data shown in Table  28-6 , where the important difference from the data in the 
previous section is the value entered into the password field.  

 Click the Create button again and enter the same details into the form, using the values in Table  28-5 . 
This time when you submit the form, you will see an error reported through the model validation summary, 
as shown in Figure  28-4 .    

  Figure 28-4.    An error trying to create a new user       

   Table 28-6.    The Values for Creating an Example User   

 Name  Value 

  Name    Alice  

  Email    alice@example.com  

  Password    secret  

 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

897

 You can configure the password validation rules in the  Startup  class, as shown in Listing  28-21 . 

     Listing 28-21.    Configuring Password Validation in the Startup.cs File   

  ... 
 public void ConfigureServices(IServiceCollection services) { 

       services.AddDbContext<AppIdentityDbContext>(options => 
         options.UseSqlServer( 
             Configuration["Data:SportStoreIdentity:ConnectionString"])); 

        services.AddIdentity<AppUser, IdentityRole>(opts => {  
          opts.Password.RequiredLength = 6;  
          opts.Password.RequireNonAlphanumeric = false;  
          opts.Password.RequireLowercase = false;  
          opts.Password.RequireUppercase = false;  
          opts.Password.RequireDigit = false;  
      }).AddEntityFrameworkStores<AppIdentityDbContext>();  

       services.AddMvc(); 
 } 
 ... 

  Figure 28-5.    Password validation errors       

 When you submit the form to the server, the  Identity  system checks the candidate password and 
generates errors if it doesn’t match the requirements, generating the errors shown in Figure  28-5 .  

 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

898

    The  AddIdentity  method can be used with a function that accepts an  IdentityOptions  object, 
whose  Password  property returns an instance of the  PasswordOptions  class, which provides the properties 
described in Table  28-7  for managing the password policy.  

 In the listing, I specified that passwords must have a minimum length of six characters and disabled 
the other constraints. This isn’t something that you should do lightly in a real project, but it allows for an 
effective demonstration. If you start the application, navigate to the  /Admin/Create  URL, and repeat the 
form submission, you will see that the password  secret  is now accepted and a new account, for Alice, has 
been created, as shown in Figure  28-6 .  

   Table 28-7.    The PasswordOptions Properties   

 Name  Description 

  RequiredLength   This  int  property is used to specify the minimum length for passwords. 

  RequireNonAlphanumeric   Setting this  bool  property to  true  requires passwords to contain at least one 
character that is not a letter or a digit. 

  RequireLowercase   Setting this  bool  property to  true  requires passwords to contain at least one 
lowercase character. 

  RequireUppercase   Setting this  bool  property to  true  requires passwords to contain at least one 
uppercase character. 

  RequireDigit   Setting this  bool  property to  true  requires passwords to contain at least 
numeric character. 

  Figure 28-6.    Changing the password validation policy       

 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

899

   Implementing a Custom Password Validator 
 The built-in password validation is sufficient for most applications, but you may need to implement 
a custom policy, especially if you are implementing a corporate line-of-business application where 
complex password policies are common. The password validation functionality is defined by the 
 IPasswordValidator<T  > interface in the  Microsoft.AspNetCore.Identity  namespace, where  T  is the 
application-specific user class ( AppUser  in the example application). 

    using System.Threading.Tasks; 

   namespace Microsoft.AspNetCore.Identity { 

       public interface IPasswordValidator<TUser> where TUser : class { 

           Task<IdentityResult> ValidateAsync(UserManager<TUser> manager, 
             TUser user, string password); 
     } 
 } 

    The  ValidateAsync  method is called to validate a password and is provided with context data through 
a  UserManager  object (which allows for the  Identity  database to be queried), the object that represents the 
user, and the candidate password. The result is an  IdentityResult  object, which is created using the static 
 Success  property if there are no validation issues, or the static  Failed  method, which is passed an array of 
 IdentityError  objects, each of which describes a validation problem. 

 To demonstrate the use of a custom validation policy, I created the  Infrastructure  folder, added a 
class file called  CustomPasswordValidator.cs  to, and used it to define the class shown in Listing  28-22 . 

     Listing 28-22.    The Contents of the CustomPasswordValidator.cs File in the Infrastructure Folder   

  using System.Collections.Generic; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Identity; 
 using Users.Models; 

   namespace Users.Infrastructure { 

       public class CustomPasswordValidator : IPasswordValidator<AppUser> { 

           public Task<IdentityResult> ValidateAsync(UserManager<AppUser> manager, 
                 AppUser user, string password) { 

               List<IdentityError> errors = new List<IdentityError>(); 

               if (password.ToLower().Contains(user.UserName.ToLower())) { 
                 errors.Add(new IdentityError { 
                     Code = "PasswordContainsUserName", 
                     Description = "Password cannot contain username" 
                 }); 
             } 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

900

             if (password.Contains("12345")) { 
                 errors.Add(new IdentityError { 
                     Code = "PasswordContainsSequence", 
                     Description = "Password cannot contain numeric sequence" 
                 }); 
             } 

               return Task.FromResult(errors.Count == 0 ? 
                 IdentityResult.Success : IdentityResult.Failed(errors.ToArray())); 
         } 
     } 
 } 

    The validator class checks to see that the password does not contain the username and 
that the password does not contain the sequence  12345 . In Listing  28-23 , I have registered the 
 CustomPasswordValidator  class as the password validator for  AppUser  objects. 

     Listing 28-23.    Registering a Custom Password Validator in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Configuration; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.EntityFrameworkCore; 
 using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
 using Users.Models; 
  using Users.Infrastructure;  
  using Microsoft.AspNetCore.Identity;  

   namespace Users { 

       public class Startup { 
         IConfigurationRoot Configuration; 

           public Startup(IHostingEnvironment env) { 
             Configuration = new ConfigurationBuilder() 
                 .SetBasePath(env.ContentRootPath) 
                 .AddJsonFile("appsettings.json").Build(); 
         } 

           public void ConfigureServices(IServiceCollection services) { 

                services.AddTransient<IPasswordValidator<AppUser>,  
                  CustomPasswordValidator>();  

               services.AddDbContext<AppIdentityDbContext>(options => 
             options.UseSqlServer( 
                 Configuration["Data:SportStoreIdentity:ConnectionString"])); 

               services.AddIdentity<AppUser, IdentityRole>(opts => { 
                 opts.Password.RequiredLength = 6; 
                 opts.Password.RequireNonAlphanumeric = false; 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

901

                 opts.Password.RequireLowercase = false; 
                 opts.Password.RequireUppercase = false; 
                 opts.Password.RequireDigit = false; 
             }).AddEntityFrameworkStores<AppIdentityDbContext>(); 

               services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 

               app.UseIdentity(); 

               app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    To test the custom policy, start the application, request the  /Admin/Create  URL, and fill out the form 
using the data values in Table  28-8 .  

   Table 28-8.    The Values for Creating an Example User   

 Name  Value 

  Name    Bob  

  Email    bob@example.com  

  Password    bob12345  

 The password in the table breaks both of the validation rules enforced by the custom class and results in 
the error messages shown in Figure  28-7 .  



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

902

 You can also implement a custom validation policy that builds on the foundation provided by the 
built-in class that is used by default. The default class is called  PasswordValidator  and is defined in the 
 Microsoft.AspNetCore.Identity  namespace. In Listing  28-24 , I have changed the custom validator class so 
that it is derived from  PasswordValidator  and builds on the basic checks it provides. 

     Listing 28-24.    Deriving from the Built-in Validator in the CustomPasswordValidator.cs File   

  using System.Collections.Generic; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Identity; 
 using Users.Models; 
  using System.Linq;  

   namespace Users.Infrastructure { 

        public class CustomPasswordValidator : PasswordValidator<AppUser> {  

            public override async Task<IdentityResult> ValidateAsync(  
                 UserManager<AppUser> manager, AppUser user, string password) { 

                IdentityResult result = await base.ValidateAsync(manager,  
                  user, password);  

                List<IdentityError> errors = result.Succeeded ?  
                  new List<IdentityError>() : result.Errors.ToList();  

  Figure 28-7.    Using a custom password validator       

 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

903

               if (password.ToLower().Contains(user.UserName.ToLower())) { 
                 errors.Add(new IdentityError { 
                     Code = "PasswordContainsUserName", 
                     Description = "Password cannot contain username" 
                 }); 
             } 
             if (password.Contains("12345")) { 
                 errors.Add(new IdentityError { 
                     Code = "PasswordContainsSequence", 
                     Description = "Password cannot contain numeric sequence" 
                 }); 
             } 

                return errors.Count == 0 ? IdentityResult.Success  
                  : IdentityResult.Failed(errors.ToArray());  
         } 
     } 
 } 

    To test the combined validation, run the application and populate the form returned for the 
 /Admin/Create  URL with the data in Table  28-9 .  

   Table 28-9.    The Values for Creating an Example User   

 Name  Value 

  Name    Bob  

  Email    bob@example.com  

  Password    12345  

 When you submit the form, you will see a combination of custom and built-in validation errors, as 
shown in Figure  28-8 .    



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

904

     Validating User Details 
    Validation is also performed on usernames and e-mail addresses when accounts are created. To see the built-in 
validation, start the application and fill out the  /Admin/Create  form with the data shown in Table  28-10 .  

  Figure 28-8.    Combining custom and built-in password validation       

   Table 28-10.    The Values for Creating an Example User   

 Name  Value 

  Name    Bob!  

  Email    alice@example.com  

  Password    secret  

 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

905

 Validation can be configured in the  Startup  class using the  IdentityOptions.User  property, which 
returns an instance of the  UserOptions  class. Table  28-11  describes the  UserOptions  properties.  

  Figure 28-9.    User account validation errors       

 When you submit the form, you will see the validation error shown in Figure  28-9 .  

   Table 28-11.    The UserOptions Properties   

 Name  Description 

  AllowedUserNameCharacters   This string property contains all of the legal characters that can be used 
in a username. The default value specifies a–z, A–Z, and 0–9 and the 
hyphen, period, underscore, and  @  characters. This property is not a regular 
expression, and every legal character must be specified explicitly in the string. 

  RequireUniqueEmail   Setting this  bool  property to  true  requires new accounts to specify e-mail 
addresses that have not been used previously. 

 In Listing  28-25 , I have changed the configuration of the application so that unique e-mail addresses are 
required and that only lowercase alphabetic characters are allowed in usernames. 

     Listing 28-25.    Changing the User Account Validation Settings in the Startup.cs File   

  ... 
 public void ConfigureServices(IServiceCollection services) { 
     services.AddTransient<IPasswordValidator<AppUser>, CustomPasswordValidator>(); 

       services.AddDbContext<AppIdentityDbContext>(options => 
     options.UseSqlServer( 
         Configuration["Data:SportStoreIdentity:ConnectionString"])); 

 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

906

       services.AddIdentity<AppUser, IdentityRole>(opts => { 

            opts.User.RequireUniqueEmail = true;  
          opts.User.AllowedUserNameCharacters = "abcdefghijklmnopqrstuvwxyz";  

           opts.Password.RequiredLength = 6; 
         opts.Password.RequireNonAlphanumeric = false; 
         opts.Password.RequireLowercase = false; 
         opts.Password.RequireUppercase = false; 
         opts.Password.RequireDigit = false; 
     }).AddEntityFrameworkStores<AppIdentityDbContext>(); 

       services.AddMvc(); 
 } 
 ... 

    If you resubmit the data from the previous test, you will see that the email address now causes an error 
and that the characters used in the name are still rejected, as shown in Figure  28-10 .  

  Figure 28-10.    Changing the account validation settings       

 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

907

   Implementing Custom User Validation 
 The validation functionality is specified by the  IUserValidator<T  > interface, which is defined in the 
 Microsoft.AspNetCore.Identity  namespace. 

    using System.Threading.Tasks; 

   namespace Microsoft.AspNetCore.Identity { 

       public interface IUserValidator<TUser> where TUser : class { 
         Task<IdentityResult> ValidateAsync(UserManager<TUser> manager, TUser user); 
     } 
 } 

    The  ValidateAsync  method is called to perform the validation, and the outcome is returned using 
an  IdentityResult  object, which is the same class used to validate password. To demonstrate a custom 
validator, I added a class called  CustomUserValidator.cs  to the  Infrastructure  folder and used it to define 
the class shown in Listing  28-26  .

     Listing 28-26.    The Contents of the CustomUserValidator.cs File in the Infrastructure Folder   

  using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Identity; 
 using Users.Models; 

   namespace Users.Infrastructure { 

       public class CustomUserValidator : IUserValidator<AppUser> { 

           public Task<IdentityResult> ValidateAsync(UserManager<AppUser> manager, 
         AppUser user) { 

               if (user.Email.ToLower().EndsWith("@example.com")) { 
                 return Task.FromResult(IdentityResult.Success); 
             } else { 
                 return Task.FromResult(IdentityResult.Failed(new IdentityError { 
                     Code = "EmailDomainError", 
                     Description = "Only example.com email addresses are allowed" 
                 })); 
             } 
         } 
     } 
 } 

    This validator checks the domain of the e-mail address to make sure that it is part of the  example.com  
domain. In Listing  28-27 , I have registered the custom class as the validator for  AppUser  objects. 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

908

     Listing 28-27.    Registering a Customer User Validator in the Startup.cs File   

  ... 
 public void ConfigureServices(IServiceCollection services) { 
     services.AddTransient<IPasswordValidator<AppUser>, CustomPasswordValidator>(); 
      services.AddTransient<IUserValidator<AppUser>, CustomUserValidator>();  

       services.AddDbContext<AppIdentityDbContext>(options => 
         options.UseSqlServer( 
             Configuration["Data:SportStoreIdentity:ConnectionString"])); 

       services.AddIdentity<AppUser, IdentityRole>(opts => { 

           opts.User.RequireUniqueEmail = true; 
         opts.User.AllowedUserNameCharacters = "abcdefghijklmnopqrstuvwxyz"; 

           opts.Password.RequiredLength = 6; 
         opts.Password.RequireNonAlphanumeric = false; 
         opts.Password.RequireLowercase = false; 
         opts.Password.RequireUppercase = false; 
         opts.Password.RequireDigit = false; 
     }).AddEntityFrameworkStores<AppIdentityDbContext>(); 

       services.AddMvc(); 
 } 
 ... 

    To test the custom validator, run the application and fill out the / Admin/Create  form using the data 
shown in Table  28-12 .  

   Table 28-12.    The Values for Creating an Example User   

 Name  Value 

  Name    bob  

  Email    bob@invalid.com  

  Password    secret  



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

909

 The user’s name and password pass validation, but the e-mail address is not in the correct domain. 
When you submit the form, you will see the validation error shown in Figure  28-11 .  

 The process for combining the built-in validation, which is provided by the  UserValidator<T  > class, 
with custom validation follows the same pattern as for validating passwords, as shown in Listing  28-28 . 

     Listing 28-28.    Extending the Built-in User Validation in the CustomUserValidator.cs File   

   using System.Collections.Generic;  
  using System.Linq;  
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Identity; 
 using Users.Models; 

   namespace Users.Infrastructure { 

        public class CustomUserValidator : UserValidator<AppUser> {  

           public override async Task<IdentityResult> ValidateAsync( 
                 UserManager<AppUser> manager, 
                 AppUser user) { 

                IdentityResult result = await base.ValidateAsync(manager, user);  

                List<IdentityError> errors = result.Succeeded ?  
                  new List<IdentityError>() : result.Errors.ToList();  

               if (!user.Email.ToLower().EndsWith("@example.com")) { 
                 errors.Add(new IdentityError { 

  Figure 28-11.    Performing custom user validation       

 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

910

                     Code = "EmailDomainError", 
                     Description = "Only example.com email addresses are allowed" 
                 }); 
             } 

                return errors.Count == 0 ? IdentityResult.Success  
                  : IdentityResult.Failed(errors.ToArray());  
         } 
     } 
 } 

           Completing the Administration Features 
 I only have to implement the features for editing and deleting users to complete my administration tool. 
In Listing  28-29 , you can see the changes I made to the  Views/Admin/Index.cshtml  file to target  Edit  and 
 Delete  actions in the  Admin  controller. 

     Listing 28-29.    Adding Edit and Delete Buttons to the Index.cshtml File in the Views/Admin Folder   

  @model IEnumerable<AppUser> 

   <div class="bg-primary panel-body"><h4>User Accounts</h4></div> 

    <div class="text-danger" asp-validation-summary="ModelOnly"></div>  

   <table class="table table-condensed table-bordered"> 
     <tr><th>ID</th><th>Name</th><th>Email</th></tr> 
     @if (Model.Count() == 0) { 
         <tr><td colspan="3" class="text-center">No User Accounts</td></tr> 
     } else { 
         foreach (AppUser user in Model) { 
             <tr> 
                 <td>@user.Id</td><td>@user.UserName</td><td>@user.Email</td> 
                  <td>  
                      <form asp-action="Delete" asp-route-id="@user.Id" method="post">  
                          <a class="btn btn-sm btn-primary" asp-action="Edit"  
                              asp-route-id="@user.Id">Edit</a>  
                          <button type="submit"  
                             class="btn btn-sm btn-danger">Delete</button>  
                      </form>  
                  </td>  
             </tr> 
         } 
     } 
 </table> 
 <a class="btn btn-primary" asp-action="Create">Create</a> 

    The  Delete  button posts a form to the  Delete  action on the  Admin  controller, which is important 
because a  POST  request is required when changing the application state. The Edit button is an anchor 
element that will send a  GET  request because the first step in the edit process is to display the current data. 
The Edit button is contained in the form element so that the Bootstrap CSS styles don’t stack them vertically. 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

911

I also added a model validation summary to the view so that I can easily display any errors that arise from 
the remaining administration features. 

     Implementing the Delete Feature 
 The  UserManager<T  > class defines a  DeleteAsync  method that takes an instance of the user class and 
removes it from the database. In Listing  28-30 , you can see how I have used the  DeleteAsync  method to 
implement the delete feature of the  Admin  controller. 

     Listing 28-30.    Deleting Users in the AdminController.cs File   

  using Microsoft.AspNetCore.Identity; 
 using Microsoft.AspNetCore.Mvc; 
 using Users.Models; 
 using System.Threading.Tasks; 

   namespace Users.Controllers { 

       public class AdminController : Controller { 
         private UserManager<AppUser> userManager; 

           public AdminController(UserManager<AppUser> usrMgr) { 
             userManager = usrMgr; 
         } 

           //  ...other actions omitted for brevity...  

            [HttpPost]  
          public async Task<IActionResult> Delete(string id) {  
              AppUser user = await userManager.FindByIdAsync(id);  
              if (user != null) {  
                  IdentityResult result = await userManager.DeleteAsync(user);  
                  if (result.Succeeded) {  
                      return RedirectToAction("Index");  
                  } else {  
                      AddErrorsFromResult(result);  
                  }  
              } else {  
                  ModelState.AddModelError("", "User Not Found");  
              }  
              return View("Index", userManager.Users);  
          }  

            private void AddErrorsFromResult(IdentityResult result) {  
              foreach (IdentityError error in result.Errors) {  
                  ModelState.AddModelError("", error.Description);  
              }  
          }  
     } 
 } 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

912

    My action method receives the unique ID for the user as an argument, and I use the  FindByIdAsync  
method to locate the corresponding user object so that I can pass it to  DeleteAsync  method. The result of 
the  DeleteAsync  method is an  IdentityResult , which I process in the same way I did in earlier examples to 
ensure that any errors are displayed to the user. You can test the delete functionality by creating a new user 
and then clicking the Delete button that appears alongside it in the  Index  view, as shown in Figure  28-12 .   

  Figure 28-12.    Deleting user accounts       

     Implementing the Edit Feature 
 To complete the administration tool, I need to add support for editing the e-mail address and password for a 
user account. These are the only properties defined by users at the moment, but I’ll show you how to extend 
the schema with custom properties in Chapter   30    . Listing  28-31  shows the  Edit  action methods that I added 
to the  Admin  controller. 

     Listing 28-31.    Adding the Edit Actions in the AdminController.cs File   

  using Microsoft.AspNetCore.Identity; 
 using Microsoft.AspNetCore.Mvc; 
 using Users.Models; 
 using System.Threading.Tasks; 

   namespace Users.Controllers { 

       public class AdminController : Controller { 
         private UserManager<AppUser> userManager; 
          private IUserValidator<AppUser> userValidator;  
          private IPasswordValidator<AppUser> passwordValidator;  
          private IPasswordHasher<AppUser> passwordHasher;  

            public AdminController(UserManager<AppUser> usrMgr,  
                  IUserValidator<AppUser> userValid,  
                  IPasswordValidator<AppUser> passValid,  
                  IPasswordHasher<AppUser> passwordHash) {  

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_30


CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

913

              userManager = usrMgr;  
              userValidator = userValid;  
              passwordValidator = passValid;  
              passwordHasher = passwordHash;  
          }  

           //  ...other action methods omitted for brevity...  

            public async Task<IActionResult> Edit(string id) {  
              AppUser user = await userManager.FindByIdAsync(id);  
              if (user != null) {  
                  return View(user);  
              } else {  
                  return RedirectToAction("Index");  
              }  
          }  

            [HttpPost]  
          public async Task<IActionResult> Edit(string id, string email,  
                  string password) {  
              AppUser user = await userManager.FindByIdAsync(id);  
              if (user != null) {  
                  user.Email = email;  
                  IdentityResult validEmail  
                      = await userValidator.ValidateAsync(userManager, user);  
                  if (!validEmail.Succeeded) {  
                      AddErrorsFromResult(validEmail);  
                  }  
                  IdentityResult validPass = null;  
                  if (!string.IsNullOrEmpty(password)) {  
                      validPass = await passwordValidator.ValidateAsync(userManager,  
                      user, password);  
                      if (validPass.Succeeded) {  
                          user.PasswordHash = passwordHasher.HashPassword(user,  
                          password);  
                      } else {  
                          AddErrorsFromResult(validPass);  
                      }  
                  }  
                  if ((validEmail.Succeeded  &&  validPass == null)  
                          || (validEmail.Succeeded  
                         &&  password != string.Empty  &&  validPass.Succeeded)) {  
                      IdentityResult result = await userManager.UpdateAsync(user);  
                      if (result.Succeeded) {  
                          return RedirectToAction("Index");  
                      } else {  
                          AddErrorsFromResult(result);  
                      }  
                  }  



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

914

              } else {  
                  ModelState.AddModelError("", "User Not Found");  
              }  
              return View(user);  
          }  

           private void AddErrorsFromResult(IdentityResult result) { 
             foreach (IdentityError error in result.Errors) { 
                 ModelState.AddModelError("", error.Description); 
             } 
         } 
     } 
 } 

    The  Edit  action targeted by  GET  requests uses the ID string embedded in the  Index  view to call the 
 FindByIdAsync  method to get an  AppUser  object that represents the user. 

 The more complex implementation receives the  POST  request, with arguments for the user ID, the new 
e-mail address, and the password. I have to perform several tasks to complete the editing operation. 

 The first task is to validate the values I have received. I am working with a simple user object at the 
moment—although I’ll show you how to customize the data stored for users in Chapter   30    —but even so, I need 
to validate the user data to ensure that I don’t violate the custom policies defined in the “Validating User Details” 
and “Validating Passwords” sections. I start by validating the e-mail address, which I do like this: 

   ... 
  user.Email = email;  
  IdentityResult validEmail = await userValidator.ValidateAsync(userManager, user);  
 if (!validEmail.Succeeded) { 
     AddErrorsFromResult(validEmail); 
 } 
 ... 

   I added a dependency to the controller constructor for an  IUserValidator<AppUser  > object so that I 
could validate the new e-mail address. Notice that I have to change the value of the  Email  property before I 
perform the validation because the  ValidateAsync  method only accepts instances of the user class. 

 The next step is to change the password, if one has been supplied. ASP.NET Core Identity stores hashes 
of passwords, rather than the passwords themselves. This is intended to prevent passwords from being 
stolen. My next step is to take the validated password and generate the hash code that will be stored in the 
database so that the user can be authenticated, which I demonstrate in Chapter   29    . 

 Passwords are converted to hashes through an implementation of the 
 IPasswordHasher<AppUser  > interface, which is obtained by declaring a constructor argument that will be 
resolved through dependency injection. The  IPasswordHasher  interface defines the  HashPassword  method, 
which takes a string argument and returns its hashed value, like this: 

   ... 
 if (!string.IsNullOrEmpty(password)) { 
      validPass = await passwordValidator.ValidateAsync(userManager, user, password);  
     if (validPass.Succeeded) { 
          user.PasswordHash = passwordHasher.HashPassword(user, password);  

http://dx.doi.org/10.1007/978-1-4842-0397-2_30
http://dx.doi.org/10.1007/978-1-4842-0397-2_29


CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

915

     } else { 
         AddErrorsFromResult(validPass); 
     } 
 } 
 ... 

   Changes to the user class are not stored in the database until the  UpdateAsync  method is called, like this: 

   ... 
 if ((validEmail.Succeeded && validPass == null) || (validEmail.Succeeded 
         && password != string.Empty && validPass.Succeeded)) { 
      IdentityResult result = await userManager.UpdateAsync(user);  
     if (result.Succeeded) { 
         return RedirectToAction("Index"); 
     } else { 
         AddErrorsFromResult(result); 
     } 
 } 
 ... 

     Creating the View 
 The final component is the view that will display the current values for a user and allow new values to be 
submitted to the controller. Listing  28-32  shows the contents of the  Edit.cshtml  file, which I created in the 
 Views/Admin  folder. 

     Listing 28-32.    The Contents of the Edit.cshtml File in the Views/Admin Folder   

  @model AppUser 

   <div class="bg-primary panel-body"><h4>Edit User</h4></div> 

   <div asp-validation-summary="All" class="text-danger"></div> 

   <form asp-action="Edit" method="post"> 
     <div class="form-group"> 
         <label asp-for="Id"></label> 
         <input asp-for="Id" class="form-control" disabled /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Email"></label> 
         <input asp-for="Email" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label for="password">Password</label> 
         <input name="password" class="form-control" /> 
     </div> 
     <button type="submit" class="btn btn-primary">Save</button> 
     <a asp-action="Index" class="btn btn-default">Cancel</a> 
 </form> 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

916

    This view displays the user ID, which cannot be changed, as static text and provides a form for editing 
the e-mail address and password, as shown in Figure  28-13 . Notice that I don’t use a tag helper for the 
password elements because the user class doesn’t contain password information, since only hashed values 
are stored in the database.  

  Figure 28-13.    Editing a user account       

 The final change is to comment out the user validation settings from the  Startup  class so that the 
default characters for usernames are used, as shown in Listing  28-33 . Since some of the accounts in the 
database were created before I changed the validation setting, you won’t be able to edit them because the 
usernames won’t pass validation. And since validation is applied to the entire user object when the e-mail 
address is validated, the result is a user account that cannot be changed. 

     Listing 28-33.    Disabling the Custom Validation Settings in the Startup.cs File   

  ... 
 services.AddIdentity<AppUser, IdentityRole>(opts => { 

       opts.Password.RequiredLength = 6; 
     opts.Password.RequireNonLetterOrDigit = false; 
     opts.Password.RequireLowercase = false; 
     opts.Password.RequireUppercase = false; 
     opts.Password.RequireDigit = false; 

 



CHAPTER 28 ■ GETTING STARTED WITH IDENTITY

917

       opts.User.RequireUniqueEmail = true; 
      //opts.User.AllowedUserNameCharacters = "abcdefghijklmnopqrstuvwxyz";  

   }).AddEntityFrameworkStores<AppIdentityDbContext>(); 
 ... 

    To test the edit feature, run the application, request the  /Admin  URL, and click one of the Edit buttons. 
Change the e-mail address or enter a new password (or both) and click the Save button to update the 
database and return to the  /Admin  URL.    

     Summary 
 In this chapter, I showed you how to create the configuration and classes required to use ASP.NET Core 
Identity and demonstrated how they can be applied to create a user administration tool. In the next chapter, 
I show you how to perform authentication and authorization with ASP.NET Core Identity.     



919© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_29

    CHAPTER 29   

 Applying ASP.NET Core Identity                          

 In this chapter, I show you how to apply ASP.NET Core Identity to authenticate and authorize the user 
accounts created in the previous chapter. Table  29-1  summarizes this chapter.  

   Table 29-1.    Chapter Summary   

 Problem  Solution  Listing 

 Restrict access to an action method  Apply the  Authorize  attribute  1 

 Authenticate users  Create an  Account  controller that receives user 
credentials and check them using the 
 UserManager  class 

 2–5 

 Create and manage roles  Use the  RoleManager  class  6–10 

 Authorize access to an action 
method using roles 

 Add user accounts to roles and use the  Authorize  
attribute to specify which roles can access action 
methods 

 11–18 

 Ensure that there is an administration 
account 

 Seed the database to create an account 
automatically 

 19–23 

     Preparing the Example Project 
 In this chapter, I am going to continue working on the Users project I created in Chapter   28    . To prepare for 
this chapter, run the application, navigate to the  /Admin  URL, and use the Create button to ensure that the 
user accounts in Table  29-2  are in the database.  

http://dx.doi.org/10.1007/978-1-4842-0397-2_28


CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

920

 When you have finished, requesting the  /Admin  URL should show you a list of users, including the ones 
described in Table  29-2  (it doesn’t matter if you have created additional users, just as long as the ones in the 
table are present), as shown in Figure  29-1 .   

      Table 29-2.    The User Accounts Required For This Chapter   

 Username  Email  Password 

  Joe    joe@example.com    secret123  

  Alice    alice@example.com    secret123  

  Bob    bob@example.com    secret123  

  Figure 29-1.    Running the example application       

     Authenticating Users 
       The most fundamental activity for ASP.NET Core Identity is to authenticate users. The key tool for 
restricting access to action methods is the  Authorize  attribute, which tells MVC that only requests from 
authenticated users should be processed. In Listing  29-1 , I applied the  Authorize  attribute to the  Index  
action of the  Home  controller.     

     Listing 29-1.    Restricting Access in the HomeController.cs File   

  using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc; 
  using Microsoft.AspNetCore.Authorization;  

   namespace Users.Controllers { 

 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

921

       public class HomeController : Controller { 

            [Authorize]  
         public ViewResult Index() => 
             View(new Dictionary<string, object> { ["Placeholder"] = "Placeholder" }); 
     } 
 } 

    If you start the application, the browser will send a request to the default URL, which will target 
the action method that has been decorated with the  Authorize  attribute. There is no way for users to 
authenticate themselves at the moment, and the result is the error shown in Figure  29-2 .  

  Figure 29-2.    Targeting a protected action method       

 The  Authorize  attribute doesn’t specify how the user should be authenticated and has no direct link 
to ASP.NET Core Identity. The Identity services and middleware work across the ASP.NET platform, which 
makes integration into MVC applications simple and seamless and works by modifying the context objects 
that describe HTTP requests, providing MVC with details of the outcome of the authentication process 
without needing to provide it with any details. 

 The ASP.NET platform provides information about the user through the  HttpContext  object, which is 
used by the  Authorize  attribute to check the status of the current request and see whether the user has been 
authenticated. The  HttpContext.User  property returns an implementation of the  IPrincipal  interface, 
which is defined in the  System.Security.Principal  namespace. The  IPrincipal  interface defines the 
property and method shown in Table  29-3 .  

   Table 29-3.    Selected Members Defined by the IPrincipal Interface   

 Name  Description 

  Identity   Returns an implementation of the  IIdentity  interface that describes the user 
associated with the request. 

  IsInRole(role)   Returns  true  if the user is a member of the specified role. See the “Authorizing Users 
with Roles” section for details of managing authorizations with roles. 

 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

922

 The implementation of the  IIdentity  interface returned by the  IPrincipal.Identity  property 
provides some basic, but useful, information about the current user through the properties I have described 
in Table  29-4 .  

 ■   Tip    In Chapter   30    , I describe the implementation class that ASP.NET Core Identity uses for the  IIdentity  
interface, which is called  ClaimsIdentity .  

   Table 29-4.    Selected Properties Defined by the IIdentity Interface   

 Name  Description 

  AuthenticationType   Returns a string that describes the mechanism used to authenticate the user 

  IsAuthenticated   Returns  true  if the user has been authenticated 

  Name   Returns the name of the current user 

 The ASP.NET Core Identity middleware uses cookies sent by the browser to determine whether the 
user has been authenticated. If the user has been authenticated, then the  IIdentity.IsAuthenticated  
property is set to  true . Since the example application doesn’t yet have an authentication mechanism, the 
 IsAuthenticated  property always returns  false , which causes an authentication error that leads to the 
client being redirected to the  /Account/Login  URL, which is the default URL for providing authentication 
credentials. 

 The browser requests the  /Account/Login  URL, but since it doesn’t correspond to any controller or 
action in the example project, the server returns a  404 – Not Found  response, leading to the error message 
shown in Figure  29-2 . 

 CHANGING THE LOGIN URL

 Although  /Account/Login  is the default URL that clients are redirected to when authorization is 
required, you can specify your own URL in the  ConfigureServices  method of the  Startup  class by 
changing a configuration option when setting up the ASP.NET Core Identity services, like this: 

   ... 
 services.AddIdentity<AppUser, IdentityRole>(opts => { 
      opts.Cookies.ApplicationCookie.LoginPath = "/Users/Login";                  
 }) 
 .AddEntityFrameworkStores<AppIdentityDbContext>(); 
 ... 

   The Identity system cannot rely on the routing system being present to generate its URLs and so 
the redirection target has to be specified literally. If you change the routing scheme used by your 
application, you must also ensure that you change the Identity setting so that the URL will still reach 
your target controller.  

http://dx.doi.org/10.1007/978-1-4842-0397-2_30


CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

923

     Preparing to Implement Authentication 
 Even though the request ends in an error message, the request in the previous section illustrates how the 
ASP.NET Core Identity system fits into the standard ASP.NET request life cycle. The next step is to implement 
a controller that will receive requests for the  /Account/Login  URL and authenticate the user. I started by 
adding a new model class to the  UserViewModels.cs  file, as shown in Listing  29-2 . 

     Listing 29-2.    Adding a New Model Class to the UserViewModels.cs File   

  using System.ComponentModel.DataAnnotations; 

   namespace Users.Models { 

       public class CreateModel { 
         [Required] 
         public string Name { get; set; } 
         [Required] 
         public string Email { get; set; } 
         [Required] 
         public string Password { get; set; } 
     } 

        public class LoginModel {  
          [Required]  
          [UIHint("email")]  
          public string Email { get; set; }  

            [Required]  
          [UIHint("password")]  
          public string Password { get; set; }  
      }  
 } 

    The new model has  Email  and  Password  properties, both of which are decorated with the  Required  
attribute so that I can use model validation to check that the user has provided values. I have decorated the 
properties with the  UIHint  attribute, which ensures that the  input  elements rendered by the tag helper in 
the view will have their  type  attributes set appropriately. 

 ■   Tip    In a real project, client-side validation could be used to check that the user has provided name and 
password values before submitting the form to the server. See Chapter   27     for details of client-side validation.  

 I added a class file called  AccountController.cs  to the  Controllers  folder and used it to define the 
controller shown in Listing  29-3 . 

     Listing 29-3.    The Contents of the AccountController.cs File in the Controllers Folder   

  using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Authorization; 
 using Microsoft.AspNetCore.Mvc; 

http://dx.doi.org/10.1007/978-1-4842-0397-2_27


CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

924

 using Users.Models; 

   namespace Users.Controllers { 

       [Authorize] 
     public class AccountController : Controller { 

           [AllowAnonymous] 
         public IActionResult Login(string returnUrl) { 
             ViewBag.returnUrl = returnUrl; 
             return View(); 
         } 

           [HttpPost] 
         [AllowAnonymous] 
         [ValidateAntiForgeryToken] 
         public async Task<IActionResult> Login(LoginModel details, 
                 string returnUrl) { 
             return View(details); 
         } 
     } 
 } 

    I have not implemented the authentication logic in the listing because I am going to define the view and 
then walk through the process of validating user credentials and signing users into the application. 

 Even though it doesn’t authenticate users yet, the  Account  controller contains some useful 
infrastructure that I want to explain separately from the ASP.NET Core Identity code that I’ll add to the  Login  
action method shortly. 

 First, notice that both versions of the  Login  action method take an argument called  returnUrl . When 
a user requests a restricted URL, they are redirected to the  /Account/Login  URL with a query string that 
specifies the URL that the user should be sent back to once they have been authenticated. You can see this if 
you start the application and request the  /Home/Index  URL. Your browser will be redirected, like this: 

   /Account/Login?ReturnUrl=%2FHome%2FIndex 

   The value of the  ReturnUrl  query string parameter allows me to redirect the user so that navigating 
between open and secured parts of the application is a smooth and seamless process. 

 Next, notice the attributes that I have applied to the  Account  controller. Controllers that manage user 
accounts contain functionality that should be available only to authenticated users, such as password 
reset, for example. To that end, I have applied the  Authorize  attribute to the controller class and then 
used the  AllowAnonymous  attribute on the individual action methods. This restricts action methods to 
authenticated users by default but allows unauthenticated users to log in to the application. I applied the 
 ValidateAntiForgeryToken  attribute, which I described in Chapter   24     and which works in conjunction with 
the  form  element tag helper to protect against cross-site request forgery. 

 The last preparatory step is to create the view that will be rendered to gather credentials from the 
user. I created the  Views/Account  folder and added a view called  Login.cshtml  with the markup shown in 
Listing  29-4 . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_24


CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

925

     Listing 29-4.    The Contents of the Login.cshtml File in the Views/Account Folder   

  @model LoginModel 

   <div class="bg-primary panel-body"><h4>Log In</h4></div> 

   <div class="text-danger" asp-validation-summary="All"></div> 

   <form asp-action="Login" method="post"> 
     <input type="hidden" name="returnUrl" value="@ViewBag.returnUrl" /> 
     <div class="form-group"> 
         <label asp-for="Email"></label> 
         <input asp-for="Email" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Password"></label> 
         <input asp-for="Password" class="form-control" /> 
     </div> 
     <button class="btn btn-primary" type="submit">Log In</button>     
 </form> 

    The only notable aspect of this view is the hidden  input  element, which preserves the  returnUrl  
argument. In all other respects, this is a standard Razor view, but it completes the preparations for 
authentication and demonstrates the way that unauthenticated requests are intercepted and redirected. To 
test the new controller, start the application. When the browser requests the default URL for the application, 
it will be redirected to the  /Account/Login  URL, which produces the content shown in Figure  29-3 .   

  Figure 29-3.    Prompting the user for credentials       

 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

926

     Adding User Authentication 
 Requests for protected action methods are being correctly redirected to the  Account  controller, but the 
credentials provided by the user are not yet used for authentication. In Listing  29-5 , I have completed the 
implementation of the  Login  action, using ASP.NET Core Identity services to authenticate the user against 
the details held in the database. 

     Listing 29-5.    Adding Authentication in the AccountController.cs File   

  using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Authorization; 
 using Microsoft.AspNetCore.Mvc; 
 using Users.Models; 
  using Microsoft.AspNetCore.Identity;  

   namespace Users.Controllers { 

       [Authorize] 
     public class AccountController : Controller { 
          private UserManager<AppUser> userManager;  
          private SignInManager<AppUser> signInManager;  

            public AccountController(UserManager<AppUser> userMgr,  
                  SignInManager<AppUser> signinMgr) {  
              userManager = userMgr;  
              signInManager = signinMgr;  
          }  

           [AllowAnonymous] 
         public IActionResult Login(string returnUrl) { 
             ViewBag.returnUrl = returnUrl; 
             return View(); 
         } 

            [HttpPost]  
          [AllowAnonymous]  
          [ValidateAntiForgeryToken]  
          public async Task<IActionResult> Login(LoginModel details,  
                  string returnUrl) {  
              if (ModelState.IsValid) {  
                  AppUser user = await userManager.FindByEmailAsync(details.Email);  
                  if (user != null) {  
                      await signInManager.SignOutAsync();  
                      Microsoft.AspNetCore.Identity.SignInResult result =  
                              await signInManager.PasswordSignInAsync(  
                                  user, details.Password, false, false);  
                      if (result.Succeeded) {  
                          return Redirect(returnUrl ?? "/");  
                      }  
                  }  



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

927

                  ModelState.AddModelError(nameof(LoginModel.Email),  
                      "Invalid user or password");  
              }  
              return View(details);  
          }  
     } 
 } 

    The simplest part is getting the  AppUser  object that represents the user, which I do through the 
 FindByEmailAsync  method of the  UserManager<AppUser  > class. 

   ... 
 AppUser user = await userManager. FindByEmailAsync (details.Email); 
 ... 

   This method locates a user account using the e-mail address that was used to create it. There are 
alternative methods for locating users by ID, by name, and by login. I have used the e-mail address for login 
because it is the approach taken by most Internet-facing web applications and has also become popular in 
corporate applications as well. 

 If there is an account with the e-mail address that the user has specified, then the next step is to 
perform the authentication step, which is done using the  SignInManager<AppUser  > class, for which I added 
a constructor argument that will be resolved using dependency injection. I use the  SignInManager  class to 
perform two authentication steps. 

   ... 
 await signInManager. SignOutAsync (); 
 Microsoft.AspNetCore.Identity.SignInResult result = 
     await signInManager. PasswordSignInAsync (user, details.Password, false, false); 
 ... 

   The  SignOutAsync  method cancels any existing session that the user has, and the  PasswordSignIn  
method performs the authentication. The arguments for the  PasswordSignInAsync  method are the user 
object, the password that the user has provided, a  bool  argument that controls whether the authentication 
cookie is persistent (which I disabled), and whether the account should be locked out if the password is 
correct (which I also disabled). 

 The result of the  PasswordSignInAsync  method is a  SignInResult  object, which defines a  bool 
Succeeded  property that indicates if the authentication process has been successful. 

 In the example, I check the  Succeeded  property and redirect the user to the  returnUrl  location if it is 
 true  and add a validation error and redisplay the  Login  view to the user so they can try again. 

 As part of the authentication process, Identity adds a cookie to the response, which the browser then 
includes in any subsequent request and which is used to identity the user’s session and the account that is 
associated with it. You don’t have to create or manage the cookie directly, as it is handled automatically by 
the Identity middleware. 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

928

 CONSIDERING TWO-FACTOR AUTHENTICATION

 I have performed single-factor authentication in this chapter, which is where the user is able to 
authenticate using a single piece of information known to them in advance: the password. 

 ASP.NET Core Identity also supports two-factor authentication, where the user needs something extra, 
usually something that is given to the user at the moment they want to authenticate. The most common 
examples are a value from a SecureID token or an authentication code that is sent as an e-mail or text 
message (strictly speaking, the two factors can be anything, including fingerprints, iris scans, and voice 
recognition, although these are options that are rarely required for most web applications). 

 Security is increased because an attacker needs to know the user’s password  and  have access to 
whatever provides the second factor, such an e-mail account or cell phone. 

 I don’t show two-factor authentication in the book for two reasons. The first is that it requires a lot of 
preparatory work, such as setting up the infrastructure that distributes the second-factor e-mails and 
texts and implementing the validation logic, all of which is beyond the scope of this book. 

 The second reason is that two-factor authentication forces the user to remember to jump through an 
additional hoop to authenticate, such as remembering their phone or keeping a security token nearby, 
something that isn’t always appropriate for web applications. I carried a SecureID token of one sort or 
another for more than a decade in various jobs, and I lost count of the number of times that I couldn’t 
log in to an employer’s system because I left the token at home. 

 If you are interested in two-factor security, then I recommend relying on a third-party provider such 
as Google for authentication, which allows the user to choose whether they want the additional 
security (and inconvenience) that two-factor authentication provides. I demonstrate third-party 
authentication in Chapter   30    .   

     Testing Authentication 
 To test user authentication, start the application and request the  /Home/Index  URL. When redirected to the  /
Account/Login  URL, enter the details of one of the users I listed at the start of the chapter (for instance, the 
e-mail address  joe@example.com  and the password  secret123 ). Click the Log In button, and your browser 
will be redirected back to the  /Home/Index  URL, but this time it will submit the authentication cookie that 
grants it access to the action method, as shown in Figure  29-4 .  

 ■   Tip    You can use the browser’s developer tools to see the cookies that are used to identify authenticated 
requests.    

http://dx.doi.org/10.1007/978-1-4842-0397-2_30


CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

929

     Authorizing Users with Roles 
          In the previous section, the  Authorize  attribute was used in its most basic form, which allows any 
authenticated user to execute the action method. It can also be used to refine authorization to give finer-
grained control over which users can perform which actions, based on a user’s membership of a  role . 

 A role is just an arbitrary label that you define to represent permission to perform a set of activities 
within an application. Almost every application differentiates between users who can perform 
administration functions and those who cannot. In the world of roles, this is done by creating an 
 Administrators  role and assigning users to it. Users can belong to many roles, and the permissions 
associated with roles can be as coarse or as granular as you like, so you can use separate roles to differentiate 
between administrators who can perform basic tasks, such as creating new accounts, and those who can 
perform more sensitive operations, such as accessing payment data. 

 ASP.NET Core Identity takes responsibility for managing the set of roles defined in the application and 
keeping track of which users are members of each one. But it has no knowledge of what each role means; 
that information is contained within the MVC part of the application, where access to action methods is 
restricted based on role membership. 

 ASP.NET Core Identity provides a strongly typed base class for accessing and managing 
roles called  RoleManager<T> , where  T  is the class that represents roles in the storage mechanism. Entity 
Framework Core uses a class called  IdentityRole  to represent roles, which defines the properties described 
in Table  29-5 .  

  Figure 29-4.    Authenticating a user       

 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

930

 You can create an application-specific role class if you want to extend the built-in functionality, 
which I describe for user objects in Chapter   30    , but I am going to use the  IdentityRole  class since it 
does everything that most applications need. I already told ASP.NET Core Identity to use  IdentityRole  
to represent roles when I configured the application in Chapter   28    , as this statement from the 
 ConfigureServices  method of  Startup  class shows: 

   ... 
  services.AddIdentity<AppUser, IdentityRole>(opts => {  
     opts.User.RequireUniqueEmail = true; 
     //opts.User.AllowedUserNameCharacters = "abcdefghijklmnopqrstuvwxyz"; 
     opts.Password.RequiredLength = 6; 
     opts.Password.RequireNonAlphanumeric = false; 
     opts.Password.RequireLowercase = false; 
     opts.Password.RequireUppercase = false; 
     opts.Password.RequireDigit = false; 
 }).AddEntityFrameworkStores<AppIdentityDbContext>(); 
 ... 

   The type parameters for the  AddIdentity  method specify the classes that will be used to represent 
users and roles. In the example application, the  AppUser  class is used to represent users, and the built-in 
 IdentityRole  class is used for roles. 

     Creating and Deleting Roles 
 To demonstrate how roles are used, I am going to create an administration tool for managing them, starting 
by creating action methods that can create and delete roles. I added a class file called  RoleAdminController.
cs  to the  Controllers  folder and used it to define the controller shown in Listing  29-6 . 

      Listing 29-6.    The Contents of the RoleAdminController.cs File in the Controllers Folder   

  using System.ComponentModel.DataAnnotations; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Identity; 
 using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
 using Microsoft.AspNetCore.Mvc; 

   namespace Users.Controllers { 

       public class RoleAdminController : Controller { 
         private RoleManager<IdentityRole> roleManager; 

           public RoleAdminController(RoleManager<IdentityRole> roleMgr) { 

   Table 29-5.    Selected IdentityRole Properties   

 Name  Description 

  Id    Defines the unique identifier for the role 

  Name    Defines the name of the role 

  Users    Returns a collection of  IdentityUserRole  objects that represents the members of the role 

http://dx.doi.org/10.1007/978-1-4842-0397-2_30
http://dx.doi.org/10.1007/978-1-4842-0397-2_28


CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

931

             roleManager = roleMgr; 
         } 

           public ViewResult Index() => View(roleManager.Roles); 

           public IActionResult Create() => View(); 

           [HttpPost] 
         public async Task<IActionResult> Create([Required]string name) { 
             if (ModelState.IsValid) { 
                 IdentityResult result 
                     = await roleManager.CreateAsync(new IdentityRole(name)); 
                 if (result.Succeeded) { 
                     return RedirectToAction("Index"); 
                 } else { 
                     AddErrorsFromResult(result); 
                 } 
             } 
             return View(name); 
         } 

           [HttpPost] 
         public async Task<IActionResult> Delete(string id) { 
             IdentityRole role = await roleManager.FindByIdAsync(id); 
             if (role != null) { 
                 IdentityResult result = await roleManager.DeleteAsync(role); 
                 if (result.Succeeded) { 
                     return RedirectToAction("Index"); 
                 } else { 
                     AddErrorsFromResult(result); 
                 } 
             } else { 
                 ModelState.AddModelError("", "No role found"); 
             } 
             return View("Index", roleManager.Roles); 
         } 

           private void AddErrorsFromResult(IdentityResult result) { 
             foreach (IdentityError error in result.Errors) { 
                 ModelState.AddModelError("", error.Description); 
             } 
         } 
     } 
 } 

    Roles are managed using the  RoleManager<T  > class, where  T  is the type being used to represent roles 
(the built-in  IdentityRole  class for this application). The  RoleAdminController  constructor declares a 
constructor dependency on  RoleManager<IdentityRole> , which is resolved using dependency injection 
when the controller is created. 

 The  RoleManager<T  > class defines the methods and properties shown in Table  29-6 , which allow roles 
to be created and managed.  



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

932

 The new controller’s  Index  action method displays all the roles in the application. The  Create  action 
methods are used to display and receive a form, the data from which is used to create a new role using the 
 CreateAsync  method. The  Delete  action method receives a  POST  request and receives the unique ID of a 
role, which is used to remove it from the application using the  DeleteAsync  method, having located the 
object that represents it using the  FindByIdAsync  method. 

   Creating the Views 
 To display details of the roles in the application, I created the  Views/RoleAdmin  folder and added the  Index.
cshtml  file with the markup shown in Listing  29-7 . 

     Listing 29-7.    The Contents of the Index.cshtml File in the Views/RoleAdmin Folder   

  @model IEnumerable<IdentityRole> 

   <div class="bg-primary panel-body"><h4>Roles</h4></div> 

   <div class="text-danger" asp-validation-summary="ModelOnly"></div> 

   <table class="table table-condensed table-bordered table-bordered"> 
     <tr><th>ID</th><th>Name</th><th>Users</th><th></th></tr> 
     @if (Model.Count() == 0) { 
         <tr><td colspan="4" class="text-center">No Roles</td></tr> 
     } else { 
         foreach (var role in Model) { 
             <tr> 
                 <td>@role.Id</td> 
                 <td>@role.Name</td> 
                 <td identity-role="@role.Id"></td> 
                 <td> 
                     <form asp-action="Delete" asp-route-id="@role.Id" method="post"> 
                         <a class="btn btn-sm btn-primary" asp-action="Edit" 
                            asp-route-id="@role.Id">Edit</a> 
                         <button type="submit" 
                                 class="btn btn-sm btn-danger"> 
                             Delete 

   Table 29-6.    The Members Defined by the RoleManager < T > Class   

 Name  Description 

  CreateAsync(role)   Creates a new role 

  DeleteAsync(role)   Deletes the specified role 

  FindByIdAsync(id)   Finds a role by its ID 

  FindByNameAsync(name)   Finds a role by its name 

  RoleExistsAsync(name)   Returns  true  if a role with the specified name exists 

  UpdateAsync(role)   Stores changes to the specified role 

  Roles   Returns an enumeration of the roles that have been defined 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

933

                         </button> 
                     </form> 
                 </td> 
             </tr> 
         } 
     } 
 </table> 
 <a class="btn btn-primary" asp-action="Create">Create</a> 

    This view uses a table to display details of the roles in the application. The third column uses a custom 
element attribute, like this: 

   ... 
 <td identity-role="@role.Id"></td> 
 ... 

   I want to display a list of the users that are members of each role, which requires too much code to 
be included in a view. To keep the view simple, I added a class file called  RoleUsersTagHelper.cs  to the 
 Infrastructure  folder and used it to define the tag helper shown in Listing  29-8 . 

     Listing 29-8.    The Contents of the RoleUsersTagHelper.cs File in the Infrastructure Folder   

  using System.Collections.Generic; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Identity; 
 using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
 using Microsoft.AspNetCore.Razor.TagHelpers; 
 using Users.Models; 

   namespace Users.Infrastructure { 

       [HtmlTargetElement("td", Attributes = "identity-role")] 
     public class RoleUsersTagHelper : TagHelper { 
         private UserManager<AppUser> userManager; 
         private RoleManager<IdentityRole> roleManager; 

           public RoleUsersTagHelper(UserManager<AppUser> usermgr, 
                                   RoleManager<IdentityRole> rolemgr) { 
             userManager = usermgr; 
             roleManager = rolemgr; 
         } 

           [HtmlAttributeName("identity-role")] 
         public string Role { get; set; } 

           public override async Task ProcessAsync(TagHelperContext context, 
                 TagHelperOutput output) { 

               List<string> names = new List<string>(); 
             IdentityRole role = await roleManager.FindByIdAsync(Role); 
             if (role != null) { 
                 foreach (var user in userManager.Users) { 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

934

                     if (user != null 
                         && await userManager.IsInRoleAsync(user, role.Name)) { 
                         names.Add(user.UserName); 
                     } 
                 } 
             } 

               output.Content.SetContent(names.Count == 0 ? 
                 "No Users" : string.Join(", ", names)); 
         } 
     } 
 } 

    This tag helper operates on  td  elements with an  identity-role  attribute, which is used to receive the 
name of the role that is being processed. The  RoleManager<IdentityRole  > and  UserManager<AppUser  > 
objects allow queries of the Identity database to build up a list of usernames in the role. In Listing  29-9 , 
I have added the tag helper to the view imports file and added an  @using  expression so that I can refer to the 
EF Core types in the views without using a namespace. 

     Listing 29-9.    Adding a Tag Helper in the _ViewImports.cshtml File   

 @using Users.Models 
  @using Microsoft.AspNetCore.Identity.EntityFrameworkCore  
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 
  @addTagHelper Users.Infrastructure.*, Users  

   Next, I added a view called  Create.cshtml  to the  Views/RoleAdmin  folder and added the markup shown 
in Listing  29-10  to support adding new roles. 

     Listing 29-10.    The Contents of the Create.cshtml File in the Views/RoleAdmin Folder   

  @model string 

   <div class="bg-primary panel-body"><h4>Create Role</h4></div> 

   <div asp-validation-summary="All" class="text-danger"></div> 

   <form asp-action="Create" method="post"> 
     <div class="form-group"> 
         <label for="name"></label> 
         <input name="name" class="form-control" /> 
     </div> 
     <button type="submit" class="btn btn-primary">Create</button> 
     <a asp-action="Index" class="btn btn-default">Cancel</a> 
 </form> 

    The only form data I need to create a role is the name, which is why I am able to use a  string  as the 
view model class in the  Create.cshtml  view. I want to take advantage of model validation to ensure that 
the user supplies a value when the form is submitted, but it isn’t worth creating a dedicated model class 
for such a simple task. Instead, if you look at the  Create  method that accepts  POST  requests in Listing  29-6 , 
you will see that I have applied the  Required  validation attribute directly to the parameter. This has the 
same effect as applying the attribute in a model class and allows me to take advantage of the built-in model 
validation process.  



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

935

   Testing, Creating, and Deleting Roles 
 To test the new controller, start the application and navigate to the  /RoleAdmin  URL. Click the Create button, 
enter a name in the  input  element, and click the second Create button. The new role will be saved to the 
database and displayed when the browser is redirected to the  Index  action, as shown in Figure  29-5 . You can 
remove the role from the application by clicking the Delete button.    

  Figure 29-5.    Creating a new role       

     Managing Role Memberships 
 The next step is to be able to add and remove users from roles. This isn’t a complicated process, but it 
invokes taking the role data from the  RoleManager  class and associating it with the details of individual users. 

 I started by defining some view model classes that will represent the membership of a role and receive 
a new set of membership instructions from the user. Listing  29-11  shows the additions I made to the 
 UserViewModels.cs  file in the  Models  folder. 

      Listing 29-11.    Adding View Models to the UserViewModels.cs File   

  using System.ComponentModel.DataAnnotations; 
  using System.Collections.Generic;  
  using Microsoft.AspNetCore.Identity.EntityFrameworkCore;  

   namespace Users.Models { 

       public class CreateModel { 
         [Required] 
         public string Name { get; set; } 
         [Required] 

 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

936

         public string Email { get; set; } 
         [Required] 
         public string Password { get; set; } 
     } 

       public class LoginModel { 
         [Required] 
         [UIHint("email")] 
         public string Email { get; set; } 
         [Required] 
         [UIHint("password")] 
         public string Password { get; set; } 
     } 

        public class RoleEditModel {  
          public IdentityRole Role { get; set; }  
          public IEnumerable<AppUser> Members { get; set; }  
          public IEnumerable<AppUser> NonMembers { get; set; }  
      }  

        public class RoleModificationModel {  
          [Required]  
          public string RoleName { get; set; }  
          public string RoleId { get; set; }  
          public string[] IdsToAdd { get; set; }  
          public string[] IdsToDelete { get; set; }  
      }  
 } 

    The  RoleEditModel  class represents a role and details of the users in the system, categorized by whether 
they are members of the role. The  RoleModificationModel  class represents a set of changes to a role. 

 Listing  29-12  shows the addition of new action methods in the  RoleAdmin  controller that use the view 
models from Listing  29-11  to manage role memberships. 

     Listing 29-12.    Adding Action Methods in the RoleAdminController.cs File   

  using System.ComponentModel.DataAnnotations; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Identity; 
 using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
 using Microsoft.AspNetCore.Mvc; 
  using System.Linq;  
  using Users.Models;  
  using System.Collections.Generic;  

   namespace Users.Controllers { 

       public class RoleAdminController : Controller { 
         private RoleManager<IdentityRole> roleManager; 
          private UserManager<AppUser> userManager;  



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

937

           public RoleAdminController(RoleManager<IdentityRole> roleMgr, 
                                     UserManager<AppUser> userMrg) {  
             roleManager = roleMgr; 
              userManager = userMrg;  
         } 

           //  ...other action methods omitted for brevity...  

            public async Task<IActionResult> Edit(string id) {  

                IdentityRole role = await roleManager.FindByIdAsync(id);  
              List<AppUser> members = new List<AppUser>();  
              List<AppUser> nonMembers = new List<AppUser>();  
              foreach (AppUser user in userManager.Users) {  
                  var list = await userManager.IsInRoleAsync(user, role.Name)  
                      ? members : nonMembers;  
                  list.Add(user);  
              }  
              return View(new RoleEditModel {  
                  Role = role,  
                  Members = members,  
                  NonMembers = nonMembers  
              });  
          }  

            [HttpPost]  
          public async Task<IActionResult> Edit(RoleModificationModel model) {  
              IdentityResult result;  
              if (ModelState.IsValid) {  
                  foreach (string userId in model.IdsToAdd ?? new string[] { }) {  
                      AppUser user = await userManager.FindByIdAsync(userId);  
                      if (user != null) {  
                          result = await userManager.AddToRoleAsync(user,  
                              model.RoleName);  
                          if (!result.Succeeded) {  
                              AddErrorsFromResult(result);  
                          }  
                      }  
                  }  
                  foreach (string userId in model.IdsToDelete ?? new string[] { }) {  
                      AppUser user = await userManager.FindByIdAsync(userId);  
                      if (user != null) {  
                          result = await userManager.RemoveFromRoleAsync(user,  
                              model.RoleName);  
                          if (!result.Succeeded) {  
                              AddErrorsFromResult(result);  
                          }  
                      }  
                  }  
              }  



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

938

                if (ModelState.IsValid) {  
                  return RedirectToAction(nameof(Index));  
              } else {  
                  return await Edit(model.RoleId);  
              }  
          }  

           private void AddErrorsFromResult(IdentityResult result) { 
             foreach (IdentityError error in result.Errors) { 
                 ModelState.AddModelError("", error.Description); 
             } 
         } 
     } 
 } 

    Most of the code in the  GET  version of the  Edit  action method is responsible for generating the sets of 
members and nonmembers of the selected role. Once all the users have been categorized, a new instance 
of the  RoleEditModel  class is passed to the  View  method so that the data can be displayed using the 
default view. 

 The  POST  version of the  Edit  method is responsible for adding and removing users to and from roles. 
The  UserManager<T  > class provides methods for working with roles, which I have described in Table  29-7 .  

   Table 29-7.    The Role-Related Methods Defined by the UserManager < T > Class   

 Name  Description 

  AddToRoleAsync(user, name)   Adds the user ID to the role with the specified name 

  GetRolesAsync(user)   Returns a list of the names of the roles of which the user is a member 

  IsInRoleAsync(user, name)   Returns  true  if the user is a member of the role with the specified name 

  RemoveFromRoleAsync
(user,      name)  

 Removes the user as a member from the role with the specified name 

 An oddity of these methods is that the role-related methods operate on role  names , even though roles 
also have unique identifiers. It is for this reason that my  RoleModificationModel  view model class has a 
 RoleName  property. 

 Listing  29-13  shows the contents of the  Edit.cshtml  file, which I added to the  Views/RoleAdmin  folder 
and used to define the markup that allows the user to edit role memberships. 

     Listing 29-13.    The Contents of the Edit.cshtml File in the Views/RoleAdmin Folder   

  @model RoleEditModel 

   <div class="bg-primary panel-body"><h4>Edit Role</h4></div> 

   <div asp-validation-summary="All" class="text-danger"></div> 

   <form asp-action="Edit" method="post"> 
     <input type="hidden" name="roleName" value="@Model.Role.Name" /> 
     <input type="hidden" name="roleId" value="@Model.Role.Id" /> 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

939

       <h6 class="bg-info panel-body">Add To @Model.Role.Name</h6> 
     <table class="table table-bordered table-condensed"> 
         @if (Model.NonMembers.Count() == 0) { 
             <tr><td colspan="2">All Users Are Members</td></tr> 
         } else { 
             @foreach (AppUser user in Model.NonMembers) { 
                 <tr> 
                     <td>@user.UserName</td> 
                     <td> 
                         <input type="checkbox" name="IdsToAdd" value="@user.Id"> 
                     </td> 
                 </tr> 
             } 
         } 
     </table> 

       <h6 class="bg-info panel-body">Remove From @Model.Role.Name</h6> 
     <table class="table table-bordered table-condensed"> 
         @if (Model.Members.Count() == 0) { 
             <tr><td colspan="2">No Users Are Members</td></tr> 
         } else { 
             @foreach (AppUser user in Model.Members) { 
                 <tr> 
                     <td>@user.UserName</td> 
                     <td> 
                         <input type="checkbox" name="IdsToDelete" value="@user.Id"> 
                     </td> 
                 </tr> 
             } 
         } 
     </table> 
     <button type="submit" class="btn btn-primary">Save</button> 
     <a asp-action="Index" class="btn btn-default">Cancel</a> 
 </form> 

    The view contains two tables: one for users who are not members of the selected role and one for 
those who are. Each user’s name is displayed along with a check box that allows the membership to be 
changed. The tables are contained in a form that is sent to the  Edit  action method and model bound to the 
 RoleModificationModel  class, providing easy access to the list of role membership changes to be made. 

   Testing and Editing Role Membership 
 To test the role membership feature, start the application, navigate to the  /RoleAdmin  URL, and create a new 
role called  Users  if you need to. Click the Edit button and you will see the users in the application are shown 
in the list of nonmembers, as shown in Figure  29-6 .  



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

940

 Check the box to add  Alice  and  Joe  (two of the accounts added to the Identity system at the start of the 
chapter) and click the Save button. In the list of roles, you will now see Alice and Joe in the list of members, 
as shown in Figure  29-7 .    

  Figure 29-6.    Displaying and editing role membership       

 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

941

     Using Roles for Authorization 
 Now that the application has roles, they can be used as the basis for authorization through the  Authorize  
attribute. To make it easier to test role-based authorization, I have added a  Logout  method to the  Account  
controller, as shown in Listing  29-14 , which will make it possible to log out and log in again as a different user 
to see the effect of role membership. 

     Listing 29-14.    Adding a Logout Method to the AccountController.cs File   

  using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Authorization; 
 using Microsoft.AspNetCore.Mvc; 
 using Users.Models; 
 using Microsoft.AspNetCore.Identity; 

   namespace Users.Controllers { 

       [Authorize] 
     public class AccountController : Controller { 
         private UserManager<AppUser> userManager; 
         private SignInManager<AppUser> signInManager; 

           //  ...other action methods omitted for brevity...  

            [Authorize]  
          public async Task<IActionResult> Logout() {  
              await signInManager.SignOutAsync();  
              return RedirectToAction("Index", "Home");  
          }  
     } 
 } 

  Figure 29-7.    Managing role membership       

 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

942

    The next step is to update the  Home  controller to add a new action method and pass some information 
about the authenticated user to the view, as shown in Listing  29-15 . 

     Listing 29-15.    Adding an Action Method and Account Information to the HomeController.cs File   

  using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Authorization; 

   namespace Users.Controllers { 

       public class HomeController : Controller { 

           [Authorize] 
          public IActionResult Index() => View(GetData(nameof(Index)));  

           [Authorize(Roles = "Users")] 
          public IActionResult OtherAction() => View("Index",  
              GetData(nameof(OtherAction)));  

            private Dictionary<string, object> GetData(string actionName) =>  
              new Dictionary<string, object> {  
                  ["Action"] = actionName,  
                  ["User"] = HttpContext.User.Identity.Name,  
                  ["Authenticated"] = HttpContext.User.Identity.IsAuthenticated,  
                  ["Auth Type"] = HttpContext.User.Identity.AuthenticationType,  
                  ["In Users Role"] = HttpContext.User.IsInRole("Users")  
              };  
     } 
 } 

    The  Authorize  attribute unchanged for the  Index  action method, but I have set the  Roles  property 
when applying the attribute to the  OtherAction  method, specifying that only members of the  Users  role 
should be able to access it. I also defined a  GetData  method, which adds some basic information about the 
user identity, using the properties available through the  HttpContext  object. 

 ■   Tip    The  Authorize  attribute can also be used to authorize access based on a list of individual usernames. 
This is an appealing feature for small projects, but it means you have to change the code in your controllers 
each time the set of users you are authorizing changes, and that usually means having to go through the 
test-and-deploy cycle again. Using roles for authorization isolates the application from changes in individual 
user accounts and allows you to control access to the application through the memberships stored by ASP.NET 
Core Identity.  

 The final change is to the  Index.cshtml  file in the  Views/Home  folder, which is used by both actions 
in the  Home  controller, to add a link that targets the  Logout  method in the  Account  controller, as shown in 
Listing  29-16 . 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

943

     Listing 29-16.    Adding a Sign-Out Link to the Index.cshtml File in the Views/Home Folder   

  @model Dictionary<string, object> 

   <div class="bg-primary panel-body"><h4>User Details</h4></div> 

   <table class="table table-condensed table-bordered"> 
     @foreach (var kvp in Model) { 
         <tr><th>@kvp.Key</th><td>@kvp.Value</td></tr> 
     } 
 </table> 

    @if (User?.Identity?.IsAuthenticated ?? false) {  
      <a asp-controller="Account" asp-action="Logout"  
         class="btn btn-danger">Logout</a>  
  }  

    To test the authentication, start the application and navigate to the  /Home/Index  URL. Your browser will 
be redirected so that you can enter user credentials. It doesn’t matter which of the user details from Table  29-2  
you choose to authenticate with because the  Authorize  attribute applied to the  Index  action allows access to 
any authenticated user. 

 However, if you now request the  /Home/OtherAction  URL, the user details you chose from Table  29-2  will 
make a difference because only Alice and Joe are members of the  Users  role, which is required to access the 
 OtherAction  method. If you log in as Bob, then your browser will be redirected to the  /Account/AccessDenied  
URL, which is used when a user is unable to access an action method. To handle this situation, I have added 
an  AccessDenied  method to the  Account  controller so that there is an action to handle the request, as shown 
in Listing  29-17 . 

 ■   Tip    You can change the  /Account/AccessDenied  URL by setting the  IdentityOptions.Cookies.
ApplicationCookie.AccessDeniedPath  property. See the “Changing the Login URL” sidebar earlier in the 
chapter for a similar example.  

     Listing 29-17.    Adding an Action Method in the AccountController.cs File   

  using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Authorization; 
 using Microsoft.AspNetCore.Mvc; 
 using Users.Models; 
 using Microsoft.AspNetCore.Identity; 

   namespace Users.Controllers { 

       [Authorize] 
     public class AccountController : Controller { 
         private UserManager<AppUser> userManager; 
         private SignInManager<AppUser> signInManager; 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

944

           public AccountController(UserManager<AppUser> userMgr, 
                 SignInManager<AppUser> signinMgr) { 
             userManager = userMgr; 
             signInManager = signinMgr; 
         } 

           //  ...other action methods omitted for brevity...  

            [AllowAnonymous]  
          public IActionResult AccessDenied() {  
              return View();  
          }  
     } 
 } 

    To provide the  AccessDenied  action with a view to display, I created a file called  AccessDenied.cshtml  
in the  Views/Account  folder and added the content shown in Listing  29-18 . 

     Listing 29-18.    The Contents of the AccessDenied.cshtml File in the Views/Account Folder   

 <div class="bg-danger panel-body"><h4>Access Denied</h4></div> 
 <a asp-action="Index" asp-controller="Home" class="btn btn-primary">OK</a> 

   Start the application, request the  /Account/Login  URL, and authenticate as  bob@example.com . When 
the authentication process is complete, the browser will be redirected to the  /Home/Index  URL, which 
displays details of the account, as shown in the left screenshot in Figure  29-8 , and which makes it clear that 
Bob is not a member of the  Users  role. Now request the  /Home/OtherAction  URL, which targets the action 
that has been protected with role-based access. Bob doesn’t have the required role membership, and the 
browser is redirected to the  /Account/AccessDenied  URL, as shown in the right screenshot in Figure  29-8 .  

 ■   Tip    Roles are loaded when the user logs in, which means if you change the roles for the user you are 
currently authenticated as, the changes won’t take effect until you log out and authenticate.    



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

945

     Seeding the Database 
 One lingering problem in my example project is that access to my  Admin  and  RoleAdmin  controllers is not 
restricted. This is a classic chicken-and-egg problem because in order to restrict access, I need to create 
users and roles, but the  Admin  and  RoleAdmin  controllers are the user management tools, and if I protect 
them with the  Authorize  attribute, there won’t be any credentials that will grant me access to them, 
especially when I first deploy the application. 

 The solution to this problem is to seed the database with some initial data when the application starts. 
In Listing  29-19 , I have added some new configuration data to the  appsettings.json  file to specify the 
details for the account that will be created. 

     Listing 29-19.    Adding Configuration Data to the appsettings.json File   

 { 
   "Data": { 
      "AdminUser": {  
        "Name": "Admin",  
        "Email": "admin@example.com",  
        "Password": "secret",  
        "Role": "Admins"  
      },  
     "SportStoreIdentity": { 
       "ConnectionString": "Server=(localdb)\\MSSQLLocalDB;Database=IdentityUsers;Trusted_Con
nection=True;MultipleActiveResultSets=true" 
     } 
   } 
 } 

  Figure 29-8.    Using role-based authorization       

 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

946

   The  Data:AdminUser  category provides the four values that I need to create an account and assign it to a 
role that will be able to use the administration tools. 

 ■   Caution    Putting passwords in plain-text configuration files means that you must make it part of your 
deployment process to change the default account’s password when you deploy the application and initialize a 
new database for the first time.  

 Next, I added a static method to the  AppIdentityDbContext  class, as shown in Listing  29-20 . The code 
to create the default account doesn’t have to go in this class, but this is the location that feels natural to me 
and the one I use in my own projects. 

     Listing 29-20.    Adding a Method in the AppIdentityDbContext.cs File   

  using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
 using Microsoft.EntityFrameworkCore; 
  using System.Threading.Tasks;  
  using Microsoft.Extensions.Configuration;  
  using System;  
  using Microsoft.AspNetCore.Identity;  
  using Microsoft.Extensions.DependencyInjection;  

   namespace Users.Models { 

       public class AppIdentityDbContext : IdentityDbContext<AppUser> { 

           public AppIdentityDbContext(DbContextOptions<AppIdentityDbContext> options) 
             : base(options) { } 

            public static async Task CreateAdminAccount(IServiceProvider serviceProvider,  
              IConfiguration configuration) {  

                UserManager<AppUser> userManager =  
                  serviceProvider.GetRequiredService<UserManager<AppUser>>();  
              RoleManager<IdentityRole> roleManager =  
                  serviceProvider.GetRequiredService<RoleManager<IdentityRole>>();  

                string username = configuration["Data:AdminUser:Name"];  
              string email = configuration["Data:AdminUser:Email"];  
              string password = configuration["Data:AdminUser:Password"];  
              string role = configuration["Data:AdminUser:Role"];  

                if (await userManager.FindByNameAsync(username) == null) {  
                  if (await roleManager.FindByNameAsync(role) == null) {  
                      await roleManager.CreateAsync(new IdentityRole(role));  
                  }  

                    AppUser user = new AppUser {  
                      UserName = username,  
                      Email = email  
                  };  



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

947

                    IdentityResult result = await userManager  
                      .CreateAsync(user, password);  
                  if (result.Succeeded) {  
                      await userManager.AddToRoleAsync(user, role);  
                  }  
              }  
          }  
     } 
 } 

    The  CreateAdminAccount  method receives an  IServiceProvider  object, which it uses to obtain the 
 UserManager  and  RoleManager  objects, and an  IConfiguration  object, which it uses to get the data from the 
 appsetting.json  file. The code in the  CreateAdminAccount  method checks to see whether the user already 
exists and, if not, creates it and assigns it to the specified role, which is also created if needed. In Listing  29-21 , 
I have added a statement to the  Startup  class that calls the  CreateAdminAccount  method after the rest of the 
application has been set up and configured. 

     Listing 29-21.    Calling the Database Method in the Startup.cs File   

  ... 
 public void Configure(IApplicationBuilder app) { 
     app.UseStatusCodePages(); 
     app.UseDeveloperExceptionPage(); 
     app.UseStaticFiles(); 
     app.UseIdentity(); 
     app.UseMvcWithDefaultRoute(); 

        AppIdentityDbContext.CreateAdminAccount(app.ApplicationServices,  
          Configuration).Wait();  
 } 
 ... 

    Now that there is a reliable default account in the Identity database, I can use the  Authorize  attribute to 
protect the  Admin  and  RoleAdmin  controllers. Listing  29-22  shows the changes to the  Admin  controller. 

     Listing 29-22.    Restricting Access in the AdminController.cs File   

  using Microsoft.AspNetCore.Identity; 
 using Microsoft.AspNetCore.Mvc; 
 using Users.Models; 
 using System.Threading.Tasks; 
  using Microsoft.AspNetCore.Authorization;  

   namespace Users.Controllers { 

        [Authorize(Roles = "Admins")]  
     public class AdminController : Controller { 

           //  ...statements omitted for brevity...  
     } 
 } 



CHAPTER 29 ■ APPLYING ASP.NET CORE IDENTITY

948

    Listing  29-23  shows the corresponding change I made to the  RoleAdmin  controller. 

     Listing 29-23.    Restricting Access in the RoleAdminController.cs File   

  using System.ComponentModel.DataAnnotations; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Identity; 
 using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
 using Microsoft.AspNetCore.Mvc; 
 using System.Linq; 
 using Users.Models; 
 using System.Collections.Generic; 
  using Microsoft.AspNetCore.Authorization;  

   namespace Users.Controllers { 

        [Authorize(Roles = "Admins")]  
     public class RoleAdminController : Controller { 
         //  ...statements omitted for brevity...  
     } 
 } 

    Start the application and request the  /Admin  or  /RoleAdmin  URLs. If you have already logged in as one 
of the other users, you will have to log out. Otherwise, you will be prompted for credentials, and you can 
authenticate as  admin@example.com  with the password  secret  to access the administration features.  

     Summary 
 In this chapter, I showed you how to use ASP.NET Core Identity to authenticate and authorize users. I 
explained how to collect and validate credentials users and how to restrict access to action methods based 
on the roles that a user is a member of. In the next chapter, I demonstrate some of the advanced features that 
ASP.NET Core Identity provides.     



949© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_30

    CHAPTER 30   

 Advanced ASP.NET Core Identity                          

 In this chapter, I finish my description of ASP.NET Core Identity by showing you some of the advanced 
features it offers. I demonstrate how you can extend the database schema by defining custom properties on 
the user class and how to use database migrations to apply those properties without deleting the data in the 
ASP.NET Core Identity database. I also explain how ASP.NET Core Identity supports the concept of claims 
and demonstrate how they can be used to flexibly authorize access to action methods through policies. 
I finish the chapter by showing you how ASP.NET Core Identity makes it easy to authenticate users through 
third parties. I demonstrate authentication with Google accounts, but ASP.NET Core Identity has built-in 
support for Microsoft, Facebook, and Twitter accounts as well. Table  30-1  summarizes this chapter.  

   Table 30-1.    Chapter Summary   

 Problem  Solution  Listing 

 Store custom data for users  Add properties to the user class and update the Identity 
database 

 1–3 

 Perform granular authorization  Use claims  4–6 

 Create custom claims  Use claims transformation  7, 8 

 Use claims data to assess user access  Create policies  9–13 

 Use policies to access resources  Assess policies within action methods  14–19 

 Allow third parties to perform 
authentication 

 Accept claims from authentication providers such as 
Microsoft, Google, and Facebook 

 20–23 

     Preparing the Example Project 
 In this chapter, I am going to continue working on the Users project I created in Chapter   28     and enhanced 
in Chapter   29    . Start the application and make sure that there are users in the database. Figure  30-1  shows 
the state of my database, which contains the users Admin, Alice, Bob, and Joe from the previous chapter. To 
check the users, start the application, request the  /Admin  URL, and authenticate as the Admin user, using the 
e-mail address  admin@example.com  and the password  secret .  

http://dx.doi.org/10.1007/978-1-4842-0397-2_28
http://dx.doi.org/10.1007/978-1-4842-0397-2_29


CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

950

 I also need some roles for this chapter. Navigate to the / RoleAdmin  URL and create roles called  Users  
and  Employees  and assign users to those roles, as described in Table  30-2 .  

  Figure 30-1.    The initial users in the Identity database       

   Table 30-2.    The Roles and Members Required 
for the Example Application   

 Role  Members 

  Users    Alice ,  Joe  

  Employees    Alice ,  Bob  

 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

951

     Adding Custom User Properties 
    When I created the  AppUser  class to represent users in Chapter   28    , I explained that the base class defined a 
basic set of properties to describe the user, such as e-mail address and telephone number. 

 Most applications need to store more information about users, including persistent application 
preferences and details such as addresses—in short, any data that is useful to running the application and 
that should last between sessions. Because the ASP.NET Core Identity system uses Entity Framework Core to 
store its data by default, defining additional user information means adding properties to the user class and 
letting EF Core create the database schema required to store them. 

 Listing  30-1  shows how I added two simple properties to the  AppUser  class to represent the city in which 
the user lives and their qualification level. 

      Listing 30-1.    Adding a Property in the AppUser.cs File   

  using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 

   namespace Users.Models { 

        public enum Cities {  
          None, London, Paris, Chicago  
      }  

        public enum QualificationLevels {  
          None, Basic, Advanced  
      }  

 Figure  30-2  shows the required role configuration displayed by the  RoleAdmin  controller.   

  Figure 30-2.    Configuring the roles required for this chapter       

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_28


CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

952

       public class AppUser : IdentityUser { 
          public Cities City { get; set; }  
          public QualificationLevels Qualifications { get; set; }  
     } 
 } 

    The enumerations called  Cities  and  QualificationLevels  define values for some cities and different 
levels of qualification. These enumerations are used by the  City  and  Qualification  properties added to the 
 AppUser  class. 

 The actions added to the  Home  controller in Listing  30-2  allow the user to view and edit their  City  and 
 Qualification  properties. 

     Listing 30-2.    Adding Support for Custom User Properties in the HomeController.cs File   

  using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Authorization; 
  using Users.Models;  
  using Microsoft.AspNetCore.Identity;  
  using System.Threading.Tasks;  
  using System.ComponentModel.DataAnnotations;  

   namespace Users.Controllers { 

       public class HomeController : Controller { 
          private UserManager<AppUser> userManager;  

            public HomeController(UserManager<AppUser> userMgr) {  
              userManager = userMgr;  
          }  

           [Authorize] 
         public IActionResult Index() => View(GetData(nameof(Index))); 

           [Authorize(Roles = "Users")] 
         public IActionResult OtherAction() => View("Index", 
             GetData(nameof(OtherAction))); 

           private Dictionary<string, object> GetData(string actionName) => 
             new Dictionary<string, object> { 
                 ["Action"] = actionName, 
                 ["User"] = HttpContext.User.Identity.Name, 
                 ["Authenticated"] = HttpContext.User.Identity.IsAuthenticated, 
                 ["Auth Type"] = HttpContext.User.Identity.AuthenticationType, 
                 ["In Users Role"] = HttpContext.User.IsInRole("Users"), 
                  ["City"] = CurrentUser.Result.City,  
                  ["Qualification"] = CurrentUser.Result.Qualifications  
             }; 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

953

            [Authorize]  
          public async Task<IActionResult> UserProps() {  
              return View(await CurrentUser);  
          }  

            [Authorize]  
          [HttpPost]  
          public async Task<IActionResult> UserProps(  
                  [Required]Cities city,  
                  [Required]QualificationLevels qualifications) {  
              if (ModelState.IsValid) {  
                  AppUser user = await CurrentUser;  
                  user.City = city;  
                  user.Qualifications = qualifications;  
                  await userManager.UpdateAsync(user);  
                  return RedirectToAction("Index");  
              }  
              return View(await CurrentUser);  
          }  

            private Task<AppUser> CurrentUser =>  
              userManager.FindByNameAsync(HttpContext.User.Identity.Name);  
     } 
 } 

    The new  CurrentUser  property uses the  UserManager<AppUser  > class to retrieve an  AppUser  instance 
to represent the current user. The  AppUser  object is used as the view model object in the  GET  version 
of the  UserProps  action method, and the  POST  method uses it to update the value of the new  City  and 
 QualificationLevel  properties. 

 The  GetData  method has been updated so that the dictionary it returns contains the values of the 
custom properties for the current user, which mean that the values of these properties will be seen in the 
views displayed by the  Index  and  OtherAction  action methods. 

 To provide the  UserProps  action methods with a view, I added a file called  UserProps.cshtml  to the 
 Views/Home  folder and added the markup shown in Listing  30-3 . 

     Listing 30-3.    The Contents of the UserProps.cshtml File in the Views/Home Folder   

  @model AppUser 

   <div class="bg-primary panel-body"><h4>@Model.UserName</h4></div> 

   <div asp-validation-summary="All" class="text-danger"></div> 

   <form asp-action="UserProps" method="post"> 
     <div class="form-group"> 
         <label asp-for="City"></label> 
         <select asp-for="City" class="form-control" 
                 asp-items="@new SelectList(Enum.GetNames(typeof(Cities)))"> 
             <option disabled selected value="">Select a City</option> 
         </select> 
     </div> 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

954

     <div class="form-group"> 
         <label asp-for="Qualifications"></label> 
         <select asp-for="Qualifications" class="form-control" 
             asp-items="@new SelectList(Enum.GetNames(typeof(QualificationLevels)))"> 
                 <option disabled selected value="">Select a City</option> 
         </select> 
     </div> 

       <button type="submit" class="btn btn-primary">Submit</button> 
     <a asp-action="Index" class="btn btn-default">Cancel</a> 
 </form> 

    The view contains a form with  select  elements that are populated with the values from the 
enumerations defined in Listing  30-1 . When the form is submitted, the  AppUser  object that represents the 
current user is retrieved from Identity, and the values of the custom properties are updated using the values 
selected by the user, like this: 

   ... 
 AppUser user = await CurrentUser; 
  user.City = city;  
  user.Qualifications = qualifications;  
  await userManager.UpdateAsync(user);  
 return RedirectToAction("Index"); 
 ... 

   Notice that I have to explicitly tell the user manager to update the database record for the user to reflect 
the changes by calling the  UpdateAsync  method. I have not had to do this previously because the  UpdateAsync  
method has been called for me within the methods that I have used to make Identity changes, but when you 
change properties directly, you are responsible for telling the user manager to perform an update. 

     Preparing for Database Migration 
 All of the application plumbing to support the new properties is in place, and all that remains is to update 
the database so that its tables will store the custom property values. 

 The first step is to create a new database migration file, which will contain the SQL commands required 
to update the database schema. Open the Package Manager Console and run the following command: 

   Add-Migration CustomProperties 

   When this command has finished, you will see a new file in the  Migrations  folder whose name 
contains  CustomProperties . The exact name contains a numeric ID, but if you open this file, you can see a 
C# class that contains a method called  Up , which performs the SQL commands required to add support for 
the custom properties to the database. There is also a method, called  Down , that executes commands that 
downgrade the database to its previous schema. 

 ■   Caution    The current version of the Entity Framework Core tools do not add the namespace that 
contains the model classes to the migrations file. To fix this, you must edit the file whose name contains 
 CustomProperties  in the  Migrations  folder and add using  Users.Models  to the top of the file.  



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

955

 The next step is to migrate the database to the new schema, which is done by running the 
following command: 

   Update-Database 

   When the command has completed, the table in the database that stores user data will contain new 
columns that represent the custom properties. 

 ■   Caution    Be careful when performing database migrations on production databases that contain real user 
data. It is easy to create a migration that drops columns or entire tables, which can have a devastating effect. 
Make sure that you test the effect of database migrations thoroughly and make sure you have a backup of 
critical data in case things go wrong.   

     Testing the Custom Properties 
 To test the effect of the migration, start the application and authenticate as one of the Identity users (by 
using, for example, the e-mail  alice@example.com  and the password  secret123 ). Once authenticated, you 
will see the default values for the  City  and  QualificationLevel  properties. The properties can be changed 
by requesting the  /Home/UserProps  URL, selecting new values, and clicking the Submit button, which will 
update the database and redirect the browser back to the  /Home  URL, which will display the new values, as 
shown in Figure  30-3 .    

  Figure 30-3.    Using custom user properties       

 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

956

     Working with Claims and Policies 
       In older user-management systems, such as ASP.NET Membership, which was the predecessor to ASP.NET 
Core Identity, the application was assumed to be the authoritative source of all information about the user, 
essentially treating the application as a closed world and trusting the data contained within it. 

 This is such an ingrained approach to software development that it can be hard to recognize that’s what 
is happening, but you saw an example of the closed-world technique in Chapter   29     when I authenticated 
users against the credentials stored in the database and granted access based on the roles associated with 
those credentials. I did the same thing again in this chapter when I added properties to the user class. Every 
piece of information that I needed to manage user authentication and authorization came from within 
my application—and that is a perfectly satisfactory approach for many web applications, which is why I 
demonstrated these techniques in such depth. 

 ASP.NET Core Identity also supports an alternative approach for dealing with users, which works 
well when the MVC application isn’t the sole source of information about users and which can be used to 
authorize users in more flexible and fluid ways than traditional roles allow. This alternative approach uses 
 claims , and in this section I’ll describe how ASP.NET Core Identity supports  claims-based authorization . 

 ■   Tip    You don’t have to use claims in your applications, and as Chapter   29     showed, ASP.NET Core Identity 
is perfectly happy providing an application with authentication and authorization services without any need to 
understand claims at all.  

     Understanding Claims 
 A  claim  is a piece of information about the user, along with some information about where the information 
came from. The easiest way to unpack claims is through some practical demonstrations, without 
which any discussion becomes too abstract to be truly useful. To get started, I added a class file called 
 ClaimsController.cs  to the  Controllers  folder and used it to define the controller shown in Listing  30-4 . 

 ■   Tip    You may feel a little lost as I define the code and describe the classes for this example. Don’t worry 
about the details for the moment—just stick with it until you see the output from the action method and view 
that I define. More than anything else, that will help put claims into perspective.  

      Listing 30-4.    The Contents of the ClaimsController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Authorization; 
 using Microsoft.AspNetCore.Mvc; 

   namespace Users.Controllers { 

       public class ClaimsController : Controller { 

           [Authorize] 
         public ViewResult Index() => View(User?.Claims); 
     } 
 } 

http://dx.doi.org/10.1007/978-1-4842-0397-2_29
http://dx.doi.org/10.1007/978-1-4842-0397-2_29


CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

957

    You can get the claims associated with a user in different ways. The  User  property (also available as the 
 HttpContext.User  property) returns a  ClaimsPrincipal  object, which is the approach that I have used in 
this example. The set of claims associated with a user are accessed through the  ClaimsPrincipal  methods 
and properties described in Table  30-3 .  

   Table 30-3.    Selected Members of the ClaimsPrincipal Class   

 Name  Description 

  Identity   Gets the  IIdentity  that is associated with the current user, as described in 
the following sections. 

  FindAll(type) 
FindAll(<predicate>)  

 These methods return all of the claims of a specific type or that are matched 
by the predicate. 

  FindFirst(type) 
FindFirst(<predicate>)  

 These methods return the first claim of a specific type or that is matched by 
the predicate. 

  HasClaim(type, value) 
HasClaim(<predicate>)  

 These methods return  true  if the user has a claim of the specified type with 
the specified value or if there is a claim that is matched by the predicate. 

  IsInRole(name)   Returns  true  if the user is a member of the role with the specified name. 

   Table 30-4.    Selected Members Defined by the ClaimsIdentity Class   

 Name  Description 

  Claims   Returns an enumeration of  Claim  objects representing the claims for the user. 

  AddClaim(claim)   Adds a claim to the user identity. 

  AddClaims(claims)   Adds an enumeration of  Claim  objects to the user identity. 

  HasClaim(predicate)   Returns true if the user identity contains a claim that matches the specified 
predicate. See the “Applying Claims” section for an example predicate. 

  RemoveClaim(claim)   Removes a claim from the user identity. 

 As I explained in Chapter   28    , the  HttpContext.User.Identity  property returns an implementation of 
the  IIdentity  interface, which is a  ClaimsIdentity  object when working using ASP.NET Core Identity, and 
Table  30-4  shows the members it defines that are relevant to this chapter.  

 Other methods and properties are available, but the ones in the table are those that are used most often 
in web applications, for reasons that will become obvious as I demonstrate how claims fit into the wider ASP.
NET Core platform. 

 In Listing  30-4 , I use the  Controller.User  property to get a  ClaimsPrincipal  object and pass the value 
of the  Claims  property as the view model for the default view. A  Claim  object represents a single piece of data 
about the user, and the  Claim  class defines the properties shown in Table  30-5 .  

http://dx.doi.org/10.1007/978-1-4842-0397-2_28


CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

958

 To display details of the claims associated with a user, I created the  Views/Claims  folder, created a file 
within it called  Index.cshtml , and added the markup shown in Listing  30-5 . 

     Listing 30-5.    The Contents of the Index.cshtml File in the Views/Claims Folder   

  @model IEnumerable<System.Security.Claims.Claim> 

   <div class="bg-primary panel-body"><h4>Claims</h4></div> 

   <table class="table table-condensed table-bordered"> 
     <tr> 
         <th>Subject</th><th>Issuer</th><th>Type</th><th>Value</th> 
     </tr> 
     @if (Model == null || Model.Count() == 0) { 
         <tr><td colspan="4" class="text-center">No Claims</td></tr> 
     } else { 
         @foreach (var claim in Model.OrderBy(x => x.Type)) { 
             <tr> 
                 <td>@claim.Subject.Name</td> 
                 <td>@claim.Issuer</td> 
                 <td identity-claim-type="@claim.Type"></td> 
                 <td>@claim.Value</td> 
             </tr> 
         }     
     } 
 </table> 

    The view uses a table to display each of the claims provided in the view model. The value of the  Claim.
Type  property is a URI for a Microsoft schema, which isn’t especially useful. The popular schemas are used 
as the values for fields in the  System.Security.Claims.ClaimTypes  class, so to make the output from 
the  Index.cshtml  view easier to read, I added a custom attribute to the  td  element that displays the  Type  
property like this: 

   ... 
 <td  identity-claim-type="@claim.Type" ></td> 
 ... 

   I added a class file called  ClaimTypeTagHelper.cs  to the  Infrastructure  folder and used it to create a 
tag helper that translates the attribute value into a more readable string, as shown in Listing  30-6 . 

   Table 30-5.    Properties Defined by the Claim Class   

 Name  Description 

  Issuer   Returns the name of the system that provided the claim 

  Subject   Returns the  ClaimsIdentity  object for the user who the claim refers to 

  Type   Returns the type of information that the claim represents 

  Value   Returns the piece of information that the claim represents 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

959

     Listing 30-6.    The Contents of the ClaimTypeTagHelper.cs File in the Infrastructure Folder   

  using System.Linq; 
 using System.Reflection; 
 using System.Security.Claims; 
 using Microsoft.AspNetCore.Razor.TagHelpers; 

   namespace Users.Infrastructure { 

       [HtmlTargetElement("td", Attributes = "identity-claim-type")] 
     public class ClaimTypeTagHelper : TagHelper { 

           [HtmlAttributeName("identity-claim-type")] 
         public string ClaimType { get; set; } 

           public override void Process(TagHelperContext context, 
                                      TagHelperOutput output) { 
             bool foundType = false; 
             FieldInfo[] fields = typeof(ClaimTypes).GetFields(); 
             foreach (FieldInfo field in fields) { 
                 if (field.GetValue(null).ToString() == ClaimType) { 
                     output.Content.SetContent(field.Name); 
                     foundType = true; 
                 } 
             } 
             if (!foundType) { 
                 output.Content.SetContent(ClaimType.Split('/', '.').Last()); 
             } 
         } 
     } 
 } 

    To see why I have created a controller that uses claims without really explaining what they are, start the 
application, authenticate as the user Alice (using the e-mail address  alice@example.com  and the password 
 secret123 ). Once you are authenticated, request the  /Claims  URL to see the claims associated with the user, 
as illustrated in Figure  30-4 .  



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

960

 It can be hard to make out the detail in the figure, so I have reproduced the content in Table  30-6 .  

  Figure 30-4.    The output from the Index action of the Claims controller       

   Table 30-6.    The Data Shown in Figure  30-4    

 Subject  Issuer  Type  Value 

  Alice    LOCAL AUTHORITY    SecurityStamp   Unique ID 

  Alice    LOCAL AUTHORITY    Role    Employees  

  Alice    LOCAL AUTHORITY    Role    Users  

  Alice    LOCAL AUTHORITY    Name    Alice  

  Alice    LOCAL AUTHORITY    NameIdentifier   Alice’s user ID 

 The table shows the most important aspect of claims, which is that I have already been using them 
when I implemented the traditional authentication and authorization features in Chapter   29    . You can 
see that some of the claims relate to user identity (the  Name  claim is  Alice , and the  NameIdentifier  claim 
is Alice’s unique user ID in the ASP.NET Core Identity database). Other claims show membership of 
roles—there are two  Role  claims in the table, reflecting the fact that Alice is assigned to both the  Users  and 
 Employees  roles. 

 The difference when this information is expressed as a set of claims is that you can determine where the 
data came from. The  Issuer  property for all the claims shown in the table is set to  LOCAL AUTHORITY , which 
indicates that the user’s identity has been established by the application. 

 So, now that you have seen some example claims, I can more easily describe what a claim is: a claim 
is any piece of information about a user that is available to the application, including the user’s identity 
and role memberships. And, as you have seen, the information I have been defining about my users in 
earlier chapters is automatically made available as claims by ASP.NET Core Identity. While claims can seem 

 

http://dx.doi.org/10.1007/978-1-4842-0397-2_29


CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

961

bewildering at first, there is no magic about them, and like every other aspect of MVC applications, they turn 
out to be far less formidable once you peek behind the curtain and see how they really work.  

     Creating Claims 
 Claims are interesting because an application can obtain claims from multiple sources, rather than just 
relying on a local database for information about the user. You will see a real example of this when I show 
you how to authenticate users through a third-party system in the “Using Third-Party Authentication” 
section, but for the moment I am going to add a class to the example project that simulates a system that 
provides claims information. Listing  30-7  shows the contents of the  LocationClaimsProvider.cs  file that I 
added to the  Infrastructure  folder. 

     Listing 30-7.    The Contents of the LocationClaimsProvider.cs File in the Infrastructure Folder   

  using System.Security.Claims; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Authentication; 

   namespace Users.Infrastructure { 

       public static class LocationClaimsProvider { 

           public static Task<ClaimsPrincipal> AddClaims( 
                 ClaimsTransformationContext context) { 
             ClaimsPrincipal principal = context.Principal; 
             if (principal != null 
                     && !principal.HasClaim(c => c.Type == ClaimTypes.PostalCode)) { 
                 ClaimsIdentity identity = principal.Identity as ClaimsIdentity; 
                 if (identity != null && identity.IsAuthenticated 
                         && identity.Name != null) { 
                     if (identity.Name.ToLower() == "alice") { 
                         identity.AddClaims(new Claim[] { 
                             CreateClaim(ClaimTypes.PostalCode, "DC 20500"), 
                             CreateClaim(ClaimTypes.StateOrProvince, "DC") 
                         }); 
                     } else { 
                         identity.AddClaims(new Claim[] { 
                             CreateClaim(ClaimTypes.PostalCode, "NY 10036"), 
                             CreateClaim(ClaimTypes.StateOrProvince, "NY") 
                         }); 
                     } 
                 } 
             } 
             return Task.FromResult(principal); 
         } 

           private static Claim CreateClaim(string type, string value) => 
             new Claim(type, value, ClaimValueTypes.String, "RemoteClaims"); 
     } 
 } 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

962

    The  AddClaims  method takes a  ClaimsTransformationContext  object and gets the  ClaimsPrincipal  
associated with it in order to cast the value of its  Identity  property to a  ClaimsIdentity  object. Then the 
value of the  Name  property is used to create claims about the user’s ZIP code and state. 

 This class simulates a system such as a central HR database, which would be the authoritative source of 
location information about staff, for example. 

 To apply the custom claims, I need to enable a middleware option that will call the  AddClaims  
method of the  LocationClaimsProvider  class as each request is received by ASP.NET, known as  claims 
transformation . In Listing  30-8 , I have enabled the claims transformation option in the  Configure  method of 
the  Startup  class. 

     Listing 30-8.    Enabling Claims Transformation in the Startup.cs File   

 ... 
 public void Configure(IApplicationBuilder app) { 
     app.UseStatusCodePages(); 
     app.UseDeveloperExceptionPage(); 
     app.UseStaticFiles(); 
     app.UseIdentity(); 
      app.UseClaimsTransformation(LocationClaimsProvider.AddClaims);  
     app.UseMvcWithDefaultRoute(); 
     AppIdentityDbContext.CreateAdminAccount(app.ApplicationServices, 
         Configuration).Wait(); 
 } 
 ... 

   The  UseClaimsTransformation  method is used to specify a method that will receive a  ClaimsPrincipal  
object and transform it, and I have specified the static  AddClaims  method in the  LocationClaimsProvider  class. 

 UNDERSTANDING CLAIMS TRANSFORMATION

 Some care must be taken with the claims transformation feature because the method that you specify 
is called to inspect—and optionally modify—the  ClaimsPrincipal  associated with every request, 
which means you should avoid performing expensive or slow operations. 

 If you have multiple transformations to perform, typically required when you need to integrate claims 
data from different sources, then you can use a helpful class called  ClaimsTransformer , like this: 

   ... 
 ClaimsTransformer transform = new ClaimsTransformer(); 
 transform.OnTransform += LocationClaimsProvider.AddClaims; 
 app.UseClaimsTransformation(transform.TransformAsync); 
 ... 

   The  ClaimsTransformer  class provides an  OnTransform  event that will call multiple methods as 
requests are received.  

 Each time a request is received, the claims transformation middleware calls the 
 LocationClaimsProvider.AddClaims  method, which simulates my HR data source and creates custom 
claims. You can see the effect of the custom claims by starting the application, authenticating as a user, and 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

963

requesting the  /Claim  URL. Figure  30-5  shows the claims for Alice. You may have to sign out and sign back in 
again to see the change.  

  Figure 30-5.    Defining additional claims for users       

 Obtaining claims from multiple locations means that the application doesn’t have to duplicate data that is 
held elsewhere and allows integration of data from external parties. The  Claim.Issuer  property tells you where 
a claim originated from, which helps you judge how accurate the data is likely to be and how much weight you 
should give the data in your application. Location data obtained from a central HR database is likely to be more 
accurate and trustworthy than data obtained from an external mailing list provider, for example. 

 CREATING CUSTOM IDENTITY CLAIMS

 If you want to add custom local claims to the application, then you can do so when you create new 
users. The  UserManager<T  > class provides  AddClaimAsync  and  AddClaimsAsync  methods that can be 
used to define local claims, which are then stored in the database and retrieved automatically when 
the user is authenticated (which means you don’t need to rely on the claims transformation feature). 
However, before using these methods, consider how the data you store will be kept current and whether 
your application would be better served by retrieving the data dynamically from its source. As I explain 
in the next section, claims are used for authorization checks, and stale claim data can allow users to 
access parts of the application that they should have been barred from and prevent access to areas to 
which they have been granted.   

 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

964

     Using Policies 
    Once you have some claims to work with, you can use them to manage user access to your application more 
flexibly than with standard roles. The problem with roles is that they are static, and once a user has been 
assigned to a role, the user remains a member until explicitly removed. This is, for example, how long-term 
employees of big corporations end up with incredible access to internal systems: they are assigned the roles 
they require for each new job they get, but the old roles are rarely removed. 

 Claims are used to build authorization  policies , which are part of the application configuration and 
applied to action methods or controllers using the  Authorize  attribute. Listing  30-9  shows a simple policy 
that only allows access to users with a specific claim type and value. 

       Listing 30-9.    Creating a Claim Policy in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Configuration; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.EntityFrameworkCore; 
 using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
 using Users.Models; 
 using Users.Infrastructure; 
 using Microsoft.AspNetCore.Identity; 
  using System.Security.Claims;  

   namespace Users { 

       public class Startup { 
         IConfigurationRoot Configuration; 

           public Startup(IHostingEnvironment env) { 
             Configuration = new ConfigurationBuilder() 
                 .SetBasePath(env.ContentRootPath) 
                 .AddJsonFile("appsettings.json").Build(); 
         } 

           public void ConfigureServices(IServiceCollection services) { 

               services.AddTransient<IPasswordValidator<AppUser>, 
                 CustomPasswordValidator>(); 
             services.AddTransient<IUserValidator<AppUser>, CustomUserValidator>(); 

                services.AddAuthorization(opts => {  
                  opts.AddPolicy("DCUsers", policy => {  
                      policy.RequireRole("Users");  
                      policy.RequireClaim(ClaimTypes.StateOrProvince, "DC");  
                  });  
              });  

               services.AddDbContext<AppIdentityDbContext>(options => 
             options.UseSqlServer( 
                 Configuration["Data:SportStoreIdentity:ConnectionString"])); 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

965

               services.AddIdentity<AppUser, IdentityRole>(opts => { 
                 opts.User.RequireUniqueEmail = true; 
                 opts.Password.RequiredLength = 6; 
                 opts.Password.RequireNonAlphanumeric = false; 
                 opts.Password.RequireLowercase = false; 
                 opts.Password.RequireUppercase = false; 
                 opts.Password.RequireDigit = false; 
             }).AddEntityFrameworkStores<AppIdentityDbContext>(); 

               services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseIdentity(); 
             app.UseClaimsTransformation(LocationClaimsProvider.AddClaims); 
             app.UseMvcWithDefaultRoute(); 
             AppIdentityDbContext.CreateAdminAccount(app.ApplicationServices, 
                 Configuration).Wait(); 
         } 
     } 
 } 

    The  AddAuthorization  method sets up authorization policy and provides an  AuthorizationOptions  
object that defines the members described in Table  30-7 .  

   Table 30-7.    The Members Defined by the AuthorizationOptions Class   

 Name  Description 

  DefaultPolicy   This property returns the default authorization policy, which is used 
when the  Authorize  attribute is applied without any arguments. By 
default, this policy checks that users are authenticated. 

  AddPolicy(name, expression)   This method is used to define a new policy, as described in the 
following text. 

 Policies are defined using the  AddPolicy  method, which works with a lambda expression that operates 
on an  AuthorizationPolicyBuilder  object to build up a policy in steps using the methods described in 
Table  30-8 .  



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

966

 The policy in Listing  30-9  requires that a user has membership of the  Users  role and has a 
 StateOrProvince  claim with a value of  DC . When there are multiple requirements, all of them have to be met 
for authorization to be granted. 

 The first argument to the  AddPolicy  method is the name by which the policy can be referred to when 
it is applied. The name of the policy in Listing  30-9  is  DCUsers , and this is the name used in the  Authorize  
attribute to apply the policy to the  Home  controller in Listing  30-10 . 

     Listing 30-10.    Applying an Authorization Policy in the HomeController.cs File   

  using System.Collections.Generic; 
 using Microsoft.AspNetCore.Mvc; 
 using Microsoft.AspNetCore.Authorization; 
 using Users.Models; 
 using Microsoft.AspNetCore.Identity; 
 using System.Threading.Tasks; 
 using System.ComponentModel.DataAnnotations; 

   namespace Users.Controllers { 

       public class HomeController : Controller { 
         private UserManager<AppUser> userManager; 

           public HomeController(UserManager<AppUser> userMgr) { 
             userManager = userMgr; 
         } 

           [Authorize] 
         public IActionResult Index() => View(GetData(nameof(Index))); 

   Table 30-8.    Selected Methods Defined by the AuthorizationPolicyBuilder Class   

 Name  Description 

  RequireAuthenticatedUser()   This method requires that the request is associated with an 
authenticated user. 

  RequireUserName(name)   This method requires that the request is associated with the specified user. 

  RequireClaim(type)   This method requires that the user has a claim of the specified type. 
It is only the presence of the claim that is checked, and any value will 
be accepted. 

  RequireClaim(type, values)   This method requires that the user has a claim of the specified type 
and with one of a range of values. Values can be expressed as 
comma-separated arguments or as an  IEnumerable<string >  . 

  RequireRole(roles)   This method requires that the user is has membership in a role. 
Multiple roles can be specified as comma-separated arguments or as 
an  IEnumerable<string> , and membership of any one of the roles will 
meet the requirement. 

  AddRequirements(requirement)   This method adds a custom requirement to the policy, as described in 
the “Creating Custom Policy Requirements” section. 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

967

            //[Authorize(Roles = "Users")]  
          [Authorize(Policy = "DCUsers")]  
         public IActionResult OtherAction() => View("Index", 
             GetData(nameof(OtherAction))); 

           //  ...other methods omitted for brevity...  

           private Task<AppUser> CurrentUser => 
             userManager.FindByNameAsync(HttpContext.User.Identity.Name); 
     } 
 } 

    The  Policy  property is used to specify the name of the policy that will be used to protect the action 
method. The result is that a combined check on the roles and claims that a user has is performed when 
a request targets the  OtherAction  method. Only the  Alice  account has the right combination of role 
membership and claims, which you can check by running the application, authenticating as different users, 
and requesting the  /Home/OtherAction  URL. 

   Creating Custom Policy Requirements 
 The built-in requirements check specific values, which is a good starting point but doesn’t allow for every 
authorization scenario to be handled. If access should be prohibited for a certain claim value, for example, 
then things start to get tricky with the built-in requirements, which just aren’t set up for that kind of check. 

 Fortunately, the policy system can be extended with custom requirements, which are classes that 
implement the  IAuthorizationRequirement  interface, and custom authorization handlers, which are 
subclasses of the  AuthorizationHandler  class that evaluate the requirement for a given request. To 
demonstrate, I added a file called  BlockUsersRequirement.cs  to the  Infrastructure  folder and used it to 
define the custom requirement and handler shown in Listing  30-11 . 

      Listing 30-11.    The Contents of the BlockUsersRequirement.cs File in the Infrastructure Folder   

  using System; 
 using System.Linq; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Authorization; 

   namespace Users.Infrastructure { 

       public class BlockUsersRequirement : IAuthorizationRequirement { 

           public BlockUsersRequirement(params string[] users) { 
             BlockedUsers = users; 
         } 

           public string[] BlockedUsers { get; set; } 
     } 

       public class BlockUsersHandler : AuthorizationHandler<BlockUsersRequirement> { 

           protected override Task HandleRequirementAsync(AuthorizationHandlerContext context, 
                 BlockUsersRequirement requirement) { 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

968

               if (context.User.Identity != null && context.User.Identity.Name != null 
                 && !requirement.BlockedUsers 
                     .Any(user => user.Equals(context.User.Identity.Name, 
                         StringComparison.OrdinalIgnoreCase))) { 
                 context.Succeed(requirement); 
             } else { 
                 context.Fail(); 
             } 
             return Task.CompletedTask; 
         } 
     } 
 } 

    The  BlockUserRequirement  class is the requirement and is used to specify the data that will be used to 
create a policy, which in this case is a list of users who will not be authorized. The  BlockUsersHandler  class 
is responsible for evaluating an authorization request using the requirement data and is derived from the 
 AuthorizationHandler<T  > class, where  T  is the type of the requirement class. 

 The  Handle  method is called on the handler class when the authorization system needs to check access 
to a resource. The arguments to the method are an  AuthorizationHandlerContext  object, which defines 
the members described in Table  30-9 , and the requirement object that provides access to the data needed to 
perform the check.  

   Table 30-9.    Selected AuthorizationHandlerContext Members   

 Name  Description 

  User   This property returns the  ClaimsPrincipal  associated with the request. 

  Succeed(requirement)   This method is called if the request meets the requirement. The argument is the 
 IAuthorizationRequirement  object received by the  Handle  method. 

  Fail()   This method is called if the request fails to meet the requirement. 

  Resource   This property returns an object that is used to authorize access to a single 
application resource, as described in the “Using Policies to Authorize Access to 
Resources” section. 

 The requirement handler in Listing  30-11  checks the name of the user to see whether it is in the 
forbidden list provided by the  BlockUsersRequirement  object and called the  Succeed  or  Fail  method 
accordingly. Applying a custom requirement requires two configuration changes, as shown in Listing  30-12 . 

     Listing 30-12.    Applying a Custom Authorization Requirement in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using Microsoft.Extensions.Configuration; 
 using Microsoft.AspNetCore.Hosting; 
 using Microsoft.EntityFrameworkCore; 
 using Microsoft.AspNetCore.Identity.EntityFrameworkCore; 
 using Users.Models; 
 using Users.Infrastructure; 
 using Microsoft.AspNetCore.Identity; 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

969

 using System.Security.Claims; 
  using Microsoft.AspNetCore.Authorization;  

   namespace Users { 

       public class Startup { 
         IConfigurationRoot Configuration; 

           public Startup(IHostingEnvironment env) { 
             Configuration = new ConfigurationBuilder() 
                 .SetBasePath(env.ContentRootPath) 
                 .AddJsonFile("appsettings.json").Build(); 
         } 

           public void ConfigureServices(IServiceCollection services) { 

               services.AddTransient<IPasswordValidator<AppUser>, 
                 CustomPasswordValidator>(); 
             services.AddTransient<IUserValidator<AppUser>, CustomUserValidator>(); 
              services.AddTransient<IAuthorizationHandler, BlockUsersHandler>();  

               services.AddAuthorization(opts => { 
                 opts.AddPolicy("DCUsers", policy => { 
                     policy.RequireRole("Users"); 
                     policy.RequireClaim(ClaimTypes.StateOrProvince, "DC"); 
                 }); 
                  opts.AddPolicy("NotBob", policy => {  
                      policy.RequireAuthenticatedUser();  
                      policy.AddRequirements(new BlockUsersRequirement("Bob"));  
                  });  
             }); 

               services.AddDbContext<AppIdentityDbContext>(options => 
             options.UseSqlServer( 
                 Configuration["Data:SportStoreIdentity:ConnectionString"])); 

               services.AddIdentity<AppUser, IdentityRole>(opts => { 
                 opts.User.RequireUniqueEmail = true; 
                 opts.Password.RequiredLength = 6; 
                 opts.Password.RequireNonAlphanumeric = false; 
                 opts.Password.RequireLowercase = false; 
                 opts.Password.RequireUppercase = false; 
                 opts.Password.RequireDigit = false; 
             }).AddEntityFrameworkStores<AppIdentityDbContext>(); 

               services.AddMvc(); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

970

             app.UseStaticFiles(); 
             app.UseIdentity(); 
             app.UseClaimsTransformation(LocationClaimsProvider.AddClaims); 
             app.UseMvcWithDefaultRoute(); 
             AppIdentityDbContext.CreateAdminAccount(app.ApplicationServices, 
                 Configuration).Wait(); 
         } 
     } 
 } 

    The first step is to register the handler class with the service provider as an implementation of the 
 IAuthorizationHandler  interface. The second step is to add the custom requirement to a policy, which is 
done using the  AddRequirements  method, like this: 

   ... 
 opts.AddPolicy("NotBob", policy => { 
     policy.RequireAuthenticatedUser(); 
      policy.AddRequirements(new BlockUsersRequirement("Bob"));  
 }); 
 ... 

   The result is a policy that requires authenticated users who are not Bob and that can be applied through 
the  Authorize  attribute by specifying the policy name, as shown in Listing  30-13 . 

     Listing 30-13.    Applying a Custom Policy in the HomeController.cs File   

  ... 
 //[Authorize(Roles = "Users")] 
 [Authorize(Policy = "DCUsers")] 
 public IActionResult OtherAction() => View("Index", GetData(nameof(OtherAction))); 

    [Authorize(Policy = "NotBob")]  
  public IActionResult NotBob() => View("Index", GetData(nameof(NotBob)));  
 ... 

    You will not be able to access the  /Home/NotBob  URL if you have authenticated as Bob, but all other user 
accounts will be granted access.   

     Using Policies to Authorize Access to Resources 
    Policies can also be used to control access to individual  resources , which a general term for any item of data 
that your application uses and which require more granular management than is possible at the action 
method level. As a demonstration, I added a file called  ProtectedDocument.cs  to the  Models  folder and used 
it to define a class that represents a document with some ownership attributes, as shown in Listing  30-14 . 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

971

     Listing 30-14.    The Contents of the ProtectedDocument.cs File in the Models Folder   

  namespace Users.Models { 

       public class ProtectedDocument { 
         public string Title { get; set; } 
         public string Author { get; set; } 
         public string Editor { get; set; } 
     } 
 } 

    This is just a placeholder for a real document, with the key point being that each document should 
be editable by just two people: the author and the editor. A real document would require content and 
change tracking and many other features, but this is enough for the example. I added a class file called 
 DocumentController.cs  to the  Controllers  folder and used it to create the controller shown in Listing  30-15 . 

     Listing 30-15.    The Contents of the DocumentController.cs File in the Controllers Folder   

  using Microsoft.AspNetCore.Authorization; 
 using Microsoft.AspNetCore.Mvc; 
 using System.Linq; 
 using Users.Models; 

   namespace Users.Controllers { 

       [Authorize] 
     public class DocumentController : Controller { 
         private ProtectedDocument[] docs = new ProtectedDocument[] { 
             new ProtectedDocument { Title = "Q3 Budget", Author = "Alice", 
                 Editor = "Joe"}, 
             new ProtectedDocument { Title = "Project Plan", Author = "Bob", 
                 Editor = "Alice"} 
         }; 

           public ViewResult Index() => View(docs); 

           public ViewResult Edit(string title) { 
             return View("Index", docs.FirstOrDefault(d => d.Title == title)); 
         } 
     } 
 } 

    The controller maintains a fixed set of  ProtectedDocument  objects. The  ProtectedDocument  objects are 
used in the  Index  action, which passes all of the documents to the  View  method, and the  Edit  action, which 
selects one document based on a  title  argument. Both of the action methods use a view called  Index.
chstml , which I added to a new folder called  Views/Document , as shown in Listing  30-16 . 

     Listing 30-16.    The Contents of the Index.cshtml File in the Views/Document Folder   

 @if (Model is IEnumerable<ProtectedDocument>) { 
     <div class="bg-primary panel-body"> 
         <h4>Documents (@User?.Identity?.Name)</h4> 
     </div> 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

972

     <table class="table table-condensed table-bordered"> 
         <tr><th>Title</th><th>Author</th><th>Editor</th><th></th></tr> 
         @foreach (var doc in Model) { 
             <tr> 
                 <td>@doc.Title</td> 
                 <td>@doc.Author</td> 
                 <td>@doc.Editor</td> 
                 <td> 
                     <a class="btn btn-sm btn-primary" asp-action="Edit" 
                        asp-route-title="@doc.Title"> 
                         Edit 
                     </a> 
                 </td> 
             </tr> 
         } 
     </table> 
 } else { 
     <div class="bg-primary panel-body"> 
         <h4>Editing @Model.Title (@User?.Identity?.Name)</h4> 
     </div> 
     <div class="panel-body"> 
         Document editing feature would go here... 
     </div> 
     <a asp-action="Index" class="btn btn-primary">Done</a> 
 } 
 <a asp-action="Logout" asp-controller="Account" class="btn btn-danger">Logout</a> 

   If the view model is a sequence of  ProtectedDocument  objects, then the view displays a table with one 
row for each document, displaying the names of the author and editor and a link to the  Edit  action. If the 
view model is a single  ProtectedDocument , then the view displays some placeholder content for where a real 
application would provide editing features. 

 At the moment, the only authorization restriction is the  Authorize  attribute applied to the 
 DocumentController  class, which means that any user can edit any document, not just the author and 
editor. You can see this by running the application, requesting the  /Document  URL, authenticating as any of 
the application users, and clicking the Edit button for the documents. Figure  30-6  shows the user  Joe  editing 
the  Project Plan  document, for example.  



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

973

   Creating the Resource Authorization Policy and Handler 
 Restricting access to individual documents at the action method level is difficult because the  Authorize  
attribute is evaluated before the action method is invoked. This means the decision about authorization is 
made before the  ProtectedDocument  object is retrieved and can be inspected, and the details of which users 
should be allowed the access the document are revealed. 

 The solution to this problem is to create an authorization policy and handler that know how to deal 
with  ProtectedDocument  objects and to use them within the action method, once the user details have been 
revealed. To demonstrate, I added a file called  DocumentAuthorization.cs  file to the  Infrastructure  folder 
and defined the classes shown in Listing  30-17 . 

     Listing 30-17.    The Contents of the DocumentAuthorization.cs File in the Infrastructure Folder   

  using System; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Authorization; 
 using Users.Models; 

   namespace Users.Infrastructure { 

       public class DocumentAuthorizationRequirement : IAuthorizationRequirement { 
         public bool AllowAuthors { get; set; } 
         public bool AllowEditors { get; set; } 
     } 

       public class DocumentAuthorizationHandler 
         : AuthorizationHandler<DocumentAuthorizationRequirement> { 

           protected override Task HandleRequirementAsync(AuthorizationHandlerContext context, 
                 DocumentAuthorizationRequirement requirement) { 
             ProtectedDocument doc = context.Resource as ProtectedDocument; 
             string user = context.User.Identity.Name; 
             StringComparison compare = StringComparison.OrdinalIgnoreCase; 
             if (doc != null && user != null && 

  Figure 30-6.    Editing documents       

 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

974

                 (requirement.AllowAuthors && doc.Author.Equals(user, compare)) 
                 || (requirement.AllowEditors && doc.Editor.Equals(user, compare))) { 
                 context.Succeed(requirement); 
             } else { 
                 context.Fail(); 
             } 
             return Task.CompletedTask; 
         } 
     } 
 } 

    The  AuthorizationHandlerContext  object provides a  Resource  property that provides access to an 
object that can be inspected for authorization. The  DocumentAuthorizationHandler  class checks to see 
whether the  Resource  property is a  ProtectedDocument  object and, if it is, checks to see whether the current 
user is the author and editor and whether the  DocumentAuthorizationRequirement  object allows editors or 
authors to access the document. 

 In Listing  30-18 , I have registered the  DocumentAuthorizationHandler  class as a handler for 
 DocumentAuthorizationRequirement  requirements and defined a policy that has this requirement. 

     Listing 30-18.    Registering a Handler and Defining a Policy in the Startup.cs File   

  ... 
 public void ConfigureServices(IServiceCollection services) { 

       services.AddTransient<IPasswordValidator<AppUser>, 
         CustomPasswordValidator>(); 
     services.AddTransient<IUserValidator<AppUser>, CustomUserValidator>(); 
     services.AddTransient<IAuthorizationHandler, BlockUsersHandler>(); 
      services.AddTransient<IAuthorizationHandler, DocumentAuthorizationHandler>();  

       services.AddAuthorization(opts => { 
         opts.AddPolicy("DCUsers", policy => { 
             policy.RequireRole("Users"); 
             policy.RequireClaim(ClaimTypes.StateOrProvince, "DC"); 
         }); 
         opts.AddPolicy("NotBob", policy => { 
             policy.RequireAuthenticatedUser(); 
             policy.AddRequirements(new BlockUsersRequirement("Bob")); 
         }); 
          opts.AddPolicy("AuthorsAndEditors", policy => {  
              policy.AddRequirements(new DocumentAuthorizationRequirement {  
                  AllowAuthors = true,  
                  AllowEditors = true  
              });  
          });  
     }); 

       services.AddDbContext<AppIdentityDbContext>(options => 
     options.UseSqlServer( 
         Configuration["Data:SportStoreIdentity:ConnectionString"])); 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

975

       services.AddIdentity<AppUser, IdentityRole>(opts => { 
         opts.User.RequireUniqueEmail = true; 
         opts.Password.RequiredLength = 6; 
         opts.Password.RequireNonAlphanumeric = false; 
         opts.Password.RequireLowercase = false; 
         opts.Password.RequireUppercase = false; 
         opts.Password.RequireDigit = false; 
     }).AddEntityFrameworkStores<AppIdentityDbContext>(); 

       services.AddMvc(); 
 } 
 ... 

    The final step is to apply the authorization policy in the action method, as shown in Listing  30-19 . 

     Listing 30-19.    Applying an Authorization Policy in the DocumentController.cs File   

  using Microsoft.AspNetCore.Authorization; 
 using Microsoft.AspNetCore.Mvc; 
 using System.Linq; 
 using Users.Models; 
  using System.Threading.Tasks;  

   namespace Users.Controllers { 

       [Authorize] 
     public class DocumentController : Controller { 
         private ProtectedDocument[] docs = new ProtectedDocument[] { 
             new ProtectedDocument { Title = "Q3 Budget", Author = "Alice", 
                 Editor = "Joe"}, 
             new ProtectedDocument { Title = "Project Plan", Author = "Bob", 
                 Editor = "Alice"} 
         }; 
          private IAuthorizationService authService;  

            public DocumentController(IAuthorizationService auth) {  
              authService = auth;  
          }  

           public ViewResult Index() => View(docs); 

            public async Task<IActionResult> Edit(string title) {  
              ProtectedDocument doc = docs.FirstOrDefault(d => d.Title == title);  
              bool authorized = await authService.AuthorizeAsync(User,  
                  doc, "AuthorsAndEditors");  
              if (authorized) {  
                  return View("Index", doc);  
              } else {  
                  return new ChallengeResult();  
              }  
          }  
     } 
 } 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

976

    The controller constructor defines an  IAuthorizationService  argument, which provides methods 
that can be used to evaluate authorization policies and which is resolved using dependency injection. In the 
 Edit  method, I call the  AuthorizeAsync  method, passing in the current user, the  ProtectedDocument  object, 
and the name of the policy that I want to apply. If the result from the  AuthorizeAsync  method is  true , then 
authorization is approved, and the  View  method is called. If the result is  false , then there is an authorization 
problem, and I return a  ChallengeResult  object, as described in Chapter   17    , which tells MVC that there has 
been an authorization failure. 

 You can see the effect by running the application and requesting the  /Document  URL, authenticated as 
different users. If, for example, you authenticate as  Joe , then you will be able to edit the budget document 
but not the project plan.    

     Using Third-Party Authentication 
       One of the benefits of a claims-based system such as ASP.NET Core Identity is that any of the claims can 
come from an external system, even those that identify the user to the application. This means that other 
systems can authenticate users on behalf of the application, and ASP.NET Core Identity builds on this idea 
to make it simple and easy to add support for authenticating users through third parties such as Microsoft, 
Google, Facebook, and Twitter. 

 There are some substantial benefits of using third-party authentication: many users will already have an 
account, users can elect to use two-factor authentication, and you don’t have to manage user credentials in 
the application. In the sections that follow, I’ll show you how to set up and use third-party authentication for 
Google users. 

     Registering the Application with Google 
 Third-party authentication services typically require applications to be registered before they can authenticate 
users. The result of the registration process is credentials that are included in the authentication request to the 
third-party service. The Google registration process is performed at    http://console.developers.google.
com     , following the instructions at    http://developers.google.com/identity/sign-in/web/devconsole-
project     . You must specify a callback URL, which for the default configuration is  /signin-google . If you 
are in development, set the callback URL to be  http://localhost:port/signin-google . For production 
applications, create a URL that includes the public hostname and port. 

 Following the registration process, you will receive a client ID, which identifies your application to 
Google, and a client secret, which is used as a security precaution to prevent other applications from 
pretending to be your application. 

 ■   Note    You must register your own application and use the client ID and client secret that the registration 
process produces. The code in this section will not work unless you change the credentials with the values that 
are unique to your application. Microsoft provides a feature called  user secrets  that allows you to store secret 
information outside of the configuration file, but for simplicity, I am going to assume that your configuration files 
are not publically shared and that they can safely contain the Google authentication credentials.   

http://dx.doi.org/10.1007/978-1-4842-0397-2_17
http://console.developers.google.com/
http://console.developers.google.com/
http://developers.google.com/identity/sign-in/web/devconsole-project
http://developers.google.com/identity/sign-in/web/devconsole-project


CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

977

     Enabling Google Authentication 
 ASP.NET Core Identity comes with built-in support for authenticating users through their Microsoft, Google, 
Facebook, and Twitter accounts as well more general support for any authentication service that supports 
 OAuth . The first step is to add the NuGet package that includes the Google-specific additions for ASP.NET 
Core Identity to the  project.json  file, as shown in Listing  30-20 . 

     Listing 30-20.    Adding a Package to the project.json File   

  ... 
 "dependencies": { 
   "Microsoft.NETCore.App": { 
     "version": "1.0.0", 
     "type": "platform" 
   }, 
   "Microsoft.AspNetCore.Diagnostics": "1.0.0", 

     "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
   "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
   "Microsoft.Extensions.Logging.Console": "1.0.0", 
   "Microsoft.AspNetCore.Mvc": "1.0.0", 
   "Microsoft.AspNetCore.StaticFiles": "1.0.0", 
   "Microsoft.AspNetCore.Razor.Tools": { 
     "version": "1.0.0-preview2-final", 
     "type": "build" 
   }, 
   "Microsoft.Extensions.Configuration": "1.0.0", 
   "Microsoft.Extensions.Configuration.Json": "1.0.0", 
   "Microsoft.AspNetCore.Identity.EntityFrameworkCore": "1.0.0", 
   "Microsoft.EntityFrameworkCore.SqlServer": "1.0.0", 
   "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final", 
    "Microsoft.AspNetCore.Authentication.Google": "1.0.0"  
 }, 
 ... 

    There are NuGet packages for each of the services that ASP.NET Core Identity supports, as described 
in Table  30-10 .  

   Table 30-10.    The NuGet Authentication Packages   

 Name  Description 

  Microsoft.AspNetCore.Authentication.Google   Authenticates users with Google accounts 

  Microsoft.AspNetCore.Authentication.Facebook   Authenticates users with Facebook accounts 

  Microsoft.AspNetCore.Authentication.Twitter   Authenticates users with Twitter accounts 

  Microsoft.AspNetCore.Authentication.MicrosoftAccount   Authenticates users with Microsoft accounts 

  Microsoft.AspNetCore.Authentication.OAuth   Authenticates users against any OAuth 
2.0 service 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

978

 Each of the packages has a method for adding middleware to the request pipeline so it can intercept 
and redirect authentication requests. In Listing  30-21 , I have called the method that sets up the Google 
authentication service. 

     Listing 30-21.    Enabling Google Authentication in the Startup.cs File   

 ... 
 public void Configure(IApplicationBuilder app) { 
     app.UseStatusCodePages(); 
     app.UseDeveloperExceptionPage(); 
     app.UseStaticFiles(); 
     app.UseIdentity(); 
      app.UseGoogleAuthentication(new GoogleOptions {  
          ClientId = "<enter client id here>",  
          ClientSecret = "<enter client secret here>"  
      });  
     app.UseClaimsTransformation(LocationClaimsProvider.AddClaims); 
     app.UseMvcWithDefaultRoute(); 
     AppIdentityDbContext.CreateAdminAccount(app.ApplicationServices, 
         Configuration).Wait(); 
 } 
 ... 

   The  UseGoogleAuthentication  method sets up the required middleware for authenticating users with 
Google and specifies the client ID and client secret that were created during the registration process. 

 When you authenticate a user with a third party, you can elect to create a user in the  Identity  database, 
which can then be used to manage roles and claims just as for regular users. In Chapter   28    , I added a user 
validation class that prevents users from being created if their e-mail address isn’t in the  example.com  
domain. Since I will be dealing with users from any and all domains, I have to disable the e-mail check in the 
validator for this example, as shown in Listing  30-22 . 

     Listing 30-22.    Disabling Domain Validation in the CustomUserValidator.cs File   

  using System.Collections.Generic; 
 using System.Linq; 
 using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Identity; 
 using Users.Models; 

   namespace Users.Infrastructure { 

       public class CustomUserValidator : UserValidator<AppUser> { 

           public override async Task<IdentityResult> ValidateAsync( 
                 UserManager<AppUser> manager, 
                 AppUser user) { 

               IdentityResult result = await base.ValidateAsync(manager, user); 

               List<IdentityError> errors = result.Succeeded ? 
                 new List<IdentityError>() : result.Errors.ToList(); 

http://dx.doi.org/10.1007/978-1-4842-0397-2_28


CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

979

                //if (!user.Email.ToLower().EndsWith("@example.com")) {  
              //    errors.Add(new IdentityError {  
              //        Code = "EmailDomainError",  
              //        Description = "Only example.com email addresses are allowed"  
              //    });  
              //}  

               return errors.Count == 0 ? IdentityResult.Success 
                 : IdentityResult.Failed(errors.ToArray()); 
         } 
     } 
 } 

    Next I added a button to the  Views/Account/Login.cshtml  file, which allows users to log in via 
Google, as shown in Listing  30-23 . Google provides images for buttons to make them consistent with other 
applications that support Google accounts, but for simplicity, I have just created a standard button. 

     Listing 30-23.    Adding a Button to the Login.cshtml File in the Views/Account Folder   

  @model LoginModel 

   <div class="bg-primary panel-body"><h4>Log In</h4></div> 

   <div class="text-danger" asp-validation-summary="All"></div> 

   <form asp-action="Login" method="post"> 
     <input type="hidden" name="returnUrl" value="@ViewBag.returnUrl" /> 
     <div class="form-group"> 
         <label asp-for="Email"></label> 
         <input asp-for="Email" class="form-control" /> 
     </div> 
     <div class="form-group"> 
         <label asp-for="Password"></label> 
         <input asp-for="Password" class="form-control" /> 
     </div> 
     <button class="btn btn-primary" type="submit">Log In</button> 
      <a class="btn btn-info" asp-action="GoogleLogin"  
          asp-route-returnUrl="@ViewBag.returnUrl">Log In With Google  
      </a>  
 </form> 

    The new button targets the  GoogleLogin  action on the  Account  controller. You can see this 
method—and the other changes I made to the controller—in Listing  30-24 . 

     Listing 30-24.    Adding Support for Google Authentication to the AccountController.cs File   

  using System.Threading.Tasks; 
 using Microsoft.AspNetCore.Authorization; 
 using Microsoft.AspNetCore.Mvc; 
 using Users.Models; 
 using Microsoft.AspNetCore.Identity; 
  using System.Security.Claims;  



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

980

  using Microsoft.AspNetCore.Http.Authentication;  

   namespace Users.Controllers { 

       [Authorize] 
     public class AccountController : Controller { 
         private UserManager<AppUser> userManager; 
         private SignInManager<AppUser> signInManager; 

           //  ...methods omitted for brevity...  

            [AllowAnonymous]  
          public IActionResult GoogleLogin(string returnUrl) {  
              string redirectUrl = Url.Action("GoogleResponse", "Account",  
                  new { ReturnUrl = returnUrl });  
              AuthenticationProperties properties = signInManager  
                  .ConfigureExternalAuthenticationProperties("Google", redirectUrl);  
              return new ChallengeResult("Google", properties);  
          }  

            [AllowAnonymous]  
          public async Task<IActionResult> GoogleResponse(string returnUrl = "/") {  
              ExternalLoginInfo info = await signInManager.GetExternalLoginInfoAsync();  
              if (info == null) {  
                  return RedirectToAction(nameof(Login));  
              }  
              var result = await signInManager.ExternalLoginSignInAsync(  
                  info.LoginProvider, info.ProviderKey, false);  
              if (result.Succeeded) {  
                  return Redirect(returnUrl);  
              } else {  
                  AppUser user = new AppUser {  
                      Email = info.Principal.FindFirst(ClaimTypes.Email).Value,  
                      UserName =  
                          info.Principal.FindFirst(ClaimTypes.Email).Value  
                  };  
                  IdentityResult identResult = await userManager.CreateAsync(user);  
                  if (identResult.Succeeded) {  
                      identResult = await userManager.AddLoginAsync(user, info);  
                      if (identResult.Succeeded) {  
                          await signInManager.SignInAsync(user, false);  
                          return Redirect(returnUrl);  
                      }  
                  }  
                  return AccessDenied();  
              }  
          }  
     } 
 } 



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

981

    The  GoogleLogin  method creates an instance of the  AuthenticationProperties  class and sets the 
 RedirectUri  property to a URL that targets the  GoogleResponse  action in the same controller. The next part 
is a magic phrase that causes ASP.NET Core Identity to respond to an unauthorized error by redirecting the 
user to the Google authentication page, rather than the one defined by the application. 

   ... 
 return new ChallengeResult("Google", properties); 
 ... 

   This means that when the user clicks the Log In via Google button, their browser is redirected to the 
Google authentication service and then redirected back to the  GoogleResponse  action method once they 
are authenticated. Within the  GoogleResponse  method, I get details of the external login by calling the 
 GetExternalLoginInfoAsync  of the  SigninManager , like this: 

   ... 
 ExternalLoginInfo info = await signInManager. GetExternalLoginInfoAsync (); 
 ... 

   The  ExternalLoginInfo  class defines an  ExternalPrincipal  property that returns a  ClaimsPrincipal  
object, which contains the claims provided for the user by Google. I sign in the user with the application 
using the  ExternalLoginSignInAsync  method, like this: 

   ... 
 var result = await signInManager. ExternalLoginSignInAsync ( 
                 info.LoginProvider, info.ProviderKey, false); 
 ... 

   If the sign in fails, then it is because there is no user in the database that represents the Google user, which 
I solve by creating the new user and associating the Google credentials with it, using these two statements: 

   ... 
 IdentityResult identResult = await userManager. CreateAsync (user); 
 ... 
 identResult = await userManager. AddLoginAsync (user, info); 
 ... 

 ■     Note    When I create the Identity user, I use the e-mail claim provided by Google for both the  Email  and 
 UserName  properties of the  AppUser  object so that I don’t get any name conflicts with any of the existing users 
in the database.  

 To test authentication, start the application, click the Log In via Google button, and provide the 
credentials for a valid Google account. When you have completed the authentication process, your browser 
will be redirected back to the application. If you navigate to the  /Claims  URL, you will be able to see how 
claims for the user show how authentication has been performed from the Google system have been added 
to the user’s identity, as shown in Figure  30-7 .    



CHAPTER 30 ■ ADVANCED ASP.NET CORE IDENTITY

982

     Summary 
 In this chapter, I showed you some of the advanced features that ASP.NET Core Identity supports. I demonstrated 
the use of custom user properties and how to use database migrations to update the database schema to support 
them. I explained how claims work and how they can be used to create more flexible ways of authorizing users 
through policies. I also explained how policies can be used to control access to individual resources managed by 
an application. I finished the chapter by showing you how to authenticate users via Google, which builds on the 
ideas behind the use of claims. In the next chapter, I show you how some of the most important conventions used 
in MVC applications are actually implemented and how you can customize them in your own applications.     

  Figure 30-7.    Using third-party authentication       

 



983© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC, DOI 10.1007/978-1-4842-0397-2_31

    CHAPTER 31   

 Model Conventions and Action 
Constraints                          

 Throughout this book, I have emphasized that there is no magic involved in MVC development and that 
a small peek behind the scenes reveals how everything fits together to deliver the features that I have 
described in previous chapters. 

 In this final chapter of the book, I describe two useful features that let you customize the way your MVC 
application works.  Model conventions  allow you to replace the conventions used to create controllers and 
actions, overriding those that are applied by default.  Action constraints  allow you to specify what kind of 
requests an action can be used for, which provides guidance to MVC when it comes to select an action to 
handle a request. 

 You can skip this chapter if you want (and you might want to, since it is heavy going in places), but keep 
it in mind the next time your application is misbehaving. You won’t need to use the features that I describe in 
this chapter often—or at all, even—but the more you know about how MVC works, the better equipped you 
are to deal with problems when they arise. Table  31-1  summarizes the chapter.  

   Table 31-1.    Chapter Summary   

 Problem  Solution  Listing 

 Customize the application model  Use one of the built-in attributes or create a 
custom model convention 

 1–15 

 Apply a customization throughout the 
application 

 Define a global model convention  16, 17 

 Differentiate between two action methods 
that could handle a request 

 Use action constraints  18–26 

     Preparing the Example Project 
 For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty 
project called ConventionsAndConstraints. I added the NuGet packages I required to the  dependencies  
section of the  project.json  file and set up the Razor tooling in the  tools  section, as shown in Listing  31-1 . 
I removed the sections that are not required for this chapter. 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

984

     Listing 31-1.    Adding Packages in the project.json File   

  { 
   "dependencies": { 
     "Microsoft.NETCore.App": { 
       "version": "1.0.0", 
       "type": "platform" 
     }, 
     "Microsoft.AspNetCore.Diagnostics": "1.0.0", 

       "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0", 
     "Microsoft.AspNetCore.Server.Kestrel": "1.0.0", 
     "Microsoft.Extensions.Logging.Console": "1.0.0", 
      "Microsoft.AspNetCore.Mvc": "1.0.0",  
      "Microsoft.AspNetCore.StaticFiles": "1.0.0",  
      "Microsoft.AspNetCore.Razor.Tools": {  
        "version": "1.0.0-preview2-final",  
        "type": "build"  
      }  
   }, 

     "tools": { 
      "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final",  
     "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final" 
   }, 

     "frameworks": { 
     "netcoreapp1.0": { 
       "imports": ["dotnet5.6","portable-net45+win8"] 
     } 
   }, 

     "buildOptions": { 
     "emitEntryPoint": true, "preserveCompilationContext": true 
   }, 

     "runtimeOptions": { 
     "configProperties": { "System.GC.Server": true } 
   } 
 } 

    Listing  31-2  shows the  Startup  class, which configures the features provided by the NuGet packages. 

     Listing 31-2.    The Contents of the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 

   namespace ConventionsAndConstraints { 

       public class Startup { 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

985

            public void ConfigureServices(IServiceCollection services) {  
              services.AddMvc();  
         } 

            public void Configure(IApplicationBuilder app) {  
              app.UseStatusCodePages();  
              app.UseDeveloperExceptionPage();  
              app.UseStaticFiles();  
              app.UseMvcWithDefaultRoute();  
         } 
     } 
 } 

        Creating the View Model, Controller, and View 
 For many of the examples in this chapter, it is helpful to know which method was used to respond to a 
request. To that end, I created a  Models  folder and added to it a class file called  Result.cs , which I used to 
define the class shown in Listing  31-3 . This class will allow the controllers in this chapter to pass information 
to the view about how the request was processed. 

     Listing 31-3.    The Contents of the Result.cs File in the Models Folder   

  using System.Collections.Generic; 

   namespace ConventionsAndConstraints.Models { 

       public class Result { 
         public string Controller { get; set; } 
         public string Action { get; set; } 
     } 
 } 

    I require only a single controller and view for this chapter. I created the  Controllers  folder, added a 
class file called  HomeController.cs , and used it to define the class shown in Listing  31-4 . 

     Listing 31-4.    The Contents of the HomeController.cs File in the Controllers Folder   

  using ConventionsAndConstraints.Models; 
 using Microsoft.AspNetCore.Mvc; 

   namespace ConventionsAndConstraints.Controllers { 

       public class HomeController : Controller { 

           public IActionResult Index() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(Index) 
         }); 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

986

           public IActionResult List() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(List) 
         }); 
     } 
 } 

    Both of the action methods in this controller render a view called  Result , which I defined by creating 
the  Views/Home  folder and adding a view file with the markup shown in Listing  31-5 . 

     Listing 31-5.    The Contents of the Result.cshtml File in the Views/Home Folder   

  @model Result 
 @{ Layout = null; } 

   <!DOCTYPE html> 
 <html> 
 <head> 
     <meta name="viewport" content="width=device-width" /> 
     <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" /> 
     <title>Result</title> 
 </head> 
 <body class="panel-body"> 
     <table class="table table-condensed table-bordered"> 
         <tr><th>Controller:</th><td>@Model.Controller</td></tr> 
         <tr><th>Action:</th><td>@Model.Action</td></tr> 
     </table> 
 </body> 
 </html> 

    The view depends on the Bootstrap CSS package for styling the HTML elements. To add Bootstrap to 
the project, I used the Bower Configuration File item template to create the  bower.json  file and added the 
Bootstrap package to the  dependencies  section, as shown in Listing  31-6 . 

     Listing 31-6.    Adding the Bootstrap Package in the bower.json File   

 { 
   "name": "asp.net", 
   "private": true, 
   "dependencies": { 
      "bootstrap": "3.3.6"  
   } 
 } 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

987

   The final preparation is to create the  _ViewImports.cshtml  file in the  Views  folder, which sets up the 
built-in tag helpers for use in Razor views and imports the model namespace, as shown in Listing  31-7 . 

     Listing 31-7.    The Contents of the _ViewImports.cshtml File in the Views Folder   

 @using ConventionsAndConstraints.Models 
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers 

   If you start the application, you will see the result shown in Figure  31-1 .    

     Using the Application Model and Model Conventions 
    MVC favors convention over configuration, which is why you can simply create a class whose name ends 
with  Controller  and start defining action methods. At runtime, MVC uses a discovery process to locate all 
of the controllers and actions in the application and inspects them to see whether they use features such 
as filters. 

 The end result of the discovery process is the  application model , which is made up of objects that 
describe every controller class, action method, and parameter that has been found. The conventions that 
MVC relies on are applied to the application model as it is constructed. For example, when a controller class 
is discovered, the name of the class is used as the basis for the controller that represents it in the model; in 
other words, the  HomeController  class is used to create a  Home  controller. When the routing system identifies 
a request that has to be handled by the  Home  controller, it is the application model that provides the mapping 
to the  HomeController  class. 

 The application model can be customized using  model conventions , which are classes that inspect the 
contents of the application model and make adjustments, such as synthesizing new actions or changing 
the way that classes are used to create controllers. In the following sections, I explain how the application 
model is structured, introduce the different types of model conventions, and demonstrate ways in which 
conventions can be used. Table  31-2  puts the application model and model conventions in context.  

  Figure 31-1.    Running the example application       

 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

988

     Understanding the Application Model 
 During the discovery process, MVC creates an instance of the  ApplicationModel  class and populates it 
with details of the controllers and actions that it finds. When the discovery process is complete,  model 
conventions  are applied to make any custom changes you specify. The starting point for understanding 
the application model is to examine the properties defined by the  Microsoft.AspNetCore.Mvc.
ApplicationModels.ApplicationModel  class, which are described in Table  31-3 .  

 ■   Note   This may seem like a dry place to start, especially if you want to begin digging into the detail, but it 
is worth taking a moment to appreciate how completely the classes described in this section describe the core 
parts of an MVC application. Understanding how the application model works will help you understand how 
more advanced features work behind the scenes, which will better equip you to diagnose problems when you 
get unexpected results in your own projects.  

   Table 31-3.    Selected ApplicationModel Properties   

 Name  Description 

  Controllers   This property returns an  IList<ControllerModel  > that contains all of the controllers in 
the application. 

  Filters   This property returns an  IList<IFilterMetadata  > that contains the global filters in the 
application. 

   Table 31-2.    Putting the Application Model and Model Conventions in Context   

 Question  Answer 

 What are they?  The application model is a complete description of the controllers 
and actions that have been discovered in the application. 
Model conventions allow custom changes to be applied to the 
application model. 

 Why are they useful?  Model conventions are useful because they allow changes to 
the way that classes and methods are mapped to controllers 
and actions. Other customizations can be performed, such as 
restricting the HTTP methods that an action accepts or applying 
action constraints (which are described later in this chapter). 

 How are they used?  Model conventions are defined using a range of interfaces, 
described in the following sections, and applied as attributes or 
configured in the  Startup  class. 

 Are there any pitfalls or limitations?  There are some oddities in the way that model conventions are 
applied, as described in the following sections. 

 Are there any alternatives?  No, although you can introduce your own components to create 
a custom application model if the default one doesn’t suit your 
needs. 

 Have they changed since MVC 5?  The application model is a new addition to MVC. 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

989

 The important property for this chapter is  Controllers , which returns a list containing a  ControllerModel  
object for each controller that has been discovered in the application. Table  31-4  describes the most 
important  ControllerModel  properties.  

   Table 31-4.    Selected ControllerModel Properties   

 Name  Description 

  ControllerName   This  string  property defines the name of the controller. This is the name that 
will be used to match the  controller  routing segment. 

  ControllerType   This  TypeInfo  defines the type of the controller class. 

  ControllerProperties   This property returns an  IList<PropertyModel  > that describes all of the 
properties defined by the controller, as described in Table  31-5 . 

  Actions   This property returns an  IList<ActionModel  > that describes all of the actions 
defined by the controller, as described in Table  31-6 . 

  Filters   This property returns an  IList<IFilterMetadata  > that contains the filters 
that apply to all of the actions in the controller. 

  RouteConstraints   This property returns an  IList<IRouteConstraintProvider  > that is used to 
restrict how routes target actions defined by the controller. 

  Selectors   This property returns an  IList<SelectorModel  > that contains details of 
the action constraints (described in the “Using Action Constraints” section) 
and the routing information applied to the controller through attributes, as 
described in Chapter   15    . 

 You can see how some of the core functionality of MVC is captured by the application model classes. 
The  ControllerName  property, for example, is used to set the name that will be used by the routing system to 
match URLs, while the  ControllerType  property is used to set the controller class that the name relates to. 

 The  ControllerProperties  property returns a list of  PropertyModel  objects, each of which describes a 
property defined by the controller. Table  31-5  describes the most important  PropertyModel  properties.  

    Table 31-5.    Selected PropertyModel Properties   

 Name  Description 

  PropertyName   This  string  property returns the name of the property. 

  Attributes   This property returns a list of the attributes that have been applied to the property. 

 The  Actions  property returns a list of  ActionModel  objects, each of which describes an action 
method defined by a single controller class. Table  31-6  describes the most important properties of the 
 ActionModel  class.  

http://dx.doi.org/10.1007/978-1-4842-0397-2_15


CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

990

 The final level of detail is accessed through the  Parameters  properties, which returns a list of 
 ParameterModel  objects that describe each of the parameters defined by the action method. Table  31-7  
describes the most important properties of the  ParameterModel  class.  

    Table 31-6.    Selected ActionModel Properties   

 Name  Description 

  ActionName   This  string  property defines the name of the action, which is the one that will 
be used to match the  action  routing segment. 

  ActionMethod   This  MethodInfo  property is used to specify the method that implements the 
action. 

  Controller   This property returns the  ControllerModel  that describes the controller to 
which this action belongs. 

  Filters   This property returns an  IList<IFilterMetadata  > that contains the filters that 
apply to the action. 

  Parameters   This property returns an  IList<PropertyModel  > that contains descriptions of 
the parameters required by the action method. 

  RouteConstraints   This property returns an  IList<IRouteConstraintProvider  > that is used to 
restrict how routes target the action. 

  Selectors   This property returns an  IList<SelectorModel  > that contains details of 
the action constraints (described in the “Using Action Constraints” section) 
and the routing information applied to the controller through attributes, as 
described in Chapter   15    . 

   Table 31-7.    Selected ParameterModel Properties   

 Name  Description 

  ParameterName   This  string  property is used for the name of the parameter. 

  ParameterInfo   This  PropertyInfo  property is used to specify the parameter. 

  BindingInfo   This  BindingInfo  property is used to configure the model binding process, 
as described in Chapter   27    . 

 These types— ApplicationModel ,  ControllerModel ,  PropertyModel ,  ActionModel , and 
 ParameterModel —are used to describe every aspect of the controller classes in the application, as well as 
their methods, properties, and the parameters each method defines. 

   Customizing the Application Model 
 MVC has some built-in conventions that it applies as it populates the  ApplicationModel  with  ControllerModel , 
 PropertyModel ,  ActionModel , and  ParameterModel  objects to describe the controllers it discovers. 

 Some of the conventions are explicit, such as removing  Controller  from the name of controller classes 
and using it to set the  ControllerName  property of  ControllerModel  objects. It is this convention that means 
you define a class such as  HomeController  but target it with URL segments that contain  Home . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_15
http://dx.doi.org/10.1007/978-1-4842-0397-2_27


CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

991

 Other conventions are implicit, such as each class being used to create one controller and each method 
being used to create one action. Most MVC developers take these conventions for granted and don’t give 
them any conscious thought, but every aspect of the application model can be changed. 

 In previous chapters, I described attributes that change the way that MVC works, and these are actually 
model conventions. Table  31-8  describes the attributes.  

     Table 31-8.    The Basic Attributes That Change the Default Application Conventions   

 Name  Description 

  ActionName   This attribute allows the value for the  ActionName  property of an  ActionModel  to be 
specified explicitly rather than derived from a method name. 

  NonController   This attribute prevents a class from being used to create a  ControllerModel  object. 

  NonAction   This attribute prevents a method from being used to create an  ActionModel  object. 

 In Listing  31-8 , I have used the  ActionName  attribute to change the name of the action that is created to 
represent the  List  method in the  HomeController  class. 

     Listing 31-8.    Customizing the Application Model in the HomeController.cs File   

  using ConventionsAndConstraints.Models; 
 using Microsoft.AspNetCore.Mvc; 

   namespace ConventionsAndConstraints.Controllers { 

       public class HomeController : Controller { 

           public IActionResult Index() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(Index) 
         }); 

            [ActionName("Details")]  
         public IActionResult List() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(List) 
         }); 
     } 
 } 

    I have specified that the name  Details  should be used to create the action, replacing the default 
name of  List . You can see the effect by starting the application and requesting the  /Home/Details  URL. 
As Figure  31-2  shows, the request is handled by the  List  method.    



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

992

     Understanding the Role of Model Conventions 
    The attributes described in Table  31-8  allow basic changes to be made to the application model but 
are limited in their scope. For more substantial customizations,  model conventions  (also known just as 
 conventions ) are required. 

 The attributes from Table  31-8  allow you to specify changes to the application model objects before they 
are created, such as by overriding the name used for an action. By contrast, creating a model convention 
allows you to change the application model by altering the model objects after they have been created, 
which allows for much broader changes to be applied. Four kinds of model conventions are available, each 
of which is defined by a different interface, as described in Table  31-9 .  

  Figure 31-2.    Customizing the application model       

   Table 31-9.    The Application Model Convention Interfaces   

 Name  Description 

  IApplicationModelConvention   This interface is used to apply a convention to the  ApplicationModel  
object. 

  IControllerModelConvention   This interface is used to apply a convention to the  ControllerModel  
objects in the application model. 

  IActionModelConvention   This interface is used to apply a convention to the  ActionModel  
objects in the application model. 

  IParameterModelConvention   This interface is used to apply a convention to the  ParameterModel  
objects in the application model. 

 All four interfaces work in the same way, and only the level at which they operate within the application 
model changes. For example, here is the definition of the  IControllerModelConvention  interface: 

    namespace Microsoft.AspNetCore.Mvc.ApplicationModels { 

       public interface IControllerModelConvention { 

           void Apply(ControllerModel controller); 
     } 
 } 

 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

993

    The  Apply  method is called to provide the model convention with the opportunity to make changes to 
the  ControllerModel  to which it has been applied, which is received as the method argument. The other 
interfaces also defined  Apply  methods, and each receives a model object of the type it modifies, such that the 
 IActionModelConvention  interface receives an  ActionModel  object and the  IParameterModelConvention  
interface receives a  ParameterModel  object.  

     Creating a Model Convention 
 Controller, action, and parameter model conventions can be applied as attributes, which makes it easy 
to set the scope of the changes they apply. As a demonstration, I created an  Infrastructure  folder and 
added a class file to it called  ActionNamePrefixAttribute.cs , which I used to define the class 
shown in Listing  31-9 . 

     Listing 31-9.    The Contents of the ActionNamePrefixAttribute.cs File in the Infrastructure Folder   

  using System; 
 using Microsoft.AspNetCore.Mvc.ApplicationModels; 

   namespace ConventionsAndConstraints.Infrastructure { 

       [AttributeUsage(AttributeTargets.Method, AllowMultiple = false)] 
     public class ActionNamePrefixAttribute : Attribute, IActionModelConvention { 
         private string namePrefix; 

           public ActionNamePrefixAttribute(string prefix) { 
             namePrefix = prefix;             
         } 

           public void Apply(ActionModel action) { 
             action.ActionName = namePrefix + action.ActionName; 
         } 
     } 
 } 

    The  ActionNamePrefixAttribute  class is derived from  Attribute  and implements the 
 IActionModelConvention  interface. Its constructor accepts a string that is used as a prefix, which is applied 
by modifying the  ActionName  property of the  ActionModel  object received by the  Apply  method. 

 ■   Tip    Notice that I have restricted the use of the  ActionNamePrefix  attribute so that it can be applied only 
to methods. When applying model conventions as attributes, controller conventions take effect only when they 
are applied to classes, action conventions take effect only when they are applied to methods, and parameter 
conventions take effect only when they are applied to parameters. A convention applied at the wrong level will 
simply be ignored without any error. To avoid confusion, use  AttributeUsage  to limit the scope of the attributes 
you create.  

 In Listing  31-10 , I have applied the model convention attribute to one of the action methods of the  Home  
controller. 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

994

     Listing 31-10.    Applying a Model Convention in the HomeController.cs File   

  using ConventionsAndConstraints.Models; 
 using Microsoft.AspNetCore.Mvc; 
  using ConventionsAndConstraints.Infrastructure;  

   namespace ConventionsAndConstraints.Controllers { 

       public class HomeController : Controller { 

           public IActionResult Index() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(Index) 
         }); 

            [ActionNamePrefix("Do")]  
         public IActionResult List() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(List) 
         }); 
     } 
 } 

    When MVC goes through its discovery process, it will create an  ActionModel  object that describes the 
 List  method, detect the  ActionNamePrefix , and call its  Apply  method. You can see the effect by running the 
application and requesting the  /Home/DoList  URL, which has replaced the URL that would target the  List  
method under the default conventions, as shown in Figure  31-3 .  

  Figure 31-3.    Applying a model convention       

   Using Conventions That Add or Remove Models 
 There is a quirk in the way that model conventions are applied that prevents them from adding or removing 
objects in the application model. For example, imagine if you wanted to create a convention that some 
methods could be reached through two different actions. To demonstrate the problem, I added a class 
file called  AddActionAttribute.cs  to the  Infrastructure  folder and used it to define the class shown in 
Listing  31-11 . 

 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

995

     Listing 31-11.    The Contents of the AddActionAttribute.cs File in the Infrastructure Folder   

  using System; 
 using Microsoft.AspNetCore.Mvc.ApplicationModels; 

   namespace ConventionsAndConstraints.Infrastructure { 

       [AttributeUsage(AttributeTargets.Method, AllowMultiple = true)] 
     public class AddActionAttribute : Attribute, IActionModelConvention { 
         private string additionalName; 

           public AddActionAttribute(string name) { 
             additionalName = name; 
         } 

           public void Apply(ActionModel action) { 
             action.Controller.Actions.Add(new ActionModel(action) { 
                 ActionName = additionalName 
             }); 
         } 
     } 
 } 

    This action model convention uses an  ActionModel  constructor that duplicates the settings of an 
existing object and then changes the  ActionName  property of the new instance. The new  ActionModel  is 
added to the controller’s collection of actions by navigating through the  ActionModel.Controller  property. 
In Listing  31-12 , you can see how I have applied the model convention to the  Home  controller. 

      Listing 31-12.    Applying a Model Convention in the HomeController.cs File   

  using ConventionsAndConstraints.Models; 
 using Microsoft.AspNetCore.Mvc; 
 using ConventionsAndConstraints.Infrastructure; 

   namespace ConventionsAndConstraints.Controllers { 

       public class HomeController : Controller { 

           public IActionResult Index() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(Index) 
         }); 

            [AddAction("Details")]  
         public IActionResult List() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(List) 
         }); 
     } 
 } 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

996

    When you start the application, MVC will begin its discovery process and report the following error: 

   InvalidOperationException: Collection was modified; enumeration operation may not execute. 

   The model convention is trying to change the set of action model objects as they are being enumerated 
by the discovery process, which causes an exception. To avoid an error requires a different approach, as 
shown in Listing  31-13 . 

     Listing 31-13.    Creating a Safe Model Convention in the AddActionAttribute.cs File   

  using System; 
 using Microsoft.AspNetCore.Mvc.ApplicationModels; 
  using System.Linq;  

   namespace ConventionsAndConstraints.Infrastructure { 

        [AttributeUsage(AttributeTargets.Method, AllowMultiple = true)]  
      public class AddActionAttribute : Attribute {  

            public string AdditionalName { get; }  

           public AddActionAttribute(string name) { 
              AdditionalName = name;  
         } 
     } 

        [AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]  
      public class AdditionalActionsAttribute : Attribute,  
              IControllerModelConvention {  

            public void Apply(ControllerModel controller) {  
              var actions = controller.Actions  
                  .Select(a => new {  
                      Action = a,  
                      Names = a.Attributes.Select(attr =>  
                          (attr as AddActionAttribute)?.AdditionalName)  
                  });  

                foreach (var item in actions.ToList()) {  
                  foreach (string name in item.Names) {  
                      controller.Actions.Add(new ActionModel(item.Action) {  
                          ActionName = name  
                      });  
                  }  
              }  
          }  
      }  
 } 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

997

    It isn’t possible to modify the set of actions associated with a controller within an action model 
convention, but I still need some way to denote the changes that I require. For this reason, I have made the 
 AddActionAttribute  class just an attribute and not a model convention. 

 It is possible to change the set of actions within a controller model convention, which is why I created 
the  AdditionalActionsAttribute  class. The  Apply  method uses LINQ to locate the methods to which the 
 AddActionAttribute  class has been applied and creates new  ActionModel  objects with the names that are 
specified. 

 The most important part of this class is the call to the  ToList  method applied to the LINQ results. 

   ... 

 foreach (var item in actions. ToList ()) { 
 ... 

   This method forces the evaluation of the LINQ query and puts in the result into a new collection, which 
means that the  foreach  loop enumerates a different set of objects from the one that MVC is enumerating 
as it applies the model conventions. Without the  ToList  call, I would have received the same error message 
as the model convention from Listing  31-12  produced; with the  ToList  call, I am able to create new action 
model objects. Listing  31-14  shows how I have applied the revised attributes to the  Home  controller. 

     Listing 31-14.    Applying the Revised Model Convention in the HomeController.cs File   

  using ConventionsAndConstraints.Models; 
 using Microsoft.AspNetCore.Mvc; 
 using ConventionsAndConstraints.Infrastructure; 

   namespace ConventionsAndConstraints.Controllers { 

        [AdditionalActions]  
     public class HomeController : Controller { 

           public IActionResult Index() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(Index) 
         }); 

           [AddAction("Details")] 
         public IActionResult List() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(List) 
         }); 
     } 
 } 

    You can see the effect of the revised model convention by starting the application and requesting the 
 /Home/Details  and  /Home/List  URLs. As Figure  31-4  shows, the model convention has added a new action 
that is handled by the  List  method, supplementing the action model that is created by default.    



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

998

     Understanding Model Convention Execution Order 
 Model conventions are applied in a specific order, starting with the broadest scope: controller model 
conventions are applied first, followed by action model conventions, and, finally, parameter model 
conventions. To demonstrate the order, I have applied both of the custom conventions I created in previous 
examples to the  List  method of the  HomeController  class, as shown in Listing  31-15 . 

     Listing 31-15.    Applying Multiple Model Conventions in the HomeController.cs File   

  using ConventionsAndConstraints.Models; 
 using Microsoft.AspNetCore.Mvc; 
 using ConventionsAndConstraints.Infrastructure; 

   namespace ConventionsAndConstraints.Controllers { 

       [AdditionalActions] 
     public class HomeController : Controller { 

           public IActionResult Index() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(Index) 
         }); 

            [ActionNamePrefix("Do")]  
         [AddAction("Details")] 
         public IActionResult List() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(List) 
         }); 
     } 
 } 

    The  AdditionalActions  attribute, which is a controller model convention, is applied first and creates 
a new action called  Details . Next, the  ActionNamePrefix , which is an action model convention, is applied, 
which applies the  Do  prefix to all of the actions associated with the method. The result is that the  List  
method implements two actions,  DoList  and  DoDetails , which can be reached with the  /Home/DoList  and  /
Home/DoDetails  URLs, as shown in Figure  31-5 .   

  Figure 31-4.    The effect of creating an action model       

 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

999

     Creating Global Model Conventions 
 If you need to change the default model conventions, then you may have to do so for every controller, action, 
or parameter in the application. If this is the case, then you can create a  global model convention , rather than 
have to remember to apply attributes consistently to every controller class. Global model conventions are 
configured in the  Startup  class, as shown in Listing  31-16 . 

      Listing 31-16.    Creating a Global Filter in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
  using ConventionsAndConstraints.Infrastructure;  

   namespace ConventionsAndConstraints { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddMvc().AddMvcOptions(options => {  
                  options.Conventions.Add(new ActionNamePrefixAttribute("Do"));  
                  options.Conventions.Add(new AdditionalActionsAttribute());  
              });  
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

  Figure 31-5.    The effect of model convention execution order       

 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

1000

    The  MvcOptions  object received by the  AddMvcOptions  extension method defines a  Conventions  
property. This property returns a list collection to which model convention objects can be added. The listing 
applies both of the custom model conventions globally, which means that all action names will be prefixed 
with  Do  and all methods will be inspected for the  AddAction  attribute. Since these model conventions are 
applied globally, I have removed the attributes from the  HomeController  class, as shown in Listing  31-17 . 

     Listing 31-17.    Removing Model Conventions in the HomeController.cs File   

  using ConventionsAndConstraints.Models; 
 using Microsoft.AspNetCore.Mvc; 
 using ConventionsAndConstraints.Infrastructure; 

   namespace ConventionsAndConstraints.Controllers { 

        //[AdditionalActions]  
     public class HomeController : Controller { 

           public IActionResult Index() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(Index) 
         }); 

            //[ActionNamePrefix("Do")]  
         [AddAction("Details")] 
         public IActionResult List() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(List) 
         }); 
     } 
 } 

    Global model conventions are applied before conventions applied directly to classes. If there are 
multiple global conventions, then they are applied in the order they are registered and with no regard to 
their type. In Listing  31-16 , I registered the action model convention before the controller model convention, 
which means that the  Details  action specified through the  AddAction  attribute is created after the 
 ActionNamePrefixAttribute  convention is applied to all of the action names. The result is that the  List  
method implements two actions,  DoList  and  Details , which can be reached with the  /Home/DoList  and  /
Home/Details  URLs, as shown in Figure  31-6 .    

  Figure 31-6.    The effect of global model convention ordering       

 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

1001

     Using Action Constraints 
    Action constraints decide whether an action method is suitable for handling a specific request, which might 
lead you to think that action constraints are like the authorization filters that I described in Chapter   19    . 

 In fact, the use of action constraints is much more limited. When MVC receives an HTTP request, it goes 
through a selection process to identify the action method that will be used to handle it. If there are multiple 
actions that could handle the request, then MVC needs some way to decide which one to use, and that’s 
where action constraints are used. Table  31-10  puts action constraints into context.  

   Table 31-10.    Putting Action Constraints in Context   

 Question  Answer 

 What are they?  Action constraints are classes that MVC uses to determine whether 
a request can be processed by a specific action. 

 Why are they useful?  If there are two or more actions that could handle a request, then 
MVC needs some means to decide which of them is the most 
suitable. Action constraints are used to provide that information. 

 How are they used?  Action constraints are applied as attributes, which allows them to 
be reused throughout an application and means that the logic that 
determines whether an action should process a request doesn’t 
have to be defined within the action method itself. 

 Are there any pitfalls or limitations?  Action constraints can be applied too widely and prevent a request 
from being processed by any suitable action method, resulting in 
an unhelpful  404 – Not Found  response being sent to the client. 

 Are there any alternatives?  Filters are more useful if you want to restrict access to actions 
under specific circumstances because you can redirect the client to 
display a helpful error page. 

 Have they changed since MVC 5?  Action constraints are now an integral part of the application 
model, which wasn’t part of earlier MVC versions. 

     Preparing the Example Project 
 The purpose of action constraints is to help MVC choose between two or more similar action methods when 
any of them could be used to handle a request. This is the situation that I have created in Listing  31-18  by 
adding a new action method to the  Home  controller. 

     Listing 31-18.    Creating Two Equally Suitable Actions in the HomeController.cs File   

  using ConventionsAndConstraints.Models; 
 using Microsoft.AspNetCore.Mvc; 
 using ConventionsAndConstraints.Infrastructure; 

   namespace ConventionsAndConstraints.Controllers { 

       //[AdditionalActions] 
     public class HomeController : Controller { 

           public IActionResult Index() => View("Result", new Result { 
             Controller = nameof(HomeController), 

http://dx.doi.org/10.1007/978-1-4842-0397-2_19


CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

1002

             Action = nameof(Index) 
         }); 

            [ActionName("Index")]  
          public IActionResult Other() => View("Result", new Result {  
              Controller = nameof(HomeController),  
              Action = nameof(Other)  
          });  

           //[ActionNamePrefix("Do")] 
         [AddAction("Details")] 
         public IActionResult List() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(List) 
         }); 
     } 
 } 

    I added a new method called  Other  and applied the  ActionName  attribute so that it produces an action 
called  Index . I also updated the  Startup  class to remove the global model conventions from the previous 
part of the chapter, as shown in Listing  31-19 . 

     Listing 31-19.    Removing the Model Conventions in the Startup.cs File   

 ... 
 public void ConfigureServices(IServiceCollection services) { 
     services.AddMvc().AddMvcOptions(options => { 
          //options.Conventions.Add(new ActionNamePrefixAttribute("Do"));  
          //options.Conventions.Add(new AdditionalActionsAttribute());  
     }); 
 } 
 ... 

   This means that that there are two actions called  Index  on the  Home  controller, and if you start the 
application, you will see the error shown in Figure  31-7 , which indicates that MVC doesn’t know which 
action should be used.  

  Figure 31-7.    The effect of creating two equally suitable action methods       

 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

1003

 The error can be hard to read in a screenshot, so here is the relevant part of the message: 

   AmbiguousActionException: Multiple actions matched. The following actions matched route 
data and had all constraints satisfied: 
 ConventionsAndConstraints.Controllers.HomeController.Index 
 ConventionsAndConstraints.Controllers.HomeController.Other 

        Understanding Action Constraints 
 Action constraints are used to tell MVC whether an action method can be used to handle a request and to 
implement the  IActionConstraint  interface, which is defined as follows: 

    namespace Microsoft.AspNetCore.Mvc.ActionConstraints { 

       public interface IActionConstraint : IActionConstraintMetadata { 

           int Order { get; } 

           bool Accept(ActionConstraintContext context); 
     } 
 } 

    When MVC goes through the process of selecting an action method to handle a request, it checks to 
see whether there are constraints associated with it. If there are, then they are arranged in sequence based 
on the value of the  Order  property, and the  Accept  method of each is called in turn. If any of the constraints 
return  false  from the  Accept  method, then MVC knows that the action method cannot be used to handle 
the current request. 

 ■   Tip    The  IActionConstraint  interface is derived from  IActionConstraintMetadata , which is an 
interface that defines no members. It is not used directly, and you should always use the  IActionConstaint  
interface when you define custom constraints or use the  IActionConstraintFactory  interface if you want to 
create a constraint that has dependencies to resolve, as described in the “Resolving Dependencies in Action 
Constraints” section.  

 To help action constraints to make their determination, MVC provides them with an instance of the 
 ActionConstraintContext  class for context data, which defines the properties described in Table  31-11 .   



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

1004

     Creating an Action Constraint 
 The most common type of constraint examines the request to ensure that some policy has been met, such as 
a particular HTTP header value being present. To demonstrate how to create this kind of action constraint, 
I added a class file called  UserAgentAttribute.cs  to the  Infrastructure  folder of the example project and 
used it to define the class shown in Listing  31-20 . 

     Listing 31-20.    The Contents of the UserAgentAttribute.cs File in the Infrastructure Folder   

  using System; 
 using System.Linq; 
 using Microsoft.AspNetCore.Mvc.ActionConstraints; 

   namespace ConventionsAndConstraints.Infrastructure { 

       public class UserAgentAttribute : Attribute, IActionConstraint { 
         private string substring; 

           public UserAgentAttribute(string sub) { 
             substring = sub.ToLower(); 
         } 

           public int Order { get; set; } = 0; 

           public bool Accept(ActionConstraintContext context) { 
             return context.RouteContext.HttpContext 
                 .Request.Headers["User-Agent"] 
                 .Any(h => h.ToLower().Contains(substring)); 
         } 
     } 
 } 

    This is an action constraint attribute that prevents a request from matching actions when the  User-
Agent  header doesn’t contain a specified string. Within the  Accept  method, I get the HTTP headers from the 
 HttpContext  object and use LINQ to see whether any of them contain the substring that is received through 
the constructor. 

   Table 31-11.    The ActionConstraintContext Properties   

 Name  Description 

  Candidates   This property returns a list of  ActionSelectorCandidate  objects that describe the 
set of action methods that MVC has shortlisted to handle the current request. 

  CurrentCandidate   This property returns the  ActionSelectorCandidate  that describes the action 
method that the constraint is being asked to assess. 

  RouteContext   This property returns a  RouteContext  object, which provides information 
about the routing data (through the  RouteData  property) and the HTTP request 
(through the  HttpContext  property). 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

1005

 ■   Note    Don’t rely on the  User-Agent  header to identify browsers in real applications because the header 
values are often misleading. For example, the version of the Microsoft Edge browser that is current as I write 
this sends a  User-Agent  header that contains  Android ,  Apple ,  Chrome , and  Safari , which makes it easy 
to mistake it for another browser. A more robust approach is to use a JavaScript library such as Modernizr 
(   http://modernizr.com     ) to detect the features on which your application relies.  

 In Listing  31-21 , I have applied the constraint to one of the methods in the  HomeController  class. 

     Listing 31-21.    Applying an Action Constraint in the HomeController.cs File   

  using ConventionsAndConstraints.Models; 
 using Microsoft.AspNetCore.Mvc; 
 using ConventionsAndConstraints.Infrastructure; 

   namespace ConventionsAndConstraints.Controllers { 

       //[AdditionalActions] 
     public class HomeController : Controller { 

           public IActionResult Index() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(Index) 
         }); 

           [ActionName("Index")] 
          [UserAgent("Edge")]  
         public IActionResult Other() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(Other) 
         }); 

           //[ActionNamePrefix("Do")] 
         [AddAction("Details")] 
         public IActionResult List() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(List) 
         }); 
     } 
 } 

    I applied the attribute to the  Other  method and specified that the action should not be allowed to 
receive requests whose  User-Agent  header does not contain the term  Edge . 

 If you start the application and request the  /Home/Index  URL with Google Chrome and Microsoft Edge, 
you will see that the requests are handled by different methods, as illustrated in Figure  31-8 .  

http://modernizr.com/


CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

1006

 

UNDERSTANDING THE EFFECT OF A CONSTRAINT ON ACTION 

SELECTION

 The previous example reveals an aspect of using constraints that may not be immediately obvious: an 
action with a constraint whose  Accept  method returns  true  for a request is given preference over an 
action to which no constraints have been applied. 

 There are two  Index  actions defined by the  Home  controller—created from the  Index  and  Other  
methods—and both of them can be used to process requests whose  User-Agent  header contains the 
string  Edge . The reason that the  Other  method is used to process the request from the Edge browser is 
because it has a constraint applied to it and that constraint’s  Accept  method returns  true . The idea is 
that an action that has a constraint that has accepted a request is a better candidate than an action with 
no constraints at all.  

   Creating a Comparative Action Constraint 
 Through the  Candidates  and  CurrentCandidate  properties of the  ActionConstraintContext  object, 
constraints are provided with details of the other actions that are candidates to handle a request. Each 
potential match is described using an instance of the  ActionSelectorCandidate  class, which defines the 
properties shown in Table  31-12 .  

  Figure 31-8.    The effect of an action constraint       

   Table 31-12.    The ActionSelectorCandidate Properties   

 Name  Description 

  Action   This property returns an  ActionDescriptor  object that describes the candidate action. 

  Constraints   This property returns a list of  IActionConstraint  objects that comprise the set of 
constraints that have been applied to the candidate action. 

 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

1007

 The  ActionDescriptor  class is used to describe an action via the properties described in Table  31-13 , 
many of which are similar to those provided by other context objects.  

   Table 31-13.    Selected ActionDescriptor Properties   

 Name  Description 

 Name  This property returns the name of the action. 

  RouteConstraints   This property returns an  IList<IRouteConstraintProvider  > that is used to 
restrict how routes target the action. 

  Parameters   This property returns an  IList<PropertyModel  > that contains descriptions of the 
parameters required by the action method. 

  ActionConstraints   This property returns an  IList<IActionConstraintMetadata  > containing the 
constraints for this action. 

 Constraints can inspect the candidate actions and have insight into how and where they have been 
applied, which can be used to fine-tune how they work. As an example, consider the way that I have applied 
constraints to the  Home  controller in Listing  31-22 . 

     Listing 31-22.    Applying a Constraint to a Controller in the HomeController.cs File   

  using ConventionsAndConstraints.Models; 
 using Microsoft.AspNetCore.Mvc; 
 using ConventionsAndConstraints.Infrastructure; 

   namespace ConventionsAndConstraints.Controllers { 

       public class HomeController : Controller { 

           public IActionResult Index() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(Index) 
         }); 

           [ActionName("Index")] 
         [UserAgent("Edge")] 
         public IActionResult Other() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(Other) 
         }); 

            [UserAgent("Edge")]  
         public IActionResult List() => View("Result", new Result { 
             Controller = nameof(HomeController), 
             Action = nameof(List) 
         }); 
     } 
 } 



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

1008

    There is only one  List  action in the application, and applying the constraint to it means that only 
requests whose  User-Agent  header contains  Edge  can use it. If you make a request with Chrome, for 
example, then you will receive a  404 – Not Found  response. 

 This is not helpful because users won’t understand why they have received the error, and there is no 
explanatory text that suggests using a different browser instead. Action constraints are helpful when you 
want to steer the selection of an action method to handle a request and not when you want to prevent a 
specific action from being used at all; if that is your goal, then using a filter will allow you to redirect the 
client to a descriptive error page, which is a substantially more helpful response. 

 To address this problem, I have updated the  UserAgentAttribute  class so that the constraint does 
not reject requests when there is only one candidate action available to handle the request, as shown in 
Listing  31-23 . 

     Listing 31-23.    Checking for Other Candidate Actions in the UserAgentAttribute.cs File   

  using System; 
 using System.Linq; 
 using Microsoft.AspNetCore.Mvc.ActionConstraints; 

   namespace ConventionsAndConstraints.Infrastructure { 

       public class UserAgentAttribute : Attribute, IActionConstraint { 
         private string substring; 

           public UserAgentAttribute(string sub) { 
             substring = sub.ToLower(); 
         } 

           public int Order { get; set; } = 0; 

           public bool Accept(ActionConstraintContext context) { 
             return context.RouteContext.HttpContext 
                     .Request.Headers["User-Agent"] 
                     .Any(h => h.ToLower().Contains(substring)) 
                  || context.Candidates.Count() == 1;  
         } 
     } 
 } 

    The additional LINQ query checks to see whether the candidate action returned by the 
 CurrentCandidate  property is the only one in the collection returned by the  Candidates  property. If it is, 
then the constraint knows that MVC doesn’t have an alternative action available and allows the request. 
You can see the effect by starting the application and requesting the  /Home/List  URL using Google Chrome. 
Even though the  User-Agent  header sent by  Chrome  doesn’t contain  Edge , which is the term specified by the 
attribute on the  List  method, the constraint class determines that there are no other candidates and allows 
the request to proceed.   



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

1009

     Resolving Dependencies in Action Constraints 
 The  IActionConstraintFactory  interface is used when you need to resolve dependencies for an action 
constraint through the service provider, which I described in Chapter   18    . Here is the definition of the interface: 

    using System; 

   namespace Microsoft.AspNetCore.Mvc.ActionConstraints { 

       public interface IActionConstraintFactory : IActionConstraintMetadata { 

           IActionConstraint CreateInstance(IServiceProvider services); 

           bool IsReusable { get; } 
     } 
 } 

    The  CreateInstance  method is called to create new instances of the action constraint class, and the 
 IsReusable  property is used to indicate whether the objects returned by the  CreateInstance  method can be 
used for multiple requests. 

 To demonstrate the use of this interface, I need a dependency that will require resolution. To that end, I 
added a class file called  UserAgentComparer.cs  to the  Infrastructure  folder and used it to define the class 
shown in Listing  31-24 . 

     Listing 31-24.    The Contents of the UserAgentComparer.cs File in the Infrastructure Folder   

  using System.Linq; 
 using Microsoft.AspNetCore.Http; 

   namespace ConventionsAndConstraints.Infrastructure { 

       public class UserAgentComparer { 

           public bool ContainsString(HttpRequest request, string agent) { 
             string searchTerm = agent.ToLower(); 
             return request.Headers["User-Agent"] 
                 .Any(h => h.ToLower().Contains(searchTerm)); 
         } 
     } 
 } 

    The  UserAgentComparer  class defines a single method that looks for a string in the  User-Agent  header 
of an HTTP request. This is the same functionality I used earlier but packaged into a separate class so that I 
can use the service provider to manage its life cycle, which I have configured in Listing  31-25 . 

http://dx.doi.org/10.1007/978-1-4842-0397-2_18


CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

1010

     Listing 31-25.    Registering a Type with the Service Provider in the Startup.cs File   

  using Microsoft.AspNetCore.Builder; 
 using Microsoft.Extensions.DependencyInjection; 
 using ConventionsAndConstraints.Infrastructure; 

   namespace ConventionsAndConstraints { 

       public class Startup { 

           public void ConfigureServices(IServiceCollection services) { 
              services.AddSingleton<UserAgentComparer>();  
             services.AddMvc().AddMvcOptions(options => { 
                 //options.Conventions.Add(new ActionNamePrefixAttribute("Do")); 
                 //options.Conventions.Add(new AdditionalActionsAttribute()); 
             }); 
         } 

           public void Configure(IApplicationBuilder app) { 
             app.UseStatusCodePages(); 
             app.UseDeveloperExceptionPage(); 
             app.UseStaticFiles(); 
             app.UseMvcWithDefaultRoute(); 
         } 
     } 
 } 

    I selected the singleton life cycle, which means that a single instance of the  UserAgentComparer  will 
be used. In Listing  31-26 , I have updated the  UserAgent  constraint so that it delegates the inspection of the 
header to a  UserAgentComparer  object, which is obtained through the service provider. 

     Listing 31-26.    Resolving Dependencies in the UserAgentAttribute.cs File   

  using System; 
 using System.Linq; 
 using Microsoft.AspNetCore.Mvc.ActionConstraints; 
  using Microsoft.Extensions.DependencyInjection;  

   namespace ConventionsAndConstraints.Infrastructure { 

        public class UserAgentAttribute : Attribute,  IActionConstraintFactory {  
         private string substring; 

           public UserAgentAttribute(string sub) { 
             substring = sub; 
         } 

            public IActionConstraint CreateInstance(IServiceProvider services) {    
              return new UserAgentConstraint(services.GetService<UserAgentComparer>(),  
                  substring);  
          }  



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

1011

            public bool IsReusable => false;  

            private class UserAgentConstraint : IActionConstraint {  
              private UserAgentComparer comparer;  
              private string substring;  

                public UserAgentConstraint(UserAgentComparer comp, string sub) {  
                  comparer = comp;  
                  substring = sub.ToLower();  
              }  

               public int Order { get; set; } = 0; 

               public bool Accept(ActionConstraintContext context) { 
                 return comparer.ContainsString(context.RouteContext 
                         .HttpContext.Request, substring) 
                     || context.Candidates.Count() == 1; 
             } 
         } 
     } 
 } 

    In this model, the attribute that is applied to action methods is responsible for creating instances of the 
constraint class when its  CreateInstance  method is called. The argument to the  CreateInstance  method 
is an  IServiceProvider  object, which I use in the example to get a  UserAgentComparer  so I can create an 
instance of the  private  constraint class, which is then used in the selection process. 

 AVOIDING THE SCOPE TRAP

 Like other attribute-based features, applying a constraint attribute to a controller class is equivalent to 
applying the attribute to each individual method. However, this usually produces undesirable results 
because the purpose of constraints is to help MVC select an action method, and that is not the effect 
that applying the same constraint to all of the actions in controller generally achieves. 

 For example, if I applied the  UserAgent  attribute to the  HomeController  class, the  Index  actions 
would no longer be reachable by any browser. Both  Index  actions would be equally suitable for those 
browsers that include  Edge  in the  User-Agent  string, which will result in an exception. For all other 
browsers, neither  Index  action would be suitable, which will result in a  404 – Not Found  response. 

 It is possible to use the context object in a constraint to look for other constraints and see whether they 
are likely to reject the request, but this leads to the  Accept  method of each constraint being called 
many times for each request, which can be an expensive process and one that is best avoided. 

 Constraints work best when there are multiple action methods that can handle the same request and 
then the constraint is applied to those methods.    



CHAPTER 31 ■ MODEL CONVENTIONS AND ACTION CONSTRAINTS

1012

     Summary 
 In this chapter, I described two features that are used to customize the way that MVC operates. I explained 
how model conventions can be used to change the way that classes and methods are mapped to controllers 
and actions. I also described how action constraints are used to restrict the range of requests that an action 
may process and how they are used to select an action from a list of candidates identified when a request 
arrives. 

 And that is all I have to teach you about ASP.NET Core MVC. I started by creating a simple application 
and then took you on a comprehensive tour of the different components in the framework, showing you how 
they can be configured, customized, or replaced entirely. 

 I wish you every success in your MVC projects, and I can only hope that you have enjoyed reading this 
book as much as I enjoyed writing it.     



1013© Adam Freeman 2016 
A. Freeman, Pro ASP.NET Core MVC , DOI 10.1007/978-1-4842-0397-2

          A 
  ActionResults   . See  Controllers  
  Actions   . See  Controllers  
  Application model , 987  

 action constraints , 1001   
  Areas   . See  Routing  
  Arrowfunctions   . See  Lambda expressions  
  ASP.NET 

 middleware , 389   
  ASP.NET CoreMVC   . See  MVC  
  ASP.NETIdentity   . See  Identity  
  Asynchronous methods , 94   
  async keyword , 96   
  AttributeRouting   . See  Routing  
  Authentication   . See  Identity  
  Authorization   . See  Identity  
  Authorizeattribute   . See  Identity  
  await keyword , 96    

          B 
  Bower , 130, 346  

 bower.json fi le , 374   
  Browser Link , 409   
  Bundling fi les , 154    

          C 
  C# features 

 anonymous types , 91  
 asynchronous methods , 94  
 extension methods , 80  
 getting member names , 97  
 initializers , 77  
 lambda expressions , 85  
 null conditional operator , 70  
 properties, automatically implemented , 73  
 string interpolation , 76  
 type inference , 91   

  Client-sidevalidation   . See  Model validation  
  Confi guration 

 SportsStore , 213   
  Confi guration   . See  Projects  
  Connection strings , 212   
  Controllers , 503  

 action method parameters , 517  
 action results , 520  
 context data , 512  
 Controller base class , 511  
 Controllers folder , 61  
 naming conventions , 62  
 POCO controllers , 508  
 purpose in the MVC pattern , 54  
 responses , 519  

 errors , 542  
 fi les , 540  
 HTML , 522  
 HTTP codes , 542  
 JSON , 538  
 redirections , 531  
 View method , 522  

 RESTful controllers , 628  
 content formatting , 641  
 content negotiation , 643  
 defi ning routes , 633  
 dependencies , 633  
 HTTP method attributes , 634  
 JSON , 636  
 route attribute , 633  
 XML , 644  

 temp data , 537  
 unit testing , 521  
 View method , 522   

  Convention over confi guration , 62   
  Conventions , 62  

 controller conventions , 62  
 layouts , 63  
 view conventions , 63    

            Index 



■ INDEX

1014

          D 
  DataModel   . See  Model  
  Datavalidation   . See  Model validation  
  Dependency injection , 547  

 action injection , 577  
 closely coupled components , 554  
 concrete types , 568  
 dependency chains , 565  
 lifecycles , 570  

 scoped , 574  
 singleton , 576  
 transient , 570  

 loosely coupled components , 554  
 manually accessing services , 578  
 property injection , 577  
 service provider , 561  
 SportsStore , 201, 269   

  Deployment , 330  
 connection strings , 332  
 preparing Azure , 331   

  Domaindata   . See  Model   

          E 
  Entity Framework Core 

 Add-Migration command , 215, 282, 292, 323  
 connection string , 885  
 creating Identity database , 320  
 deleteting data from database , 315  
 migrations , 215  
 resetting databases , 282  
 schema changes , 282  
 SportsStore , 209  
 update-database command , 216, 282, 292, 324, 337  
 updating database , 303   

  Exception handling , 407   
  Extension methods , 80, 85    

          F 
  Filters , 581  

 action fi lters , 593  
 authorization fi lters , 590  
 context data , 589  
 dependency injection , 607  
 exception fi lters , 604  
 fi lter types and interfaces , 589  
 global fi lters , 614  
 hybrid action/result fi lters , 602  
 order of execution , 617  
 RequireHttps attribute , 587  
 result fi lters , 598   

  Font Awesome , 274   
  Form data , 31    

          G 
  Git , 345    

          H 
  Hosting environment , 400   
  HTMLHelpers   . See  Tag helpers   

          I, J, K 
  Identity , 877  

 authentication , 920  
 third-parties, using , 976  

 authorization , 929  
 Authorize attribute , 920  
 claims , 956  
 connection strings , 321  
 creating users , 892  
 custom properties , 951  
 database , 885  
 NuGet packages , 882  
 password validation , 896  
 policies , 956, 964  
 resources , 970  
 roles , 929  
 seed data , 323  
 services, confi guring , 887  
 SportsStore , 319  
 third-party authentication , 976  
 user account validation , 904  
 user class, creating , 883  
 UserManager class , 889   

  Initializers for objects and collections , 77    

          L 
  Lambda expressions , 85   
  Languagefeatures   . See  C# features  
  Layouts   . See  Razor, layouts  
  Linux   . See  Visual Studio Code  
  Logging , 402   
  Loosely coupledcomponents   . See  Dependency 

Injection   

          M 
  macOS   . See  Visual Studio Code  
  Middleware , 389   
  Minifying fi les , 154   



■ INDEX

1015

  Model , 26  
 role in the MVC pattern , 54   

  Model binding , 33, 805  
 arrays and collections , 827  
 complex types , 816  
 data sources , 834  

 request bodies , 839  
 request headers , 836  

 default values , 813  
 simple types , 815   

  Model conventions , 992   
  Model validation , 843  

 asp-validation-summary attribute , 855  
 client-side validation , 870  

 SportsStore , 311  
 custom validation messages , 857  
 explicit validation , 850  
 input-validation-error attribute , 853  
 metadata , 864  

 compare attribute , 865  
 custom attributes, defi ning , 868  
 Range attribute , 865  
 RegularExpression attribute , 865  
 required attribute , 865  
 StringLength attribute , 865  

 ModelState property , 851, 861  
 remote validation , 872  
 SportsStore , 288, 308  
 validation errors, showing , 852   

  Model validation 
 checking model state , 39  
 highlighting validation errors , 42  
 SportsStore , 305  
 using nullable types , 39   

  Moq   . See  Unit testing  
  MVC 

 action method , 17  
 architectural overview , 6  
 compard to ASP.NET Web Forms , 3  
 controller , 17  

 compared to Web Forms , 34  
 editing default controller class , 18  

 creating new project , 13  
 extensibility , 6  
 history of , 3  

 original MVC framework , 5  
 model    (see  Model )  
 open-source , 8  
 pattern 

 ASP.NET implementation , 55  
 controllers , 54  
 models , 54  
 other patterns , 55  
 separation of concerns , 53  
 views , 55  

 projects    (see  Projects )  
 routing system , 7  
 view , 20  

 creating a view , 21  
 view engine , 22    

          N 
  .NET Core , 5   
  Node.js , 343   
  Node Package Manager (NPM) , 346    . See also  

Visual Studio Code  
  NuGetpackages   . See  Visual Studio  
  Null conditional operator , 70   
  Null values , 70    

          O 
  OSX   . See  Visual Studio Code   

          P, Q 
  Partial views 

 SportsStore , 232   
  Post/Redirect/Get Pattern , 536   
  Projects 

 appsettings.json fi le , 212, 412  
 Areas folder , 61  
 bower.json fi le ,374     ( see also   Bower )  
 Browser Link , 409  
 Components folder , 61  
 Controllers folder , 61  
 creating a new project , 59  
 data folder , 61  
 dependencies folder , 61  
 empty template , 59  
 exception handling , 407  
 global.json fi le , 377  
 hosting environment , 400  
 JSON confi guration fi les , 376  
 logging , 402  
 migrations folder , 61  
 models folder , 61  
 Program.cs fi le , 62, 382  
 project.json fi le , 62, 379  
 Startup.cs fi le , 62, 383  
 static content , 410  
 _ViewImports.cshtml fi le , 107  
 Views folder , 61  
 Web Application template , 59  
 wwwroot folder , 62   

  Properties, automatically 
implemented , 73    



■ INDEX

1016

          R 
  Razor , 22  

 conditional statements , 118  
 confi guration , 680  
 expressions , 105  
 in context , 101  
 layouts , 22, 109  

 Layout property , 109  
 @model expression , 35, 105, 115  
 model keyword , 35  
 @model  vs . @Model , 105  
 @RenderBody expression , 109  
 strongly typed views , 106  
 @using expression , 109  
 view imports , 107  
 _ViewImports.cshtml fi le , 107  
 view location expanders , 681  
 Views/Shared folder , 114  
 _ViewStart.cshtml fi le , 112  
 view start fi le , 112  
 Visual Studio IntelliSense , 107   

  Razor   . See  Views  
  Razor ViewEngine   . See  Razor  
  Receiving form data , 31   
  RESTfulControllers   . See  Controllers  
  Routing , 7, 425  

 areas , 493  
 area attribute , 496  

 attribute routing , 460  
 Route attribute , 461  

 best practices , 499  
 catchall segments , 448  
 constraints , 451  

 combining , 456  
 custom , 457  
 regular expressions , 454  
 types , 455  
 values , 455  

 creating links , 468  
 customization , 480  
 default values , 434  
 MapRoute method , 433  
 optional segments , 446  
 ordering routes , 439  
 outgoing URLs , 468  
 segment variable reuse , 475  
 segment variables , 442  
 SportsStore , 207  
 static segments , 437  
 URL segments , 431    

          S 
  Separation ofconcerns   . See  MVC pattern  
  Services   . See  Dependency Injection  
  Session data , 260  

 temp data , 307   
  SportsStore 

 administration features , 291  
 Bootstrap CSS framework , 229  
 checkout process , 278  
 confi guration , 213  
 connection string , 212  
 controllers , 204  
 creating the database , 208  
 creating the model , 200  
 creating the project , 192  
 creating the unit test project , 197  
 database context class , 210  
 database migration , 282  
 dependency injection , 269  
 deployment , 330  
 navigation , 235  
 pagination , 216  
 partial view , 232  
 routing , 207  
 session data , 260  
 shopping cart , 253  
 tag helper , 219  
 validation , 288  
 views , 205   

  SQLite , 359   
  Static content , 62   
  String interpolation , 76    

          T 
  Tag helpers , 29, 719  

 anchor elements , 794  
 application relative URLs , 801  
 asp-action attribute , 29, 31, 757, 794  
 asp-antiforgery attribute , 757  
 asp-append-version attribute , 782  
 asp-area attribute , 757, 794  
 asp-controller attribute , 757, 794  
 asp-fallback-* attributes , 782, 791  
 asp-for attribute , 31, 760, 766, 768, 775  
 asp-format attribute , 760  
 asp-fragment attribute , 794  
 asp-host attribute , 794  
 asp-href-exclude attribute , 791  
 asp-href-include attribute , 791  



■ INDEX

1017

 asp-items attribute , 768  
 asp-route attribute , 757, 794  
 asp-src-exclude attribute , 782  
 asp-src-include attribute , 782  
 asp-validation-for attribute , 859  
 asp-validation-summary attribute , 41, 855, 863  
 cache busting , 788  
 caching , 796  
 content delivery networks , 789  
 context data , 727  
 cross-site request forgery , 758  
 CSS fi les , 791  
 form elements , 753  
 hosting environment , 781  
 image elements , 795  
 input elements , 760  
 Javascript fi les , 782  
 label elements , 766  
 output, producing , 728  
 registration , 729  
 scope , 732  
 select and option elements , 768  
 shorthand elements, creating , 736  
 SportsStore , 219  
 TagHelper base class , 726  
 textarea elements , 775   

  Temp data , 307    

          U 
  Unit testing , 163  

 controllers , 521  
 fact attribute , 168  
 fi lters , 592  
 isolating components , 171  
 mocking framework , 185  
 project confi guration , 165  
 project structure , 164  
 running tests , 169  
 SportsStore , 197  
 tag helpers , 731  
 test-driven development , 178  
 view components , 710  
 Visual Studio Code , 366   

  URLRouting   . See  Routing   

          V 
  Validation   . See  Model validation  
  View bag , 529   
  View Bag data , 24   

  View components , 687  
 asynchronous view components , 711  
 context data , 705  
 controllers, combined with , 714  
 HTML results , 703  
 partial views , 700  
 POCO view components , 696  
 results , 699  
 SportsStore , 243  
 ViewComponent base class , 698   

  ViewResult class , 23   
  Views , 653  

 creating an HTML form , 30  
 JSON data , 678  
 layout sections , 669  
 @model expression , 28  
 naming conventions , 63  
 optional sections , 673  
 partial views , 675  
 purpose in MVC pattern , 55  
 Razor , 663  
 search locations , 523  
 selecting specifi c views , 683  
 specifying a model type , 28  
 strongly typed , 27  
 view engines , 656  
 view imports fi le , 61  
 views folder , 61  
 view start fi le , 61   

  Visual Studio 
 Bower , 130  

 bower.json fi le , 130  
 dependency on Git , 130  
 package version numbers , 132  

 Browser Link , 144  
 bundling and minifi cation , 154  
 client-side packages , 130  
 confi guring authentication , 14  
 confi guring web tools , 12  
 debugging , 139  

 breakpoints , 140  
 data values , 143  

 developer exception pages , 138  
 disabling Application Insights , 14  
 IIS Express , 19  
 installing , 11  
 interactive development , 134  
 NuGet packages , 128  
 project templates , 59  

 fi le and folder structure , 16  
 Web Application , 14  



■ INDEX

1018

 scaff olding , 203  
 selecting a browser , 17  
 starting an application , 16  
 Test Explorer window , 169  
 upgrading Git , 11   

  Visual Studio2015   . See  Visual Studio  
  Visual Studio Code , 343  

 Bower , 346  
 C# Extension , 349  
 creating a new project , 350  
 Git , 345  
 Gulp , 346  
 installing , 348  
 .NET Core , 346  
 Node.js , 343  

 Node Package Manager (NPM) , 346  
 SQLite , 359  
 unit testing , 366  
 Yeoman , 346    

          W 
  WebAPI   . See  Controllers   

          X 
  xUnit   . See  Unit testing   

          Y, Z 
  Yeoman , 346          

Visual Studio (cont.)


	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Part I: Introducing ASP.NET Core MVC
	Chapter 1: ASP.NET Core MVC in Context
	Understanding the History of ASP.NET Core MVC
	ASP.NET Web Forms
	What Was Wrong with ASP.NET Web Forms?

	The Original MVC Framework
	What Was Wrong with the Original MVC Framework?


	Understanding ASP.NET Core
	Key Benefits of ASP.NET Core MVC
	MVC Architecture
	Extensibility
	Tight Control over HTML and HTTP
	Testability
	Powerful Routing System
	Modern API
	Cross-Platform
	ASP.NET Core MVC Is Open Source


	What Do I Need to Know?
	What Is the Structure of This Book?
	Part 1: Introducing ASP.NET Core MVC
	Part 2: ASP.NET Core MVC in Detail

	What’s New in This Edition?
	Where Can I Get the Example Code?
	Summary

	Chapter 2: Your First MVC Application
	Installing Visual Studio
	Creating a New ASP.NET Core MVC Project
	Adding the Controller
	Understanding Routes

	Rendering Web Pages
	Creating and Rendering a View
	Adding Dynamic Output

	Creating a Simple Data-Entry Application
	Setting the Scene
	Designing a Data Model
	Creating a Second Action and a Strongly Typed View
	Linking Action Methods
	Building the Form
	Receiving Form Data
	Using Model Binding
	Storing Responses

	Displaying the Responses
	Adding Validation
	Highlighting Invalid Fields

	Styling the Content
	Styling the Welcome View
	Styling the RsvpForm View
	Styling the Thanks View
	Styling the List View


	Summary

	Chapter 3: The MVC Pattern, Projects, and Conventions
	The History of MVC
	Understanding the MVC Pattern
	Understanding Models
	Understanding Controllers
	Understanding Views
	The ASP.NET Implementation of MVC

	Comparing MVC to Other Patterns
	Understanding the Smart UI Pattern
	Understanding the Model-View Architecture
	Understanding Classic Three-Tier Architectures
	Understanding Variations on MVC
	Understanding the Model-View-Presenter Pattern
	Understanding the Model-View-View Model Pattern


	Understanding ASP.NET Core MVC Projects
	Creating the Project
	Understanding MVC Conventions
	Following Conventions for Controller Classes
	Following Conventions for Views
	Following Conventions for Layouts


	Summary

	Chapter 4: Essential C# Features
	Preparing the Example Project
	Enabling ASP.NET Core MVC
	Creating the MVC Application Components
	Creating the Model
	Creating the Controller and View


	Using the Null Conditional Operator
	Chaining the Null Conditional Operator
	Combining the Conditional and Coalescing Operators

	Using Automatically Implemented Properties
	Using Auto-Implemented Property Initializers
	Creating Read-Only Automatically Implemented Properties

	Using String Interpolation
	Using Object and Collection Initializers
	Using an Index Initializer

	Using Extension Methods
	Applying Extension Methods to an Interface
	Creating Filtering Extension Methods

	Using Lambda Expressions
	Defining Functions
	Using Lambda Expression Methods and Properties

	Using Type Inference and Anonymous Types
	Using Anonymous Types

	Using Asynchronous Methods
	Working with Tasks Directly
	Applying the async and await Keywords

	Getting Names
	Summary

	Chapter 5: Working with Razor
	Preparing the Example Project
	Defining the Model
	Creating the Controller
	Creating the View

	Working with the Model Object
	Using View Imports

	Working with Layouts
	Creating the Layout
	Applying a Layout
	Using a View Start File

	Using Razor Expressions
	Inserting Data Values
	Setting Attribute Values
	Using Conditional Statements
	Enumerating Arrays and Collections

	Summary

	Chapter 6: Working with Visual Studio
	Preparing the Example Project
	Creating the Model
	Creating the Controller and View

	Managing Software Packages
	Understanding NuGet
	Understanding the NuGet Packages List and Location

	Understanding Bower
	Understanding the Bower Packages List


	Understanding Iterative Development
	Making Changes to Razor Views
	Making Changes to C# Classes
	Compiling Classes Automatically
	Enabling Developer Exception Pages
	Using the Debugger
	Setting a Breakpoint
	Viewing Data Values in the Code Editor
	Using the Locals Window


	Using Browser Link
	Setting Up Browser Link
	Using Browser Link
	Using Multiple Browsers


	Preparing JavaScript and CSS for Deployment
	Enabling Static Content Delivery
	Adding Static Content to the Project
	Updating the View
	Bundling and Minifying in MVC Applications
	Installing the Visual Studio Extension
	Bundling and Minifying Files


	Summary

	Chapter 7: Unit Testing MVC Applications
	Preparing the Example Project
	Enabling the Built-in Tag Helpers
	Adding Actions to the Controller
	Creating the Data Entry Form
	Updating the Index View

	Unit Testing MVC Applications
	Creating a Unit test Project
	Configuring the Unit Test Project
	Adding the Application Project Reference

	Writing and Running Unit Tests
	Running Tests with the Test Explorer

	Isolating Components for Unit Testing
	Isolating a Component


	Improving Unit Tests
	Parameterizing a Unit Test
	Getting Test Data from a Method or Property

	Improving Fake Implementations
	Adding a Mocking Framework
	Creating a Mock Object


	Summary

	Chapter 8: SportsStore: A Real Application
	Getting Started
	Creating the MVC Project
	Adding the NuGet Packages
	Creating the Folder Structure
	Configuring the Application

	Creating the Unit Test Project
	Checking and Running the Application

	Starting the Domain Model
	Creating a Repository
	Creating a Fake Repository
	Registering the Repository Service

	Displaying a List of Products
	Adding a Controller
	Adding and Configuring the View
	Setting the Default Route
	Running the Application

	Preparing a Database
	Installing Entity Framework Core
	Creating the Database Classes
	Creating the Repository Class
	Defining the Connection String
	Configuring the Application
	Creating and Applying the Database Migration

	Adding Pagination
	Displaying Page Links
	Adding the View Model
	Adding the Tag Helper Class
	Adding the View Model Data
	Displaying the Page Links

	Improving the URLs

	Styling the Content
	Installing the Bootstrap Package
	Applying Bootstrap Styles to the Layout
	Creating a Partial View

	Summary

	Chapter 9: SportsStore: Navigation
	Adding Navigation Controls
	Filtering the Product List
	Refining the URL Scheme
	Building a Category Navigation Menu
	Creating the Navigation View Component
	Generating Category Lists
	Creating the View
	Highlighting the Current Category

	Correcting the Page Count

	Building the Shopping Cart
	Defining the Cart Model
	Adding the Add to Cart Buttons
	Enabling Sessions
	Implementing the Cart Controller
	Defining Session State Extension Methods

	Displaying the Contents of the Cart

	Summary

	Chapter 10: SportsStore: Completing the Cart
	Refining the Cart Model with a Service
	Creating a Storage-Aware Cart Class
	Registering the Service
	Simplifying the Cart Controller

	Completing the Cart Functionality
	Removing Items from the Cart
	Adding the Cart Summary Widget
	Adding the Font Awesome Package
	Creating the View Component Class and View


	Submitting Orders
	Creating the Model Class
	Adding the Checkout Process
	Implementing Order Processing
	Extending the Database
	Creating the Order Repository

	Completing the Order Controller
	Displaying Validation Errors
	Displaying a Summary Page

	Summary

	Chapter 11: SportsStore: Administration
	Managing Orders
	Enhancing the Model
	Adding the Actions and View

	Adding Catalog Management
	Creating a CRUD Controller
	Implementing the List View
	Editing Products
	Creating the Edit Action Method
	Creating the Edit View
	Updating the Product Repository
	Handling Edit POST Requests
	Displaying a Confirmation Message
	Adding Model Validation
	Enabling Client-Side Validation

	Creating New Products
	Deleting Products

	Summary

	Chapter 12: SportsStore: Security and Deployment
	Securing the Administration Features
	Adding the Identity Package to the Project
	Creating the Identity Database
	Creating the Context Class
	Defining the Connection String
	Configuring the Application
	Defining the Seed Data
	Creating and Applying the Database Migration

	Applying a Basic Authorization Policy
	Creating the Account Controller and Views
	Testing the Security Policy

	Deploying the Application
	Creating the Databases
	Opening Firewall Access for Configuration
	Getting the Connection Strings

	Preparing the Application
	Creating the Error Controller and View
	Defining the Production Database Settings
	Configuring the Application
	Updating the Project Configuration

	Applying the Database Migrations
	Deploying the Application

	Summary

	Chapter 13: Working with Visual Studio Code
	Setting Up the Development Environment
	Installing Node.js
	Installing Node.js on Windows
	Installing Node.js on OS X/macOS
	Installing Node.js on Linux

	Checking the Node Installation
	Installing Git
	Installing Git on Windows or OS X/macOS
	Installing Git on Linux

	Checking the Git Installation
	Installing Yeoman, Bower, and Gulp
	Installing .NET Core
	Installing .NET Core on Windows
	Installing .NET Core on OS X/macOS
	Installing .NET Core on Linux

	Checking the .NET Core Installation
	Installing Visual Studio Code
	Installing Visual Studio Code on Windows
	Installing Visual Studio Code on OS X/macOS
	Installing Visual Studio Code on Linux

	Checking the Visual Studio Code Installation
	Installing the Visual Studio Code C# Extension

	Creating an ASP.NET Core Project
	Preparing the Project with Visual Studio Code
	Adding NuGet Packages to the Project
	Adding Client-Side Packages to the Project
	Configuring the Application
	Building and Running the Project

	Re-creating the PartyInvites Application
	Creating the Model and Repository
	Creating the Database
	Adding the Database Packages
	Creating and Applying the Database Migration

	Creating the Controllers and Views

	Unit Testing in Visual Studio Code
	Configuring the Application
	Creating a Unit Test
	Running Tests

	Summary


	Part II: ASP.NET Core MVC in Detail
	Chapter 14: Configuring Applications
	Preparing the Example Project
	Understanding the JSON Configuration Files
	Configuring the Solution
	Configuring the Project
	Adding Dependencies to the project.json File
	Registering Development Tools in the project.json File


	Understanding the Program Class
	Understanding the Startup Class
	Understanding How the Startup Class Is Used
	Understanding ASP.NET Services
	Understanding the MVC Services

	Understanding ASP.NET Middleware
	Creating Content-Generating Middleware
	Using Services in Middleware

	Creating Short-Circuiting Middleware
	Creating Request-Editing Middleware
	Creating Response-Editing Middleware

	Understanding How the Configure Method Is Invoked
	Using the Application Builder
	Using the Hosting Environment
	Using the Logging Factory
	Creating Custom Log Entries


	Adding the Remaining Middleware Components
	Enabling Exception Handling
	Enabling Browser Link
	Enabling Static Content

	Using Configuration Data
	Reading Configuration Data
	Using Configuration Data
	Using Configuration Data for Built-in Middleware Components


	Configuring MVC Services
	Dealing with Complex Configurations
	Creating Different External Configuration Files
	Creating Different Configuration Methods
	Creating Different Configuration Classes

	Summary

	Chapter 15: URL Routing
	Preparing the Example Project
	Creating the Model Class
	Creating the Example Controllers
	Creating the View

	Introducing URL Patterns
	Creating and Registering a Simple Route
	Defining Default Values
	Defining Inline Default Values

	Using Static URL Segments
	Defining Custom Segment Variables
	Using Custom Variables as Action Method Parameters
	Defining Optional URL Segments
	Defining Variable-Length Routes

	Constraining Routes
	Constraining a Route Using a Regular Expression
	Using Type and Value Constraints
	Combining Constraints
	Defining a Custom Constraint
	Defining an Inline Custom Constraint


	Using Attribute Routing
	Preparing for Attribute Routing
	Applying Attribute Routing
	Changing the Name of an Action Method
	Creating a More Complex Route

	Applying Route Constraints

	Summary

	Chapter 16: Advanced Routing Features
	Preparing the Example Project
	Generating Outgoing URLs in Views
	Generating Outgoing Links
	Targeting Other Controllers
	Passing Extra Values
	Generating Fully Qualified URLs
	Generating a URL from a Specific Route

	Generating URLs (and Not Links)
	Generating URLs in Action Methods


	Customizing the Routing System
	Changing the Routing System Configuration
	Creating a Custom Route Class
	Routing Incoming URLs
	Applying a Custom Route Class
	Routing to MVC Controllers

	Generating Outgoing URLs


	Working with Areas
	Creating an Area
	Creating an Area Route
	Populating an Area
	Generating Links to Actions in Areas

	URL Schema Best Practices
	Make Your URLs Clean and Human-Friendly
	GET and POST: Pick the Right One

	Summary

	Chapter 17: Controllers and Actions
	Preparing the Example Project
	Preparing the Views

	Understanding Controllers
	Creating Controllers
	Creating POCO Controllers
	Using the MVC Controller API

	Using the Controller Base Class

	Receiving Context Data
	Getting Data from Context Objects
	Getting Context Data in a POCO Controller

	Using Action Method Parameters

	Producing a Response
	Producing a Response Using the Context Object
	Understanding Action Results
	Producing an HTML Response
	Understanding the Search for a View File
	Passing Data from an Action Method to a View
	Using a View Model Object

	Passing Data with the View Bag

	Performing Redirections
	Redirecting to a Literal URL
	Redirecting to a Routing System URL
	Redirecting to an Action Method
	Using the Post/Redirect/Get Pattern
	Using Temp Data


	Returning Different Types of Content
	Producing a JSON Response
	Using Objects to Generate Responses

	Responding with the Contents of Files
	Returning Errors and HTTP Codes
	Sending a Specific HTTP Result Code
	Sending a 404 Result Using a Convenience Class

	Understanding the Other Action Result Classes

	Summary

	Chapter 18: Dependency Injection
	Preparing the Example Project
	Creating the Model and Repository
	Creating the Controller and View
	Creating the Unit Test Project

	Creating Loosely Coupled Components
	Examining Closely Coupled Components
	De-coupling Components for Unit Testing
	Using a Type Broker


	Introducing ASP.NET Dependency Injection
	Preparing for Dependency Injection
	Configuring the Service Provider
	Unit Testing a Controller with a Dependency
	Using Dependency Chains
	Using Dependency Injection for Concrete Types

	Understanding Service Life Cycles
	Using the Transient Life Cycle
	Using a Factory Function

	Using the Scoped Life Cycle
	Using the Singleton Life Cycle

	Using Action Injection
	Using the Property Injection Attributes
	Manually Requesting an Implementation Object
	Summary

	Chapter 19: Filters
	Preparing the Example Project
	Enabling SSL
	Creating the Controller and View

	Using Filters
	Understanding Filters
	Getting Context Data

	Using Authorization Filters
	Creating an Authorization Filter

	Using Action Filters
	Creating an Action Filter
	Creating an Asynchronous Action Filter

	Using Result Filters
	Creating a Result Filter
	Creating an Asynchronous Result Filter
	Creating a Hybrid Action/Result Filter

	Using Exception Filters
	Creating an Exception Filter

	Using Dependency Injection for Filters
	Resolving Filter Dependencies
	Creating Filters with Dependencies
	Applying the Filters

	Managing Filter Life Cycles
	Applying the Filter


	Creating Global Filters
	Understanding and Changing Filter Order
	Changing Filter Order

	Summary

	Chapter 20: API Controllers
	Preparing the Example Project
	Creating the Model and Repository
	Creating the Controller and Views
	Configuring the Application
	Setting the HTTP Port


	Understanding the Role of RESTful Controllers
	Understanding the Speed Problem
	Understanding the Efficiency Problem
	Understanding the Openness Problem

	Introducing REST and API Controllers
	Creating an API Controller
	Defining the Route
	Declaring Dependencies
	Defining the Action Methods
	Defining the Action Results

	Testing an API Controller
	Testing the GET Operations
	Testing the POST Operation
	Testing the PUT Operation
	Testing the Delete Operation

	Using the API Controller in the Browser

	Understanding Content Formatting
	Understanding the Default Content Policy
	Understanding Content Negotiation
	Enabling XML Formatting

	Specifying an Action Data Format
	Getting the Data Format from the Route or Query String
	Enabling Full Content Negotiation
	Receiving Different Data Formats

	Summary

	Chapter 21: Views
	Preparing the Example Project
	Creating a Custom View Engine
	Creating a Custom IView
	Creating an IViewEngine Implementation
	Registering a Custom View Engine
	Testing the View Engine

	Working with the Razor Engine
	Preparing the Example Project
	Demystifying Razor Views
	Understanding the Class Name
	Understanding the Base Class
	Understanding the View Rendering


	Adding Dynamic Content to a Razor View
	Using Layout Sections
	Testing for Sections
	Rendering Optional Sections

	Using Partial Views
	Creating a Partial View
	Applying a Partial View
	Using Strongly Typed Partial Views

	Adding JSON Content to Views

	Configuring Razor
	Understanding View Location Expanders
	Creating a Simple View Location Expander
	Applying the View Location Expander

	Selecting Specific Views for Requests


	Summary

	Chapter 22: View Components
	Preparing the Example Project
	Creating the Models and Repositories
	Creating the Controller and Views
	Configuring the Application

	Understanding View Components
	Creating a View Component
	Creating POCO View Components
	Deriving from the ViewComponent Base Class
	Understanding View Component Results
	Returning a Partial View
	Returning HTML Fragments

	Getting Context Data
	Providing Context from the Parent View Using Arguments

	Creating Asynchronous View Components

	Creating Hybrid Controller/View Component Classes
	Creating the Hybrid Views
	Applying the Hybrid Class

	Summary

	Chapter 23: Understanding Tag Helpers
	Preparing the Example Project
	Creating the Model and Repository
	Creating the Controller, Layout, and Views
	Configuring the Application

	Creating a Tag Helper
	Defining the Tag Helper Class
	Receiving Context Data
	Producing Output

	Registering Tag Helpers
	Using a Tag Helper
	Managing the Scope of a Tag Helper
	Narrowing the Scope of a Tag Helper
	Widening the Scope of a Tag Helper


	Advanced Tag Helper Features
	Creating Shorthand Elements
	Prepending and Appending Content and Elements
	Inserting Content Around the Output Element
	Inserting Content Inside the Output Element

	Getting View Context Data and Using Dependency Injection
	Working with the View Model
	Coordinating Between Tag Helpers
	Suppressing the Output Element

	Summary

	Chapter 24: Using the Form Tag Helpers
	Preparing the Example Project
	Changing the Tag Helper Registration
	Resetting the Views and Layout

	Working with Form Elements
	Setting the Form Target
	Using the Anti-forgery Feature

	Working with Input Elements
	Configuring Input Elements
	Formatting Data Values
	Applying Formatting via the Model Class


	Working with Label Elements
	Working with Select and Option Elements
	Using a Data Source to Populate a select Element
	Generating Option Elements from an enum
	Generating Option Elements from the Model
	Using a Custom Tag Helper to Generate Option Elements from the Model


	Working with Text Areas
	Understanding the Validation Form Tag Helpers
	Summary

	Chapter 25: Using the Other Built-in Tag Helpers
	Preparing the Example Project
	Using the Hosting Environment Tag Helper
	Using the JavaScript and CSS Tag Helpers
	Managing JavaScript Files
	Selecting JavaScript Files
	Narrowing the Globbing Pattern
	Excluding Files
	Using the Hosting Environment to Select Files

	Working with Content Delivery Networks

	Managing CSS Stylesheets
	Selecting Stylesheets
	Working with Content Delivery Networks


	Working with Anchor Elements
	Working with Image Elements
	Using the Data Cache
	Setting Cache Expiry
	Setting a Fixed Expiry Point
	Setting a Last-Used Expiry Period

	Using Cache Variations

	Using Application-Relative URLs
	Summary

	Chapter 26: Model Binding
	Preparing the Example Project
	Creating the Model and Repository
	Creating the Controller and View
	Configuring the Application

	Understanding Model Binding
	Understanding Default Binding Values
	Binding Simple Types
	Binding Complex Types
	Creating Easily Bound HTML
	Specifying Custom Prefixes
	Selectively Binding Properties

	Binding to Arrays and Collections
	Binding to Arrays
	Binding to Collections
	Binding to Collections of Complex Types


	Specifying a Model Binding Source
	Selecting a Standard Binding Source
	Using Headers As Binding Sources
	Binding Complex Types from Headers

	Using Request Bodies as Binding Sources

	Summary

	Chapter 27: Model Validation
	Preparing the Example Project
	Creating the Model
	Creating the Controller
	Creating the Layout and Views

	Understanding the Need for Model Validation
	Explicitly Validating a Model
	Displaying Validation Errors to the User
	Displaying Validation Messages
	Configuring the Default Validation Error Messages

	Displaying Property-Level Validation Messages
	Displaying Model-Level Messages

	Specifying Validation Rules Using Metadata
	Creating a Custom Property Validation Attribute

	Performing Client-Side Validation
	Performing Remote Validation
	Summary

	Chapter 28: Getting Started with Identity
	Preparing the Example Project
	Creating the Controller and View

	Setting Up ASP.NET Core Identity
	Adding the Identity Package to the Application
	Creating the User Class
	Configuring the View Imports

	Creating the Database Context Class
	Configuring the Database Connection String Setting
	Configuring the Identity Services and Middleware
	Creating the Identity Database

	Using ASP.NET Core Identity
	Enumerating User Accounts
	Creating Users
	Testing the Create Functionality

	Validating Passwords
	Implementing a Custom Password Validator

	Validating User Details
	Implementing Custom User Validation


	Completing the Administration Features
	Implementing the Delete Feature
	Implementing the Edit Feature
	Creating the View


	Summary

	Chapter 29: Applying ASP.NET Core Identity
	Preparing the Example Project
	Authenticating Users
	Preparing to Implement Authentication
	Adding User Authentication
	Testing Authentication

	Authorizing Users with Roles
	Creating and Deleting Roles
	Creating the Views
	Testing, Creating, and Deleting Roles

	Managing Role Memberships
	Testing and Editing Role Membership

	Using Roles for Authorization

	Seeding the Database
	Summary

	Chapter 30: Advanced ASP.NET Core Identity
	Preparing the Example Project
	Adding Custom User Properties
	Preparing for Database Migration
	Testing the Custom Properties

	Working with Claims and Policies
	Understanding Claims
	Creating Claims
	Using Policies
	Creating Custom Policy Requirements

	Using Policies to Authorize Access to Resources
	Creating the Resource Authorization Policy and Handler


	Using Third-Party Authentication
	Registering the Application with Google
	Enabling Google Authentication

	Summary

	Chapter 31: Model Conventions and Action Constraints
	Preparing the Example Project
	Creating the View Model, Controller, and View

	Using the Application Model and Model Conventions
	Understanding the Application Model
	Customizing the Application Model

	Understanding the Role of Model Conventions
	Creating a Model Convention
	Using Conventions That Add or Remove Models

	Understanding Model Convention Execution Order
	Creating Global Model Conventions

	Using Action Constraints
	Preparing the Example Project
	Understanding Action Constraints
	Creating an Action Constraint
	Creating a Comparative Action Constraint

	Resolving Dependencies in Action Constraints

	Summary


	Index



